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Abstract: A large number of studies have examined the origins of high-catalytic activities of
nanoparticles, but very few have discussed the lifetime of high-energy electrons in nanoparticles.
The lifetime is one of the factors determining electron transfer and thus catalytic activity. Much of the
lifetime of electrons reported in the literature is too short for a high transfer-efficiency of photo-excited
electrons from a catalyst to the attached molecules. We observed TiO2 nanoparticles using the
femtosecond laser two-color pump-probe technique with photoemission electron microscopy having
a 40 nm spatial resolution. A lifetime longer than 4 ps was observed together with a fast decay
component of 100 fs time constant when excited by a 760 nm laser. The slow decay component
was observed only when the electrons in an intermediate state pumped by the fundamental laser
pulse were excited by the second harmonic pulse. The electronic structure for the asymmetry of the
pump-probe signal and the origin of the two decay components are discussed based on the color
center model of the oxygen vacancy.

Keywords: TiO2 nanoparticle; photo-excitation; hot electron; transfer efficiency; long lifetime; excited
state; oxygen vacancy; PEEM; pump-probe

1. Introduction

In chemical reactions, energetic electrons called “hot electrons” are transported over a potential
barrier ∆E from one material to another [1–7]. The chemical reaction rate or electron current, Ie, over the
barrier is given by the Richardson–Dushman equation

Ie = A (kT) 2 exp(−∆E/κT) (1)

which was derived for thermionic emission [8–13]. Here, kT is the thermal energy of the transferred
electrons when the energy of electrons is high, kT is high or the potential barrier, ∆E, is low, and transfer
current Ie is large. For example, Weik et al. [14] observed that cross-sections for both photo-desorption
and photo-dissociation of O2 adsorbed on Pd increased exponentially from the photon energy of 4 to
6 eV. The efficient generation of hot electrons is the most important subject in nanomaterial science.
Furthermore, the hot electron has been the focus of many reviews [1,2,5,15–17].

Bulk gold (Au) is the highest chemically inert metal, but Au in the form of nanoparticles (NPs) is
one of the most important catalysts [18]. Understanding how a chemically inert material changes to a
highly active catalyst is a major topic in nanoscience. The high catalytic activity has been attributed
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to metal–oxide interactions, such as charge transfer between the Au and oxides, and strain in the
Au NPs due to lattice mismatches at the interface. However, Nørskov et al. [19] concluded that the
low-coordinated Au atom is the main source of the very high catalytic activity. The CO oxidation activity
increases with the decrease in diameter d of the NPs. From the activity scaling of 1/d3, they concluded
that the corner atom is the site of catalysis. Their conclusion is highly important. However, they did
not discuss the change in electronic structure of Au NPs from bulk Au, which should be essentially
important in chemical reactions.

We propose that the essence of the high catalysis of NPs originates in the creation of excited
states for maintaining hot electrons [20]. When the size of materials approaches the nanometer scale,
the electronic states are quantized, and discrete energy levels are created in the conduction band,
even in metals.

TiO2 is an important material, particularly in photocatalysis, and its properties have been
extensively studied. Numerous studies have revealed that a decisive role in the catalysis is played
by defect [21,22], which has been identified as oxygen vacancy, Vo. Because Vo has one atomic size,
the electronic states in Vo are quantized and our proposal can explain the reason for the high catalysis
of TiO2 NPs, which have a large number of Vos. Although a large number of studies have reported the
electronic structure in the bandgap, only a small number of papers have reported excited states in the
conduction band. Onda et al. [23] reported that the “wet electrons” state lies at 2.4 eV above the Fermi
level on the surface of an H2O/TiO2 (110) rutile. Argondizzo et al. [24] reported the eg state 3.66 eV
above the defect level that lies 0.85 eV below the conduction band minimum (CBM). More excited
states may exist in the conduction band, and surveying unknown excited states will help to understand
the electron dynamics in the photocatalysis of TiO2 NPs.

We also propose that the long lifetime of hot electrons is essential for high catalysis [20] from
the following consideration. The lifetime of hot electrons required for high catalytic activities can be
quantitatively estimated, as illustrated in Figure 1, in which an electron is treated as a small particle.
Furube et al. [25] reported that more than 80% of hot electrons generated in 10 nm-diameter gold (Au)
NPs as a sensitizer are transferred to TiO2 NPs to supply a photocurrent. To realize such a high transfer
efficiency, electrons need to be reflected many times on the wall before most pass through a small
window between the Au NP and TiO2 NP. Then, they travel a distance of more than ten times the
diameter of the NP. When the diameter of the Au NPs is 10 nm, the traveling distance is longer than
100 nm. An electron with a kinetic energy of 1 eV moves only 6 nm in 10 fs. Then, the photoexcited
hot electrons need to stay at a high energy for a time longer than 200 fs so that they can overcome
a potential barrier between the Au NP and the TiO2 NP. Another example is the photo-dissociation
catalysis. The time interval of molecules arriving at the active site is about 1 ns at atmospheric pressure.
For efficient transfer of high-energy electrons generated in a catalyst to molecules reaching the catalyst,
electrons are desired to be active for the order of 1 ns until the next molecule arrives at the active site.

