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Abstract: Severe interfacial electron–hole recombination greatly limits the performance of
CuWO4 photoanode towards the photoelectrochemical (PEC) oxygen evolution reaction (OER).
Surface modification with an OER cocatalyst can reduce electron–hole recombination and thus
improve the PEC OER performance of CuWO4. Herein, we coupled CuWO4 nanoflakes (NFs) with
Iridium–cobalt phosphates (IrCo-Pi) and greatly improved the photoactivity of CuWO4. The optimized
photocurrent density for CuWO4/IrCo-Pi at 1.23 V vs. reversible hydrogen electrode (RHE) rose
to 0.54 mA·cm−2, a ca. 70% increase over that of bare CuWO4 (0.32 mA·cm−2). Such improved
photoactivity was attributed to the enhanced hole collection efficiency, which resulted from the
reduced charge-transfer resistance via IrCo-Pi modification. Moreover, the as-deposited IrCo-Pi layer
well coated the inner CuWO4 NFs and effectively prevented the photoinduced corrosion of CuWO4

in neutral potassium phosphate (KPi) buffer solution, eventually leading to a superior stability over
the bare CuWO4. The facile preparation of IrCo-Pi and its great improvement in the photoactivity
make it possible to design an efficient CuWO4/cocatalyst system towards PEC water oxidation.

Keywords: photoelectrochemical water oxidation; copper tungsten; iridium–cobalt phosphates;
cocatalyst; interfaces

1. Introduction

Photoelectrochemical (PEC) water splitting is a green way to convert solar power into storable
chemical fuels and thus addresses the rising demand for renewable energy [1,2]. The overall course
includes both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), which occur
on the photoanode and photocathode, respectively [1]. Between them, the OER, with a more sluggish
kinetic character, is generally considered as the rate-limiting step [3]. The solar-to-chemical conversion
efficiency for PEC OER undoubtedly depends on the employed photoanode material. Beginning
with TiO2 as an efficient photoanode in 1972 [4], some other binary transition-metal oxides, such as
ZnO [5,6], WO3 [7–10], and Fe2O3 [11–13], have been found active toward PEC OER. Among them,
WO3 has attracted intensive attention due to its nontoxic composition, high hole mobility property
(~10 cm2

·V−1
·s−1) [14], and long hole diffusion length (~150 nm) [14]. However, the drawbacks of

WO3, such as relatively large bandgap (ca. 2.7 eV) [7–9] and narrow pH range for stable work (pH < 4),
restrict its large-scale application [15]. To address such limitations, it is feasible to associate another
transition-metal oxide with WO3 to generate a WO3-based ternary oxide, as the introduced metallic
component can regulate the bandgap structure and bonding state of WO3 without damaging its main
merits [16–19].

In the family of WO3-based ternary oxides, CuWO4, as a promising photoanode material,
has played an increasingly important role in PEC water oxidation over recent years [19–29]. Due to
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the contribution of Cu(3d) orbitals to the valance band, the bandgap value of CuWO4 is reduced
by ca. 0.4 eV compared to WO3, resulting in a red-shift of the optical-absorption edge from 475 nm
to 550 nm [19]. While WO3 suffers severe corrosion in a pH > 4 aqueous solution due to its acidic
oxide nature [15], CuWO4 exhibits excellent stability over a wider pH range (≤9.5) [19–21,23–25,28,29].
The strong covalency of Cu-O binding in CuWO4 inhibits the generation of soluble tungstate [19].
Despite these merits, CuWO4 still shows relatively lower photoactivity than the common photoanodes,
including its binary counterpart WO3. Much effort has been directed to reveal the limiting factors in
water oxidation for CuWO4 and then improve its solar-to-chemical conversion efficiency [24–29].

