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Abstract: We use a coordination-based kinetics model to look at the kinetics of the turnover
frequency (TOF) for the oxygen reduction reaction (ORR) for platinum nanoclusters. Clusters of
octahedral, cuboctahedral, cubic, and icosahedral shape and size demonstrate the validity of
the coordination-based approach. The Gibbs adsorption energy is computed using an empirical
energy model based on density functional theory (DFT), statistical mechanics, and thermodynamics.
We calculate the coordination and size dependence of the Gibbs adsorption energy and apply
it to the analysis of the TOF. The platinum ORR follows a Langmuir–Hinshelwood mechanism,
and we model the kinetics using a thermodynamic approach. Our modeling indicates that the
coordination, shape, and the Gibbs energy of adsorption all are important factors in replicating
an experimental TOF. We investigate the effects of size and shape of some platinum polyhedra on
the oxygen reduction reaction (ORR) and the effect on the mass activity. The data are modeled
quantitatively using lognormal distributions. We provide guidance on how to account for the effects
of different distributions due to shape when determining the TOF.
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1. Introduction

There is a long history of speculation that catalytic reactions depend on structure and shape,
and thus the coordination of the catalyst [1]. Indeed, in 1985, Falicov and Somorjai proposed that
coordination-sensitive edge and kink sites would be most likely to be active for structure-sensitive
reactions [2]. Nanocluster synthesis has reached the stage where narrow particle size distributions
of desired shapes of many elements and alloys may be achieved [3]. This allows experimentalists to
fine-tune catalytic reactions so that specific shapes, sizes, and thus the coordination of the catalyst is
known. We model the kinetics (turnover frequency (TOF)) of surface sites showing that they strongly
depend on the shape and structure of nanoclusters.

The oxygen reduction reaction (ORR) has much application to fuel cell technology. There is
previous work on the size dependence of the ORR. Shao et al. showed experimentally in 2011 that
platinum nanoparticles have a maximum in the mass activity around 2.2 nm [4]. Likewise, there have
been modeling efforts by Nesselberger et al. [5], Tritsaris et al. [6], and Tripkovic, et al. [7]. Somewhat
more recently, Rück, et al. have determined the platinum ORR size dependence via density functional
theory (DFT) [8]. Furthermore, DFT has been combined with kinetic Monte Carlo methods to look at the
TOF on platinum nanoclusters [9]. We calculate the Gibbs energy using an established procedure [10]
for the ORR reactions and incorporate it into the mass activity of the ORR via the TOF. This may lend
insight into experimental needs of cluster morphology and its impact on the TOF.
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Recently, we have determined coordination specific magic formulas for the surface sites of
19 different nanoclusters [11]. These magic formulas can assist our understanding of the coordination
and size-dependent surface behavior of clusters. In the size dimension of the mesoscale, neither the
atomic nor bulk apply, and much activity relies on the surface coordination of the specific cluster
being studied. While the exact dimensions of the mesoscale are ambiguous, a good approximation
is clusters with diameter D ~5–100 nm. DFT studies on the surface states of nanoclusters show
that for D ~3 nm for gold [12], and D ~2 nm, for platinum [13], the transition from the atomic to
bulk has occurred. In addition, Hoover, et al. calculate that the difference in entropy between the
thermodynamic prediction and the exact entropy is less than kB (Boltzmann’s constant) when the
number of atoms, N > 400 for classical close packed harmonic cubes [14]. This shows that quite small
clusters may be modeled with thermodynamics. Similarly, an estimate of D as a lower limit of the
mesoscale can be made from thermal fluctuations [15]. For a cube of dimension D and volume D3,
with ρn atoms per unit volume, the thermal fluctuations are about δT/T ≈ (ρnD3)−1/2. For solids and
liquids, ρn ≈ 50/nm3. If we accept fluctuations of 10−2, this gives D ≈ 5 nm.

The Gibbs adsorption energy has been calculated by a few authors using a DFT approach [16,17].
Unfortunately, the size range of interest for the TOF is rather large for DFT, and a range of sizes is
required. We provide a coordination approach using an empirical energy model combined with DFT,
and add statistical mechanics along with thermodynamics to complete the Gibbs adsorption energy
calculation. This enables us to determine the Gibbs adsorption energy, ∆G, as a function of size and
coordination. By modeling clusters using a coordination approach, we are able to avoid the need
for supercomputer calculations, as the computational demands are modest (only desktop models
required). This is a different approach to calculating the Gibbs energy.