Figure 1. For high catalytic activities, the lifetime of hot electrons needs to be very long.
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In the case of Au NPs, the energy separation between quantized electronic levels will be large,
and the energy relaxation time will be long due to the “phonon bottleneck” [26]. Then, it will be
possible to realize near 100% transfer efficiency of the hot electron from 10 nm Au NP to TiO2 NP,
as reported by Furube et al. [25]. In the case of TiO2, however, the lifetime of hot electrons reported
by Onda et al. [23], and Argondizzo et al. [24] in a TiO2 single crystal were only 20 fs, which is too
short for high photocatalysis. Even if photogenerated hot electrons in a TiO2 NP are trapped in the
excited state discovered by Argondizzo et al. [24], electrons can only stay for several fs inside NPs,
and the fraction of only 10−5 of photogenerated electrons contributes to a chemical reaction when
molecules arrive at the active site every 1 ns. Because the photocatalytic activity of TiO2 NPs is
very high, there should be other excited states with a much longer lifetime. In fact, in a study using
photoemission-electron-microscopy (PEEM) with high spatial resolution, we discovered a new excited
state located 1.63 eV above the ground state of Vo, which has a lifetime as long as 4 ps [20].

The present paper reports a further detailed analysis of the result of the lifetime of hot electrons in
TiO2 nanoparticles. We found two decay components in the delay dependence of the pump-probe
signal. The slow decay component was observed only when the electrons excited by the fundamental
laser were probed by the second harmonic laser pulse and the lifetime longer than 4 ps was observed
when the wavelength of the fundamental pulse was 760 nm. The fast component decayed with a time
constant of 100 fs, which is longer than the values reported for hot electrons in the literature. The ratio
of the intensity of the slow component to the fast component was about 10%. The electronic structure
for observing the asymmetry of the pump-probe signal and the origin of the slow and fast components
are discussed.

2. Results

2.1. Three and Four-Photon Slopes

When I represents the laser power, the number of n-photon excited electrons is given by In, and the
number of n-photon excitations is given by the slope of the logarithmic representation. Figure 2
shows the electron signals for four typical particles as a function of laser power. The brightness of
NPs increased nearly exponentially and there was a difference in the slope; NP #29 and #82 were
three-photon-excited and particles #53 and #84 were four-photon-excited at all wavelengths from 710
to 800 nm. At a high laser power, a slight saturation is noticed and the degree of brightness saturation
was different among four NPs: clear saturation in #29 and very small in #53.

When an electron is excited by n photons of photon energy hν, the energy difference E between
the ground state and the excited state is (n − 1) hν < E < n hν. In particles #53 and #84, the energy
E is 1.746 × 3 < E < 1.55 × 4 eV, that is, 5.23 < E < 6.2 eV, because they were four-photon excited
at all wavelengths from 710 nm (1.746 eV) to 800 nm (1.55 eV). In three-photon excited NPs #29
and #82, 3.5 eV < E < 4.7 eV. Concerning the ionization energy, Ei, one theory predicted 8.3 eV [27],
and two experimental observations reported 7.5 eV [28] and 7.25 eV. [29] We assume Ei = 7.5 eV.
Therefore, electrons in the valence band cannot be directly ionized either by three-photon excitation or
by four-photon excitation by the laser of wavelengths from 710 to 800 nm.

Since the bandgap energy is about 3.2 eV, the energy difference, EA, between CBM and the vacuum
level, which is called the electron affinity, is 4.3 eV. If there are electron trap levels from 0.4 to 0.8 eV
below the CBM, the electrons at these levels will be three-photon-ionized, and if there are electron trap
levels between 0.9 and 1.9 eV below the CBM, the electrons at these levels are four-photon-ionized
by the laser of wavelength 710 nm. It is well known that there are many defect levels in TiO2.
Ghosh et al. [30] reported eight shallow traps between 0.27 and 0.87 eV below the CBM and deep
luminescence centers near 1.5 eV and around 2 eV. The absorption in reduced TiO2 increases with
the wavelength and becomes flat between 1.5 and 2 µm [30–32]. This infrared absorption is due to
the shallow traps reported by Ghosh et al. [10]. Yoshihara et al. [33] reported that the absorption
by trapped electrons in TiO2 NP had a broad peak at around 800 nm, which will correspond to the
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luminescence center reported by Ghosh et al. [10]. From this knowledge, we can explain the observed
small photon numbers in Figure 2 as follows. Three-photon NPs #29 and #82 have many shallow traps,
and trapped electrons were three-photon-ionized. In four-photon NPs #53 and #84, deep luminescence
centers were four-photon-ionized.

Figure 2. Some nanoparticles (NPs), such as #29 and #82, showed a three-photon slope, and others,
such as #53 and #84, showed a four-photon slope in the laser power dependence of the brightness.

Another possibility is that valence band electrons were excited to the electronic states in the
conduction band, from where they were thermally ionized as was observed in Au NPs by Li et al. [13].
If this is the case, we can suppose that four-photon NPs have higher density defects whose intermediate
energy levels assist the excitation of the valence band electrons to the excited states in the conduction
band and that the excitation of the valence band electrons assisted by the intermediate-level is weak in
three-photon NPs which have lower density defects.

Figure 3 shows the wavelength dependence of the signal intensity at 200 mW of NPs shown in
Figure 2. The electron signal was larger at a shorter laser wavelength. This wavelength dependence is
contrary to the report by Yoshihara et al. [33], who observed an absorption peak at 800 nm, and to the
reports in references [30–32] in which the absorption coefficient was larger at longer wavelengths up to
1.5 µm. Therefore, the wavelength dependence of the brightness seen in Figure 3 is difficult to explain
by a direct ionization and hence, thermal ionization will be more plausible as was observed in Au
NPs [13]. In the one-color excitation spectra shown in Figure 3, there were two dips at 1.63 eV (760 nm)
and 1.72 eV (720 nm) in #29, #82, and #84, and the dip at 1.72 eV was missing in #53.
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Figure 3. The brightness of TiO2 NPs #29, #53, #82, and #84 shown in Figure 2 at various photon energies.
The laser power was 200 mW. The trend of a larger electron signal at a shorter wavelength is contrary
to the wavelength dependence of the absorption coefficient, which suggests that electrons are not
directly multi-photon-ionized.