As reported previously, CuWO4 suffers from severe electron–hole recombination at the
CuWO4/solution interface owing to the slow OER kinetics [21,22,27], thus limiting its PEC OER
performance. However, in the presence of hole scavengers, such as CH3OH [19], H2O2 [25],
or Na2SO3 [29], CuWO4 will show a much higher photoactivity, suggesting huge room for improvement
in its PEC OER activity. Generally, surface modification with an OER cocatalyst is a valid method
to alleviate the interfacial electron–hole recombination, since the cocatalyst can efficiently capture
the photogenerated holes and then accelerate the PEC OER [5,8,30,31]. Nevertheless, Hamann [32]
found that decorating CuWO4 with common cocatalysts usually led to comparable or even worse PEC
performance. To date, the two previous studies concerning cocatalyst-modified CuWO4 reported that
only mild enhancement in the photoactivity was achieved via manganese carbodiimide (MnNCN) [26]
and manganese phosphate (Mn-Pi) [27] modification. Highly-enhanced performance can be potentially
achieved via noble-metal-based OER catalysts, since they generally outperform the noble-metal-free
counterparts whether as electrocatalysts alone or as cocatalysts combined with semiconductors [33].
However, the high cost prohibits their further application in industry.

Ir-Pi, with its noble-metal composition, shows the highest OER activity in the family of transition
metal phosphate (TMP) [34]. Following the merit of TMP, IrPi is easy to prepare and possesses
a superior stability in neutral potassium phosphate buffer solution (KPi) [34], both favoring its
widespread applicability in OER. In our previous work, we doped the low-cost Co into pure Ir-Pi via a
cyclic voltammetry (CV) co-deposition method, and the obtained Iridium–cobalt phosphates (IrCo-Pi)
shows not only a reduced usage of Ir but also an enhanced OER activity over the pristine Ir-Pi due to
the synergetic effect between Ir and Co [35]. Therefore, using IrCo-Pi to modify CuWO4 would be a
possible approach to achieve a highly improved PEC OER performance for the CuWO4 photoanode
while reducing the use of high-cost Ir.

Herein, we add IrCo-Pi on the surface of CuWO4 nanoflakes (NFs) via a facile CV co-deposition
method to alleviate the interfacial charge recombination. The obtained CuWO4/IrCo-Pi composites
exhibit a highly-boosted PEC OER activity and an improved stability in neutral KPi solution over the
bare CuWO4. We reveal that the greatly-enhanced hole-collection efficiency, which originates from the
reduced charge-transfer resistance, accounts for the advanced PEC OER activity. The results presented
here, as far as we know, stand as the best enhancement ever achieved on cocatalyst-modified CuWO4.
This work demonstrates that it is feasible to design an efficient CuWO4/cocatalyst system towards PEC
water oxidation.

2. Results and Discussion

2.1. Morphology, Chemical Composition, Crystal Structure and Bonding State of CuWO4 and CuWO4/IrCo-Pi

As shown in Figure 1a,b, both CuWO4 and CuWO4/IrCo-Pi exhibit similar network structures,
suggesting that the deposition process imposed negligible impact on the morphology. Nevertheless,
the roughening of the surface and the increase in the average thickness of nanoflakes (See the thickness
distribution in Supplementary Figure S1a,b) reveal that a ca. 5 nm-thick film has been deposited on
CuWO4 NFs. The elemental signals of Ir, Co, and P shown in Supplementary Figure S1c confirm the
successful integration of IrCo-Pi with CuWO4. Moreover, the three elements are evenly distributed
throughout the entire NF (Figure 1c). Such a uniform distribution is attributed to the merit of CV
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co-deposition method, since it ensures a fast-alternate deposition of multiple components within a
certain potential window [35]. The crystalline structures of CuWO4 and CuWO4/IrCo-Pi are shown in
Figure 1d,e. Well-resolved lattice fringes appear in both samples, and the lattice spaces of 0.376 nm and
0.487 nm are assigned to the (0-11) and (001) facet of triclinic CuWO4 phase, respectively. Moreover,
the formation of a uniform amorphous IrCo-Pi layer outside the single-crystalline CuWO4 nanoflake
proves the successful preparation of CuWO4/IrCo-Pi composite, and the thickness of the layer (ca. 5 nm)
matches well the results shown in Supplementary Figure S1a,b. In line with the high-resolution
transmission electron microscopy (HRTEM) tests, no signal of crystalline peaks related to IrCo-Pi
was collected in the X-ray diffraction (XRD) patterns of CuWO4/IrCo-Pi (Figure 1f) and FTO/IrCo-Pi
(Supplementary Figure S1d).
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Figure 1. Typical top-view scanning electron microscope (SEM) images of (a) CuWO4 and
(b) CuWO4/IrCo-Pi. (c) Energy dispersive spectrum (EDS) elemental mappings of Ir, Co, P and
O in CuWO4/IrCo-Pi. HRTEM images of (d) CuWO4 and (e) CuWO4/IrCo-Pi. (f) XRD patterns of
CuWO4 and CuWO4/IrCo-Pi.