2. Methods

We define G as the Gibbs energy of the cluster (which depends on the size), then, because of
adatoms being bonded to the outer shell atoms, there is an increase in G that is called the adsorption
energy and is denoted as ∆G. This can be split up over different coordination types of the atoms on
the outer shell bonding to adatoms. We suppose a kink atom adds to the adsorption energy with an
amount ∆Gk. Similarly an edge atom adds ∆Ge, while a facet atom contributes ∆G f then [18]

∆G = ∑
o∈{ f ,e,k}

∆Go No (1)

where No is the number of atoms in the outer shell of the indicated type. If NS = N f + Ne + Nk is the
total number of atoms in the outer shell bonded to adatoms, then this can be rewritten as

∆G = ∆G f · (1− fe − fk) + ∆Ge · fe + ∆Gk · fk where fo = No/NS, o ∈ {e, k}, (2)

where the edge and kink sites which have explicit coordinations for specific structures (see Table 1).
Note that Equation (2) applies to adsorption to on-top sites; otherwise, not all adatoms will be bonded
to atoms in the outer shell.

We have a fundamental relationship for the Gibbs energy and adsorption constant, Ka:

Ka = exp
(
−∆G

RT

)
, (3)

where R is the gas constant and T is the temperature in Kelvin. Brønsted–Evans–Polanyi relationships
are widely used in homogeneous and heterogeneous catalysis [18,19], using a relationship for reaction
constants k and equilibrium constants K as follows,

k = gKα, 0 < α < 1, (4)
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where g and α (Polanyi parameter) are constants. The Polanyi parameter is unitless and a proper
fraction, as given originally by Brønsted [20]. We then have

ka = k′aexp
(
−α
(

f e
n · χe(Dn) + f k

n · χk (Dn)
))

, (5)

where

χe(D) =
∆Ge(D)− ∆G f (D)

RT
, χk (D) =

∆Gk(D)− ∆G f (D)

RT
, (6)

and

k′a = g exp
(
−α

∆G f

RT

)
. (7)

We now proceed with the explanation of the method to calculate ∆G.
In the early 1990s, DFT studies on metal clusters gave E(cni), the bonding energy of atom i, as a

function of its coordination cni, and that led to the following empirical relationship [21],

E(cni) = E0 − A ·
√

cni + B · (cni), (8)

where E0, A, and B are constants of the fit [10], see Table 2. By definition, we then have the bond
energies, Eij, as a function of coordination:

Eij =
1

2 · cnB

(
E(cni) + E(cnj)

)
, (9)

where cnB is the bulk coordination, or 12 for fcc metals. For details on this model, we refer the reader
to reference [10].

Table 1. Formulas for nanocluster shapes [11]. The variable n refers to the number of shells in the
cluster, cn to standard coordination number, fcc to face centered cubic, NS the number of surface atoms,
and NT the total number of atoms.

cn fcc Truncated Cube cn fcc Octahedron

5 12n− 12 4 6
7 24 7 12n− 12
8 12n2 − 12n− 18 8 4n2 − 12n + 8

NS 12n2 − 6 NS 4n2 + 2
NT 4n3 + 3n2 + 3n− 7 NT

2
3 n3 + 2n2 + 7

3 n + 1

cn Icosahedron cn fcc Cuboctahedron

6 12 5 12
8 30n− 30 7 24n− 24
9 10n2 − 30n + 20 8,9 6n2 − 12n + 6, 4n2 − 12n + 8

NS 10n2 + 2 NS 10n2 + 2
NT

10
3 n3 − 5n2 + 11

3 n− 1 NT
10
3 n3 − 5n2 + 11

3 n− 1

Table 2. Bond strength parameters for platinum, where R2 is the least squares regression.