2.2. Measurement of the Electron Lifetime

The lifetime of hot electrons was measured by the pump-probe technique using two colors:
fundamental wavelength (F) and the second harmonic wavelength (SH). The result is shown in
Figure 4a for the four NPs shown in Figure 2 when the wavelength of the F pulse was 800 nm. The laser
power was 168 mW for the F pulse and 1.80 mW for the SH pulse. The brightness of NPs was similar
when F pulse only or SH pulse only was irradiated. The horizontal axis is the position of the corner
cube shown later in Section 4 for varying the delay time. When the number of the position is large,
the SH pulse arrives later, i.e., the sample was irradiated first by the F pulse. At around 482.37 mm,
the brightness was the maximum, which showed that both F and SH pulses irradiated the sample at
the same time.

Figure 4. (a) When the corner cube for reflecting the fundamental (F) beam was placed at 482.37 mm,
the brightness of all NPs was enhanced. The wavelengths of F and second harmonic (SH) pulses
were 800 and 400 nm, respectively. (b) As explained in the text, the brightness enhancement was
normalized for the comparison of the delay time dependence. No clear difference was noticed in the
delay dependence among NPs having a difference in brightness.
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We refer to the dependence of brightness on delay time as “delay dependence” and the increase in
the brightness of images when two pulses arrive at the same time as brightness “enhancement”. In #53,
the brightness was enhanced by three times from 200 at 300 µm to 600 at 370 µm. The “enhancement”
was about 2 in #82 and 1.5 in #84.

To compare the enhancement among particles with a large difference in brightness, the brightness
enhancement was normalized by setting the lowest brightness to 0 and the highest brightness to 1 for
each particle. The “normalized enhancements” for particles #29, #53, #82 and #84 are shown in Figure 4b.
The signal-to-noise ratio of individual NPs was not as high, and the “normalized enhancement” was
averaged over all of the selected 95 particles to study the detail of the delay dependence of enhancement,
and the results at various wavelengths are shown in Figure 5.

Figure 5. The normalized enhancement shown in Figure 4b was averaged over all 95 NPs. A long-tail
slow decay component was observed only at positive delay time when the second harmonic (SH)
irradiated the sample after the irradiation by the fundamental (F) pulse.

Two features are noticed in Figure 5. One is that there are two components: a central peak and a
long tail. The other feature is that the delay dependence is asymmetrical: the slow decay of the signal
was observed only at the positive position of the corner cube, which means that the lifetime of electrons
was long only when the F pulse irradiated the sample first before the SH irradiation.

The second feature is of interest. This feature is observable only when two colors are employed.
If one color is used, the delay dependence should be symmetrical around t = 0 where two pulses arrive
at the same time. Even in a two-color pump-probe, the asymmetry is observable under the following
two conditions. We assume electrons are excited by two steps, i.e., electrons in the ground state, EG,
are excited to the intermediate state, Eint, by the first pulse, shown by the red arrow F in Figure 6,
and the second pulse, shown by the green arrow SH, excites the Eint state to the final state, Efinal. E1 is
the energy of the intermediate state, Eint, from the ground state, EG, and E2 is the energy of the final
state, Efinal, from the intermediate state, Eint. The first condition for observing an asymmetry in the
delay dependence of enhancement is that the intermediate state, Eint, is excited to Efinal more preferably
by the SH pulse than by the F pulse. The second condition is that the intermediate state, Eint, can be
excited from the EG state by the F pulse. The first condition is satisfied when 1.75 eV < E2 < 3.1 eV.
The second condition is satisfied when E1 < 1.55 eV. When E1 > 1.55 eV, the second condition is satisfied
if there are other electronic states Eint’ with an energy separation of less than 1.55 eV between the
states EG and Ein. In Section 3.2 we discuss candidate electronic states satisfying the two conditions for
the asymmetry.
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Figure 6. The asymmetry of the delay dependence of the pump-probe signal seen in Figure 5 is
observable when the energy separation, E2, between the final, Efinal, and the intermediate, Eint, state is
larger than the one-photon energy of the fundamental (F) and smaller than the one-photon energy of
the second harmonic (SH) and when the energy separation, E1, between the Eint state and the initial
state, EG, is smaller than one-photon energy of the fundamental (F) pulse.

2.3. Detailed Analysis of the Delay Dependence of the Enhancement in Pump-Probe

Here, the delay dependence of the normalized enhancements shown in Figure 5 is analyzed in
detail. There are two components: a relatively narrow peak and a long tail. The profile of the narrow
peak is expected to reflect the pulse shape of the laser. In our previous report [20], we subtracted the
same Gaussian profile from the delay dependences at all wavelengths and discussed the wavelength
dependence of the decay time of the tail part only. However, by careful examination, we notice
that the width of the peak is wavelength-dependent, while the rising part is similar. In the present
paper, we report a detailed analysis of the delay dependence by performing numerical calculations to
re-produce profiles. The detail of the simulation and accuracy of the estimated values are described in
the Appendix A.