X-ray photoelectron spectroscopic (XPS) measurements were conducted to explore the elemental
constitutions and bonding states of CuWO4/IrCo-Pi with different Ir-to-Co ratio (denoted as RIr-to-Co).
The obtained survey spectra in Supplementary Figure S2 reveal that Cu, W, Ir, Co, P and O are the
major compositions of CuWO4/IrCo-Pi, further demonstrating the successful combination of IrCo-Pi
with CuWO4. As shown above (Figure 1c), CV co-deposition enables the two elements (Ir and Co) to
be uniformly mixed at the microscopic scale, which creates an environment in which synergistic effect
between adjacent atoms can occur. To probe such issue, the high-resolution spectra of Co 2p and Ir 4f in
CuWO4/IrCo-Pi were examined, and the results are shown in Figure 2. All the Co-containing samples
exhibit typical Co 2p1/2 (ca. 795.7 eV) and Co 2p3/2 (ca. 780.7 eV) peaks with the satellite peaks next to
them, indicative of the co-existence of Co2+ and Co3+ [5,36], and the peak positions agree well with the
previously-reported values [5,36,37]. As for Ir, the characteristic peaks of Ir 4f5/2 (ca. 65.4 eV) and Ir
4f7/2 (ca. 62.4 eV) are also presented in all the Ir-containing samples [34,35]. The mutual effect between
Ir and Co is reflected by the shift of peak position. In detail, the Co 2p1/2 and Co 2p3/2 peaks shift
negatively with the increase of Ir contents, whereas the Ir 4f5/2 and Ir 4f7/2 peaks shift positively when
the content of Co grows. The shift of the XPS peaks reveals a regional electron transfer from Ir to Co
along the Ir-O-Co bond in IrCo-Pi, which accelerates the rate-limiting step of the OER for IrCo-Pi and
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finally results in an enhanced OER activity of IrCo-Pi over pristine Ir-Pi [35]. Further, the actual values
of RIr-to-Co were also quantified and the detailed results are summarized in Supplementary Table S1.
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2.2. Optical Absorption Property of IrCo-Pi, CuWO4 and CuWO4/IrCo-Pi

Once an OER cocatalyst is deposited on a photoanode, it will cause the light scatter and absorption,
and thereby inevitably influence the light-absorbing property of the photoanode [37,38]. Accordingly,
a suitable cocatalyst should be as optically transparent as possible in the UV and visible-light regions.
Herein, UV-vis measurements were carried out on all the samples. As shown in Figure 3a, IrCo-Pi only
shows a light-grey color after 80 cycles of deposition, and its absorption intensity is negligible relative
to that of CuWO4. Upon combination with IrCo-Pi (Figure 3b), all the CuWO4/IrCo-Pi samples exhibit
a nearly similar performance as bare CuWO4 in term of absorption intensity. The results above testify
that IrCo-Pi, with its weak light absorption capacity, is an ideal OER cocatalyst candidate.
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Figure 3. UV-vis absorption spectra of (a) IrCo-Pi and CuWO4, (b) CuWO4/IrCo-Pi with varied
deposition cycles. The insets in (a,b) show the optical images of FTO/IrCo-Pi and CuWO4/IrCo-Pi with
varied deposition cycles, respectively. (From left to right, 0, 40, 60, and 80 cycles).