Element E0 A B R2

Pt 0.0 1.7898 0.0501 0.987

To allow for small deviations from the average bond length, we define i and j as nearest neighbors,
and separate them from the rest by requiring that rij < rc, where rc is a threshold value, appropriate
for the nanocluster. The value for rc must be less than the distance for second nearest neighbors and
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varies with the crystal structure. For fcc crystals, rc < 1.41 · rmin, where rmin is the smallest bond
length [11]. Thus,

A(i, j) =
{

1, if rij < rc and i 6= j
0, otherwise

(10)

describes the adjacency matrix for the cluster, and

E(i, j) =
{

rij, if rij < rc and i 6= j
0, otherwise

(11)

describes the Euclidean matrix for the cluster. We use an adjacency matrix and Euclidean matrix to
determine the diameter, D, of the nanoclusters [11], where the bond length in the clusters depends on
the average coordination [22]:

r(cn) =
2rB(

1 + exp
(

12−〈cn〉c)
8·〈cn〉c

)) . (12)

Here, rB is the bulk bond length and 〈cn〉c is the average coordination of the cluster. We find a linear
relationship between D and n, the number of cluster shells, as shown in Table 3:

D(n) = a · rB · n + b. (13)

This relationship is derived from MATLAB code for calculating the cluster diameter.

Table 3. Linear constants for D(n).

a b Nanocluster

1.722 0.2944 Pt Truncated Cube

1.414 0.0239 Pt Cuboctahedron

1.0 0.0282 Pt Octahedron

2.0 0.0273 Pt Icosahedron

The energies of adsorbates have been shown to scale linearly with generalized coordination [23,24].
We use a DFT model for energies of adsorbates [23]:

CNi = ∑
cnj · nj

cnmax
(14)

where the sum is over all nearest neighbors of i, cnmax = 12 for top sites, 18 for bridge sites, and has
other values for other types of sites [23]. In this equation, nj is the number of nearest neighbors, thus
each neighbor j of atom i has a weight of nj/cnmax associated with the site. Adsorbate energy, Ead,
is linear with generalized coordination [23]

Ead = CN0 + m · CNi. (15)

Table 4 shows the values of the linear fits as determined by Equation (15).

Table 4. Linear fit of Ead for adsorption.

Species CN0 (eV) Slope m of Ead vs. CNi

Pt-O2 [23] −2.418 0.227

Pt-H* [25] −0.3405 0.0562
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We construct our cluster-adatom Hamiltonian as follows,

H(i, j) ≈


Eij i, j in the nanocluster
Ead for an adatom bond
0 otherwise

(16)

with only nearest neighbor non-zero entries, i.e., a sparse matrix. In the Hamiltonian approach,
the partition function is [10,26,27]

Z = Tr e−βH (17)

and β = 1/kBT is the inverse temperature, where kB is Boltzmann’s constant, T is the temperature in
Kelvin (we use T = 300 K), Tr is the trace of the following matrix, and H is the Hamiltonian matrix,
as given by Equation (16) [10]. The probability of each state is then pj = eβλj /Z, where Z is the
partition function, Equation (17), and λj is an eigenvalue of the Hamiltonian matrix [27].

The Gibbs energy of adsorption in the nanoscale systems we examine is in joules (J), if we neglect
the small PV (pressure–volume) term, [10,26]

∆G = −RTNn ln Z, (18)

where Z is the partition function, Equation (17), and where Nn = Nc + Nθ , with Nc the number of
atoms in the cluster and Nθ the number of adatoms at coverage theta. The Gibbs adsorption energy
here is converted from more standard units by dividing by Nθ and using a conversion factor (R/kB) to
get units of (J/mol). We average several times over the nanocluster system, as especially for the kink
sites, the statistics are low.

3. Results and Discussion

3.1. Langmuir-Hinshelwood Mechanism

In general, the TOF for reactions may display structure sensitivity which rises or decreases
with size, or is not sensitive, or passes through a maximum [28]. The literature discusses several
types of reactions, including a two-step sequence and its corollary, the Eley–Rideal reaction, and the
Langmuir–Hinshelwood (L–H) mechanism [29]. The L–H mechanism is relevant for surface
reactions [30]:

1. A + Z↔ ZA (quasi-equilibrium)
2. B + Z↔ ZB (quasi-equilibrium)
3. ZA + ZB→ C + 2Z

A + B→ C

(19)

where A and B are reactants, C is the product, and Z is a surface site. The reaction rate is [29]

v(D) =
k3K1PAK2PB

(1 + K1PA + K2PB)2 , (20)

where we have
K1(D) = KA exp

{
−
(

fe · χA
e (D) + fk · χA

k (D)
)}

, (21)