In the numerical calculation, four parameters are introduced: the laser pulse width tL, the lifetimes
τ1 and τ2 of the fast and slow components, respectively, and the relative amplitude α of the slow
component to the fast component. The rising part of the peak is determined by tL and the tail part of
a large delay time is determined by τ2. The falling side of the peak is determined by all parameters.
In the simulation, the laser intensity at t1 “in” the pump laser contributes to the probe signal at t2 “in”
the probe signal only when t1 < t2 to reproduce the observed asymmetry.

The closed squares in Figure 7 show the delay dependence of the brightness enhancement at
770 nm averaged over the 95 NPs shown in Figure 5. At this wavelength, the peak was the narrowest.
From the fitting, we determined that the laser pulse width was 110 fs and τ1 was 30 fs, as explained in
detail in the Appendix A. The best fit was obtained by a slow component with a lifetime of 500 fs with
an amplitude of 10% of that of the fast component. The profiles of the fast and slow components are
displayed in the figure. As seen in the figure, the calculated result reproduces well the observed delay
dependence and the fitting parameters are reliable.

Figure 8 shows the fittings to the delay dependence of the brightness enhancements at other
wavelengths. At 760 nm shown in (c), the delay dependence of the enhancement was nearly flat at a
large delay time. As explained in the Appendix A, the fitting gave τ1 of 100 fs and τ2 larger than 4 ps.
The delay dependence of the enhancement was similar at 740 nm (a) and 750 nm (b), and good fittings
were obtained with τ2 of 1 ps and τ1 of 100 fs. The decay of the delay dependence was faster at longer
than 780 nm. At these wavelengths, τ1 can be shorter than 30 fs which is the value at 770 nm, but we
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estimated τ2 by assuming τ1 = 30 fs. The values for τ2 were 300, 250, and 150 fs, at 770 (d), 790 (e),
and 800 nm (f), respectively.

Figure 7. Reproduction of the delay dependence of the normalized enhancement at 770 nm (closed
squares) by a numerical calculation explained in the Appendix A. Fitting parameters are tL = 110 fs,
τ1 = 30 and τ2 = 500 fs, and α = 0.11.

Figure 8. The delay dependence of the “normalized” brightness enhancement averaged over 95 NPs at
(a) 740 nm, (b) 750 nm, (c) 760 nm, (d) 780 nm, (e) 790 nm, and (f) 800 nm. The numerical calculations
shown by the red solid curves reproduce well the experimentally observed datapoints shown by the
solid squares. The fast and slow decay components are also displayed.

Figure 9 summarizes lifetimes τ1 and τ2 evaluated by the fittings shown in Figure 8. The lifetime
of the slow component, τ2, increased with the photon energy from 150 fs to 1 ps with the resonance at
1.63 eV (760 nm), where the lifetime was 4 ps or longer. The lifetime of the fast component, τ1 jumped
from 30 to 100 fs at the resonance at 1.63 eV. Figure 9 also shows a spectrum of the amplitude of the
slow component. The slow component at the resonance was 10% and larger at higher energy. At the
wavelength longer than 780 nm, the amplitude of the fast component was small, as seen in Figure 8.
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Figure 9. Spectra of the lifetime and the amplitude of the slow decay component. At the resonance
peak at 760 nm (1.63 eV), the lifetime was longer than 4 ps.

3. Discussions

3.1. Picosecond Lifetime Hot Electrons and High Catalytic Activities

We compare the observed lifetime of this study with those reported in the literature in Figure 10.
The values shown in Figure 9 are displayed as filled circles (slow component) and open circles
(fast component). The horizontal axis is the kinetic energy of electrons above the Fermi level.
We assumed that the initial state of the electrons in our work was located 0.85 eV below the CBM as
assumed by Argondizzo et al. [24]. The lifetime in a Cu (111) single crystal reported by Knoesel et al. [34]
is shown by the solid curve, which scaled as the inverse square root of the kinetic energy, as expected
by theory. The electron lifetime in Ag (110) and Ta (poly) [34] was lower than shown by the curve.
Link and El-Sayed [35], Zhukov et al. [36], and Bauer and Aeschlimann [37] reported similar values.
The value observed in TiO2 reported by Gundlach et al. [38] is shown by an open triangle and was
close to those in metals. In Argondizzo et al. [24], the electron lifetime was significantly shorter than
the pulse width of their 20 fs laser. The lifetime of the “wet electrons” discovered by Onda et al. [11]
was longer than that in Argondizzo et al. [24]. A lifetime of 15 fs by Tisdale et al. [39] and a few tens
of fs by Deinert et al. [40] at E-EF~0.3 eV were reported in ZnO single crystals (not plotted in the figure),
both of which are one order-of-magnitude faster than that on the solid curve of Knoesel et al. [34].

The lifetime of 4 ps or longer observed at 760 nm in the present study is more than two orders of
magnitude longer than those in metals shown by the solid curve. Even the shortest slow component of
170 fs at 800 nm in Figure 9 is longer than that of the “wet electron”. The fast component at shorter
than 760 nm is comparable to the wet electron.