K2(D) = KB exp
{
−
(

fe · χB
e (D) + fk · χB

k (D)
)}

, (22)

where k3 is the reaction rate constant for sequence 3 (see (19)), PA and PB are partial pressures or
concentrations (for liquids) of A and B, and for reaction 3 we have

k3(D) = KC exp
{
(1− α)

[
fe ·
(

χA
e (D) + χB

e (D)
)
+ fk ·

(
χA

k (D) + χB
k (D)

)]}
. (23)
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After some simplification we get

v(D) =
p1 exp

{
(−α)

[
f e
n ·
(
χA

e (Dn) + χB
e (Dn)

)
+ f k

n ·
(
χA

k (Dn) + χB
k (Dn)

)]}
[1 + p2 exp{−[ f e

n χA
e (Dn) + f k

n χA
k (Dn)]}+ p3 exp{−[ f e

n χB
e (Dn) + f k

n χB
k (Dn)]}]2

(24)

where p1 is a frequency and p2, p3 are related to the rate constants and partial pressures of A and
B [18,29]. Here, n refers to the dependence on complete shells of nanoclusters. As we are not aware of
other analysis of the data, we use α and the pi as adjustable parameters. In principle, there are more
experimental parameters (Polanyi parameter, kinetic constants, and partial pressures or concentrations)
depending in a complicated way on the analysis than we use to model the data. We find that α affects
the full width half maximum, FWHM, p1 affects the peak intensity, and p2, p3 affect the center of the
peak position.

3.2. Pt ORR

For modeling the platinum mass activity, we assume the O2 and H* react in a
Langmuir–Hinshelwood mechanism (see (19)), and separate the kink, edge, and facet bonding as
shown in Figure 1, below. We use platinum polyhedra of icosahedra, truncated cubes, octahedra, and
cuboctahedra in our modeling, see Figure 1.

Figure 1. Kink (row 1), edge (row 2), and facet (row 3) bonding of O2 to platinum clusters.

The ORR follows a L–H mechanism as shown in (25):

1. O2 → 2Oads
2. H2 → 2Hads
3. 2Hads + Oads → H2O

2H2 + O2 → 2H2O

(25)

so that in the general scheme of Equation (19) above A is O2 and B is H2. We also assume the Polanyi
constants are equal. We calculate the corresponding χe and χk as used in the TOF from Equation (24),
for the various polyhedra as shown in Figure 2 below.
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(A) (B)

(C) (D)

Figure 2. Plots of χe and χk versus D for the four polyhedra. In all four plots, the data for H-Edge
and H-Kink overlap on the scale presented. (A) octahedra; (B) cuboctahedra; (C) truncated cubes;
(D) icosahedra.

The mass activity is basically the product of the dispersion and the TOF [31]

MAPt =
F

AWPt

NS
NT

v(D)

103 (A/mgPt) (26)

where F is the Faraday constant, 96,485 C/mol, and AWPt is the atomic weight of platinum,
195.08 g/mol. In principle, this gives an exact form of the mass activity, but the kinetic constants and
corresponding concentrations are not completely known. We use α and the pi as modeling parameters
and optimize the mass activity for the various clusters. We are not aware of previous modeling of the
mass activity using the TOF, or Equation (26).
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In the original paper on the experimental data of the mass activity for platinum clusters, it was
assumed that the nanoclusters had cuboctahedral shape [4]. In Figure 3A, we plot the mass activity
versus D for cuboctahedra. The modeled tail of the distribution decays more rapidly than the
experimental data. This tells us that the cuboctahedral modeling has a narrower distribution than that
observed experimentally. However, if we presume that the experimental mass activity is composed of
multiple components from several polyhedra and that the sum from the convolution of the component
polyhedra results in an approximation of the experimental curve, we get Figure 3B. Here, we model
the data with a lognormal distribution with parameters as tabulated in Table 5, while the polyhedra
are approximated by cubic splines.

(A) (B)

Figure 3. (A) Mass activity for cuboctahedra. (B) Mass activity versus D for adsorption on
platinum polyhedra.

Table 5. Mean, µ, and standard deviation, σ, for the platinum oxygen reduction reaction (ORR) mass
activity for Figure 3, using a lognormal distribution.