In the Introduction, we noted that a lifetime in the order of 1 ns is desired for the highly efficient
use of photogenerated hot electrons in photocatalysis when molecules arrive at the active site every
1 ns. The lifetime of hot electrons trapped at the eg state in a single crystal is shorter than 10 fs, but the
lifetime of the Eint state in TiO2 NPs discovered in the present study is longer than 4 ps, as reported
above. Then, simply speaking, the efficiency in NPs is enhanced more than 400 times at the resonance
wavelength of 760 nm. At shorter wavelengths, the lifetime is a little shorter but still as long as 1 ps.
At wavelengths longer than 770 nm, the lifetime is shorter but still longer than that in a single crystal.
Our experimental result supports our claim that the essence of the high catalytic activity of TiO2 NPs is
in the creation of excited states with a very long lifetime in the conduction band.
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Figure 10. Comparison of electron lifetime. The values obtained in the present work, are displayed as
black solid circles (slow component) and open circles (fast component). The lifetime observed in a Cu
(111) single crystal by Knoesel et al. [34] is shown by the solid curve s, which followed the theoretical
scaling of 1/(E-EF)2 for Fermi liquid [34]. The vertical axis is the kinetic energy, E-EF. The data from
Onda et al. [23] are shown by the closed red square. The open red square is from Argondizzo et al. [24],
and the open triangle is from Gundlach et al. [38]. These results were observed for single crystals.
The longest lifetime of 4 ps observed in the present work in NPs is more than 10 times longer than
previously reported for single crystals.

3.2. Electronic Structure

Here, we consider the electronic states involved in our pump-probe experiment.
When a metal Ti atom with four 3d electrons in the valence band bonds with oxygen, O, it gives

all four 3d electrons to two O atoms. The valence band of TiO2 with a bandgap of 3.0 eV or 3.2 eV is
occupied by O2p electrons, and the empty Ti3d level serves as the conduction band. Vos [41] reported
that the conduction band of TiO2 comprises two groups: the lower group is the triple-degenerated
2t2g state and the upper group is the doubly degenerated 3eg state, as shown in Figure 4a. The energy
separation of the t2g and eg states was measured as 2.1 eV by Fisher [42], estimated from the X-ray
absorption spectrum.

In an oxygen vacancy, some electrons transferred to O atoms return to the Ti atom and form
defect levels in the bandgap as shown in Figure 11a. The 3eg state in the upper conduction band was
observed by Argondizzo et al. [24]. They irradiated a single crystal of rutile TiO2 (111) by 20 fs laser
pulses and observed several times greater enhancement of the photoemission for a 3.66 eV laser than
at 3.22 and 3.95 eV. In their explanation, the defect state, t2g, at 0.85 eV below the Fermi level was
two-photon-ionized, and the 3.66 eV light was in resonance with the transition from the defect state to
the eg state which worked as an intermediate state assisting the two-photon ionization. Their claim is
shown in Figure 11b. The bandgap energy of rutile TiO2 is 3.0 eV. By assuming the Fermi level is very
close to the conduction band bottom, the energy of the eg state from the valence band top is 6.01 eV,
which is 1.5 eV below the vacuum level when the ionization energy is 7.5 eV, and the intermediate
state in Argondizzo et al. belongs to the upper group (doubly degenerated 3eg) reported by Vos [41].

In Section 2.2, we discussed the conditions for observing the asymmetry of the delay dependence
of normalized enhancement seen in Figures 7 and 8. In our pump-probe experiment, the metastable Eint
state is located at 1.63 eV, i.e., E1 = 1.63 eV in Figure 6, and the eg state observed by Argondizzo et al. [24],
can be the final state, Efinal. When we assume the ground state EG is the t2g state in the bandgap as was
assumed in Argondizzo et al., Eint is located at 0.78 eV above CBM, and E2 is calculated as 2.03 eV.
Then, the SH of 400 nm (3.1 eV) can excite electrons in the Eint state to the states above the eg state,
and electrons instantly relaxed to the eg state, Efinal, and the electrons in the Efinal state are thermally



Catalysts 2020, 10, 916 11 of 20

ionized, as observed in gold NPs [13]. If the SH pulse irradiates the sample first, an electron in the
t2g state, EG, is excited to the states above the Eint state, but the electrons relaxed to the Eint state can
not be excited to the eg state, Efinal, because the photon energy (<1.68 eV) is smaller than E2 of 2.03 eV.
Hence, the slow decay component is observable only for positive delay when the SH arrives after the F.
For F longer than 770 nm, the EG state should be shallower than 0.85 eV because photon energy is not
large enough to reach the Eint state at 0.78 eV above CBM. Ghosh et al. [30] identified eight shallow
traps from 0.27 to 0.87 eV below CBM, and one of them can be EG when excited a the wavelength
longer than 770 nm.

Because the energy separation of Efinal and Eint, E2, of 2.03 eV is close to the energy separation
of the t2g and eg states of 2.1 eV measured by Fisher [42], the Efinal and Eint states in our pump-probe
measurement can be closely related with the electronic states observed by Fisher.

Figure 11. Energy levels in TiO2. (a) In TiO2, four 3d electrons of Ti atom are transferred to oxygen
and O2p is the valence band and the empty 3d level of Ti atom constitutes the conduction band.
The conduction band is comprised of two bands, the 3eg and t2g bands, according to Vos [41]. (b) In
oxygen vacancy, electrons returned from oxygen to Ti are trapped in the states in the bandgap. The 3eg

was observed at 3.66 eV from the defect level by Argondizzo et al. [24]. Our observed localized state,
Eint, at 1.63 eV above the defect state in the bandgap may belong to the lower band, the t2g band, in the
conduction band.

3.3. Fast and Slow Decay Components

Finally, we discuss the origin of the fast and slow decay components in the delay dependence of
the enhancement of the pump-probe signal.

The defect in TiO2 is the oxygen vacancy on the topmost atomic layer, which is schematically
shown in Figure 12. Henrich et al. [43] found that a signal about 0.7 eV below the Fermi level in a UPS
(ultraviolet–photoelectron–spectroscopy) spectrum increased with Ar ion bombardment and that the
signal was greatly decreased by exposure of the sample to 108 Langmuir of oxygen. Their experiment
proved that the defects are formed on the topmost atomic layer.
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Figure 12. Localized electron trapped at oxygen vacancy, Vo, on the surface has a lifetime as long as
4 ps when resonantly excited at 760 nm. Electrons generated other than Vo can be attracted by the
potential gradient by the positive charge at Vo, and a fraction larger than the concentration of Vo of
photo-excited electrons will have a long lifetime.

The oxygen vacancy is the catalytic active site, and the density of defects determines catalytic
activities. Therefore, numerous studies have evaluated the density of the defect site [44–47]. Many have
reported several % monolayer (ML) defects on the surface in a single crystal. The defect density increases
by ion sputtering as reported by Henrich et al. [43], and can be 0.4 ML according to Pan et al. [44].
However, the volume concentration of the defects is very low because the oxygen vacancy is created
mostly on the surface. Hasiguti et al. [48] reported that the volume concentration of defects in reduced
rutile was 3~5 × 1018/cm3 which corresponds to 0.01%.

The oxygen vacancy, Vo, acts as a point defect having +2 charge because O2− ion is removed,
and can capture two electrons. According to a calculation treating Vo as a color center by Chen et al. [49],
one electron is trapped deep at 1.78 eV from the conduction band and the other electron is shallowly
trapped at 0.87 eV. Their calculation agrees with the proposal by Cronemeyer [32]. Cronemeyer proposed
trapped states at 0.75 and 1.18 eV based on the absorption spectrum of reduced rutile single crystal
TiO2, which explains the signal at 0.7 eV below the Fermi level in UPS observed by Henrich et al. [43].
Because the trap is shallow, the wave function of the trapped electron is significantly extended.
According to Hasiguti et al. [48], the radius of the orbital of the shallow-trapped electron is 1.3 nm,
which is four times the average separation of the TiO2 molecule. The deep trap in the calculation by
Chen et al. [49] may correspond to the absorption peak at 800 nm reported by Yoshihara et al. [31].

From knowledge of the electronic structure of Vo explained above, we interpret that the slow
component is the decay of electrons at the Vo center, and the fast component is the decay of electrons
other than those at the Vo centers. When an electron is trapped at the intermediate state Eint localized
at the Vo center, it stays active for 4 ps or longer.

We interpret that the ratio of the amplitudes of the fast and slow components reflects the fraction
of electrons trapped at Vo among the electrons generated in the entire NP. As mentioned above,
the volume concentration of defects is only 0.01% based on the report by Hasiguti et al. [48]. The 10%
ratio of the slow component to the fast component at 760 nm shown in Figure 9 is three orders of
magnitude larger than the Vo volume concentration of 0.01%. We attribute this significant difference
to the potential gradient generated by the Vo center. Electrons generated other than the Vo will be
attracted toward the Vo center by the potential gradient generated by the charge at Vo. Ten percent of
the electrons will be trapped if the potential gradient extends to 1.7 nm from Vo. The mentioned value
may not be as accurate but the Coulomb potential by the Vo center will increase the fraction of hot
electrons trapped by Vo that stay active for a long time for high catalysis.

The larger amplitude of the slow component at the photon energy higher than 1.63 eV, seen in
Figure 9, can be explained as follows. An electron loses some fraction of its energy when traveling to
the Vo center, and the probability of reaching the Vo while maintaining its energy at a level higher than
Eint is higher for a higher-energy electron.
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As discussed in Section 3.2, the initial state in the measurement at wavelengths longer than
780 nm will not be the t2g state. If electrons in a deep trap calculated by Chen et al. [49], which will
correspond to the deep traps reported by Ghosh et al. [30] and to the absorption peak at 800 nm
reported by Yoshihara et al. [31], are in the EG state in our pump-probe experiment at longer than
780 nm, the positive charge is 2+ and the potential gradient is large. Furthermore, most of the electrons
generated other than the Vo can be attracted to the center and the fraction of the fast component that
represents the decay of electrons without being trapped by the Vo will be small.

4. Materials and Methods

The experimental setup for the lifetime measurement is briefly explained below [20]. As shown in
Figure 13, a beam of a femtosecond laser of 150 fs pulse width (80MHz, Mira, Coherent) was separated
by a beam splitter and focused on a Beta Barium Borate (BBO) crystal for generating the second
harmonic (SH). The optical path length of the fundamental (F) wavelength laser pulse was varied by
sending it to a corner cube, which was mounted on a translator. The position of the corner cube was
controlled by an electronic controller. The position accuracy was 1.25 µm, which corresponds to an 8-fs
accuracy. Two beams were combined by a beam combiner and focused on a sample in the vacuum
chamber of PEEM (FOCUS, IS-PEEM). The vacuum pressure was about 10−5 Pa. The power of the
F and SH pulses was varied by attenuators at each beam. The laser powers were 160 mW for F and
1.6 mW for SH, respectively. The pulse energies were 2 nJ and 20 pJ, corresponding to a peak power of
13 kW and 130 W, respectively. The focused beam diameter was about 100 µm and, hence, the power
density was about 100 and 1 MW/cm2 for the F pulse and the SH pulse, respectively. The laser power
was chosen so that the image brightness was similar when F only and SH only irradiated the sample.
The laser wavelength was varied from 700 to 900 nm.