Structure µ σ

Exp Fit 2.46 0.77

Cuboctahedron Figure 3A 2.31 0.38

Sum Figure 3B 2.77 0.88

To account for several shapes with independent distributions, we sum over the morphology

v(D) = ∑
i

ρi · vi(D), (27)

where i is one of the four shapes; octahedra, cuboctahedra, truncated cube, or icosahedra. The shape
parameters for the platinum TOF are shown in Table 6.
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Table 6. Shape parameters for the platinum turnover frequency (TOF) via the Langmuir–Hinshelwood
(L–H) mechanism.

Structure α p1 p2 p3

Octahedron 0.05 1.0 × 10−10 1.0 × 10−13 1.0 × 10−13

Truncated Cube 0.05 5.0 × 10−2 5.0 × 10−7 5.0 × 10−7

Icosahedron 0.05 1.0 × 10−2 1.0 × 10−18 1.0 × 10−18

Cuboctahedron Figure 3A 0.05 5.0 × 10−2 1.0 × 10−10 1.0 × 10−10

Cuboctahedron Figure 3B 0.05 2.5 × 10−2 1.0 × 10−10 1.0 × 10−10

If the assumption that the experimental platinum mass activity comes from cuboctahedra is valid,
then the calculated curve in Figure 3A is what we find using these procedures. However, if we assume
all the polyhedra contribute to the convolution of the experimental curve, good agreement is found
for the platinum mass activity for the four polyhedra considered, Figure 3B. The L–H mechanism
represents the TOF for platinum nanoclusters fairly well.

Alternatively, the mass activity may be calculated using a kinetic model [7] as

MAPt = js · Asp, js = ∑
f

j f · exp(−∆Ga
f /(kBT)), Asp = As/mp =

As · NA
AWPt · NT

, (28)

where j f is 96 and 83 mA/cm−2 for (111) and (100) surfaces, respectively, NA is the Avogadro number,
As is shown in Table 7, and ∆Ga

f = 0.10 eV or 0.12 eV, for (111) or (100) surfaces, respectively, is the
DFT calculated free energy barrier for ORR at 0.9 V.

Table 7. Surface area As for the polyhedra, where rB is the bond length for platinum.

Structure As

Octahedron 2
√

3 · (n · rB)
2

Truncated Cube 12(n · rB)
2

Icosahedron 5
√

3(n · rB)
2

Cuboctahedron (6 + 2
√

3) · (n · rB)
2

The specific activity (SA) of single crystal surfaces is known [5], however modeling the SA based
on specific surface orientations and the surface dispersion is problematic as assumptions need to be
made with respect to the non-contribution of edge and kink sites. In general, the SA follows a trend of
facet dispersion [4]. The specific activity is defined as follows,

SA = ∑
o∈{ f ,e,k}

fo · SAPt(hkl) (mA/cm2
Pt) (29)

where SAPt(hkl) comes from single crystal surfaces and fo from Table 1. If one assumes that the edge
and kink sites make a negligible contribution, then the SA follows the facet trend.

In Figure 4 below, we plot the surface dispersion Ds = (Ne + Nk)/NS · 100% for the four shapes
from the equations in Table 1. As can be seen from the data, the surface dispersion is similar for the
octahedron and cuboctahedron, and somewhat less for the truncated cube. The icosahedron has a
somewhat larger surface dispersion due to the 30n factor in the edge sites from Table 1. On the other
hand, octahedra have kink sites with coordination cn = 4, which is smaller than the other polyhedra.
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Figure 4. Surface dispersion for the four platinum shapes under consideration.

4. Conclusions

This work represents the computational modeling of the mass activity for the platinum ORR
based on a summed contribution of polyhedral distributions. The summed lognormal modeling
represents the data reasonably well. These results confirm that coordination, shape, and ∆G have
dramatic influence on the catalysis of reactions. The data is made quantitative through modeling with
a lognormal distribution. We provided guidance on accounting for different distributions of the TOF
based on morphology. We hope these results encourage further experimental work and theoretical
modeling. In particular, the Polanyi parameter, the kinetic constants, and the partial pressures or
concentrations are not known, and these results could in principle lead to a catalytic derivation from
fundamental data.
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