Figure 13. Experimental setup. The delay time of the fundamental (F) beam was varied using a
translator. The second harmonic (SH) and F beams were combined by a beam combiner. The combined
beam were focused on a sample by a lens with a focal length of 200 mm at 25 degrees from the surface.

In performing the pump-probe measurement, the optical paths for two beams should be the same.
When the laser pulse is 150 fs, in our case, the accuracy should be better than 45 µm. This accuracy
can be achieved by observing the interference pattern by overlapping two beams. Two colors do not
generate interference but we adjusted the optical paths of F and SH beams as follows. Although the
conversion efficiency of the SH generation was as high as 7.5% in our case, most of the F pulse
transmits the BBO crystal for SH generation. To eliminate the F wavelength light in the path of the SH
beam, the SH beam was reflected by many dichroic mirrors which have a very low reflectivity for the
F wavelength. When adjusting optical path lengths for F and SH pulses, some of the dichroic mirrors
in the SH beam path were replaced with mirrors for reflecting the F wavelength, and interference
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between the F pulse in the F beam path and the F pulse traveling in the SH beam path was detected by
a photodiode by scanning the position of the corner cube. When replacing mirrors, the optical path
was changed slightly, and the final adjustment was needed to observe the enhancement of the electron
signal by PEEM, as shown in Figure 4.

The other difficulty in the two-color pump-probe measurement was adjusting the focused beam
size on the sample. Two colors were combined by a beam combiner and we focused the combined
beam by using a single lens with a focal length of 200 mm. Because of large chromatic aberration,
the focal length is largely different for F and SH beams, and the two colors are not best-focused at
the same time. The lens position was adjusted so that two beams were similarly defocused to have a
similar focused beam size. When changing the focused beam size on the sample, the focal length of the
lens should be changed in the two-color pump-probe, while it is easily changed by changing the lens
position in the one-color pump-probe. When changing the wavelength, we needed to re-adjust the
lens position because the focal length changes with the wavelength. This problem can be solved using
an off-axis parabola mirror, but there was no space to put it in our PEEM room.

The sample investigated was anatase type TiO2 NP from Daoking Science and Technology.
The average diameter was 100 nm, the purity was 99.9%, and the specific surface area was 20 m2/g.
The color of the powder was white, indicating that the sample was not heavily reduced.

For sparsely distributing TiO2 NPs to observe individual NPs, the powder was diluted in distilled
water and NPs were ultrasonically separated. One drop of the solution was dropped on an n-type Si
wafer. The drop was blown off by an air current for a few seconds, and a thin layer of TiO2 NPs was
left on the Si substrate. According to Henderson et al. [50], water molecules molecularly adsorbed and
hydrogen-bonded on TiO2 are desorbed at room temperature, and a dissociative water molecule, OH,
chemically adsorbed at the oxygen vacancy, is desorbed at 270 ◦C. For removing OH, the Si wafer on
which the TiO2 NPs were sparsely distributed was baked for 1 hour in the air at 500 ◦C.

Figure 14 shows a PEEM image. A total of 95 particles shown by the yellow circles in (a) were
selected for the analysis in the present paper. Figure 14b shows enlarged displays of the NPs shown in
from Figures 2–4. To observe many NPs in a single frame, the field of view was 64 µm. The number of
pixels was 560 × 560, and the one-pixel size was about 120 nm. Then, the size of the particles was about
400 nm. Therefore, strictly speaking, particles were clusters of NPs. In this paper, we refer to them
simply as NPs. In this paper, the brightness of each NP refers to the brightness of the brightest pixel in
each NP. Therefore, we expect that the brightness of NPs is determined by the electronic structure of
individual NPs, such as electron lifetime and defect density, with a small effect of the size of NPs.

Figure 14. PEEM (Photoemission-electron-microscopy) image of TiO2 NPs. (a) The field of view of the
image was set as 64 µm to observe many particles in one frame. The 95 particles selected for the analysis
are marked by yellow circles. (b) Enlarged images of four NPs shown in Figures 2–4. The particle sizes
were several pixels in height and width, which corresponds to about 400 nm. The positions of four
areas in (b) are shown by squares in (a).
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5. Summary

TiO2 nanoparticles were observed using the femtosecond laser two-color pump-probe technique
with PEEM, which has a 40 nm spatial resolution. When excited by a 760 nm laser, a lifetime longer
than 4 ps was observed together with a fast decay component of 100 fs time constant. The slow decay
component was observed only when the fundamental laser pulse irradiated the sample before the
irradiation by the second harmonic pulse. We conclude that there is an excited state, Eint, in the
conduction 1.63 eV above the 2t2g defect state which lies at 0.85 eV below the CBM, and that the
electrons excited to the Eint are excited by the SH pulse to the eg state, from which electrons are
thermally ionized to be observed by PEEM. The energy separation of the 2t2g and eg sates of about 2 eV
explains the asymmetry of the pump-probe signal. The observed 4 ps lifetime is nearly two orders of
magnitude longer than those reported in the literature. The result supports our claim that the essence
of high catalytic activities of nanoparticles is in the creation of excited states in the conduction band
with a long lifetime. The slow component in the delay-time-dependence of the pump-probe signal
shows the decay in electrons in the Eint, state, localized at the oxygen vacancy. The fast component is
the decay of electrons other than those at the Vo center. A fraction of the slow component which is
larger than the volume concentration of Vo can be attributed to the attraction of electrons to Vo by the
potential gradient generated by the positive charge at Vo. The electronic structure for the asymmetry
of the pump-probe signal and the origin of the two decay components are discussed based on the color
center model of the oxygen vacancy. A future detailed study of the fast and slow components will
provide deep insight into electron dynamics in the photocatalysis of TiO2.
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Appendix A

(1) Equations

The calculation of the simulation for reproducing the delay time dependence of the pump-probe
signal was performed as follows.

The number I(t1) of electrons excited to the excitation level at time t1 decays with a lifetime τ,
and becomes I(t1) × exp (−((t2 − t1)/τ)) at time t2. If the pump laser waveform is set as f (t), the number

of electrons at time t2 is
∫

f (t1) exp
(
−

(
(t2−t1)
τ

))
dt1. When the probe light is g(t), the probe signal is

given by ∫
(

∫
f (t1) exp

(
−

(
(t2− t1)
τ

))
dt1)g(t2)dt2 (A1)

We replace exp (−((t2 − t1)/τ)) with h(t1, t2) to generalize lifetimes, then, the pump-probe signal is
given by ∫

(

∫
f (t1)h(t1, t2)dt1)g(t2)dt2 (A2)

Here, t1 < t2.
In our experiment, the pump light is the fundamental wave (600~900 nm), the probe light is the

second harmonic (340~450 nm), and it is dichroic excitation. Setting t1 < t2 means that it can be excited
to the final excited state only when one color arrives before the other color.
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Since two lifetimes were required to reproduce the experimental results, h(t1, t2) is set as

h(t1, t2) = exp(−((t2 − t1)/τ1)) + α exp (−((t2 − t1)/τ2)), (A3)

where α is the relative intensity of the second component.
For simplicity, the probe laser and pump laser have the same waveform

f(t) = g(t) = exp(−(t/tL)2), (A4)

where tp = tL (ln2)0.5 is the pulse width of the laser.
Four parameters, tL, τ1, τ2 (»τ1), and α, were evaluated by the following procedure.

(2) Determination of the Laser pulse width

The rising part of the pump-probe signal is mainly determined by tL, the slope of at a large delay
time is determined by τ2, the intensity ratio to the peak is determined by α, and the falling waveform
of the peak is mainly determined by τ1.

(3) The lifetime of the fast component

As seen in Figure 5, in which the measurement results of seven wavelengths are overlapped and
drawn, the rising slope was slightly different depending on the wavelength. Since the pulse width of
the laser was the same at different wavelengths, the rising waveform of the pump-probe signal was
slightly different depending on the wavelength, because τ1 was different depending on the wavelength.
The pulse width of the laser was estimated from the waveform of the pump-probe signal at 770 nm,
where the rising edge was the steepest. The waveform of the rising part is not significantly affected
by τ1, so, regardless of the value set, there is no difference in the estimation of the laser pulse width.
The calculation was performed by setting τ1 > 10 fs because it is reported that the lifetime of hot
electrons in metals is about 10 fs, At tL > 120 fs and tL < 90 fs, the fitting of the experimental results was
very slightly poor on the falling side, and we decided that tL = 110 fs. The nominal pulse width given
by the manufacturer was 150 fs. Since the probe light was the second harmonic and the pulse width
was shortened to about 106, the tL = 110 fs obtained above is reasonable. As seen in Figure A1, the good
fit over the whole delay time at 770 nm was obtained with τ1 = 30 fs, τ2 = 500 fs, and α = 0.115.

Figure A1. The delay time dependence of the pump-probe signal at 770 nm. (a), (b), and (c) show
calculations for 120, 110, and 90 fs, respectively, for tL. The best fit was achieved with tL = 110 fs.

Figure A2 shows three cases of τ1 for reproducing the delay time dependence of the pump-probe
signal at 770 nm. The steepness of the falling side of the peak is mainly determined by τ1. We notice
a very slight deviation of the curves from the datapoints for τ1 = 20 fs and 50 fs, and a good fit was
obtained by τ1 =30 fs with τ2 = 500 fs, and α = 0.1.
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Figure A2. The delay time dependence of the pump-probe signal at 770 nm. (a), (b), and (c) show
calculations for 20, 30, and 50 fs, respectively, for τ1. A good fit was achieved with τ1 = 50 fs.

Figure A3 shows three cases of τ1 for reproducing the delay time dependence of the pump-probe
signal at 760 nm. We notice a slight deviation of the curves from the datapoints for τ1 = 80 fs and 120 fs,
and a good fit was obtained by τ1 =100 fs, τ2 = 4 ps, and α = 0.1.

Figure A3. The delay time dependence of the pump-probe signal at 760 nm. (a), (b), and (c) show
calculations for 80, 100, and 120 fs, respectively, for τ1. A good fit was achieved with τ1 = 100 fs.

(4) The lifetime of the slow component

Figure A4 shows three cases of τ2 for reproducing the delay time dependence of the pump-probe
signal at 760 nm. We notice a slight deviation of the curve from the datapoints for τ2 = 2 ps. We would
say that τ2 is larger than 4 ps with α = 0.1.

Figure A4. (a), (b), and (c) show calculations for 3000, 4000, and 5000 fs, respectively, for τ2. A good fit
to the delay time dependence at 760 nm was obtained for τ2 > 4 ps.
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