2.3. Photoactivity and Photostability of CuWO4 and CuWO4/IrCo-Pi toward PEC OER

The photocurrent density vs. applied potential (Jph-V) curves for CuWO4 and CuWO4/IrCo-Pi
with 30 deposition cycles are shown in Figure 4a. The relationship between the photocurrent density
and deposition cycle are shown in Supplementary Figure S3. Given that the dark current density (Jdark)
for CuWO4/IrCo-Pi is no longer inappreciable over the whole potential range (see Supplementary
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Figure S4a,b), Jph herein is the photocurrent density obtained by deducting Jdark from the total (Jtotal)
under illumination. As shown, Co-Pi only brings about mild improvement in PEC performance while
obvious enhancement is obtained via Ir-Pi modification, revealing that Ir-Pi has a much higher activity
as an OER cocatalyst than Co-Pi. Although the increased proportion of Ir-Pi in IrCo-Pi hybrids leads to
better enhancement effect, such an effect does not merely increase monotonically with the growth of
RIr-to-Co, on the ground that the mutual effect between Ir and Co can enhance the inherent activity of
IrCo-Pi [35]. When Ir-Pi gradually becomes the main composition in IrCo-Pi hybrids (the nominal
and actual RIr-to-Co exceed 5:1 and 1:1, respectively, see Supplementary Table S1), IrCo-Pi starts to
outperform Ir-Pi. The optimized RIr-to-Co is 9:1 under which the mutual effect is demonstrated to be
the strongest due to the nearly 1:1 ratio of Ir-to-Co [35].
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Figure 4. (a) Jph-V curves of CuWO4 and CuWO4/IrCo-Pi with different RIr-to-Co. (b) Jph at
1.23 V vs. RHE for CuWO4 and CuWO4/IrCo-Pi with different RIr-to-Co. (c) IPCE of CuWO4

and CuWO4/IrCo(9:1)-Pi at 1.23 V vs. RHE over the wavelength range from 350 nm to 600 nm.
(d) Current density-time responses of CuWO4 and CuWO4/IrCo(9:1)-Pi at 1.23 V vs. RHE under
continuous illumination.

As shown in Figure 4b, with the aid of IrCo-Pi with the optimized RIr-to-Co (hereafter, denoted
as IrCo(9:1)-Pi), the photocurrent density at 1.23 V vs. RHE rises to 0.54 mA·cm−2, a ca. 70%
increase over that of CuWO4 (0.32 mA·cm−2). However, no obvious shift of the OER onset potential
is observed, which is also found in other reports on cocatalyst-modified CuWO4 [26,39–41]. This
indicates that the charge-transfer resistance around the onset potential range is quite large and thus
even an OER cocatalyst fails to effectively accelerate the charge transfer. The comparison between
our study and previous ones has been made and the results are summarized in Table 1. We can see
that the results herein represent the highest level ever achieved on cocatalyst-modified single-phase



Catalysts 2020, 10, 913 6 of 13

CuWO4. Note that, in Ref. [40,41], although the authors named the photoanode CuWO4, it actually
was, as the authors mentioned in the articles, a mixture of WO3 and CuWO4 based on the XRD
data where unique WO3 peaks at ca. 33.2◦ can be clearly seen. According to the prior study, in a
cocatalyst-modified WO3/CuWO4 composite system, WO3 contributes largely to the shift in the
photocurrent density [27]. Besides, the incident photon-to-current efficiency (IPCE) data in Figure 4c
show that CuWO4/IrCo(9:1)-Pi exhibits higher values than CuWO4 within the whole wavelength range,
signifying that it can convert the incident light more efficiently.

Table 1. PEC OER performances of cocatalyst-modified CuWO4 or WO3/CuWO4 photoanodes in this
work and previous literatures [26,27,39–41].

Reference Photoanode Cocatalyst
Jph (mA·cm−2) at 1.23 V vs. RHE

Before After Increment

This work CuWO4 IrCo(9:1)-Pi 0.32 0.54 70%
This work CuWO4 Ir-Pi 0.32 0.50 56%

[26] CuWO4 MnNCN 0.022 0.03 36%
[27] CuWO4 Mn-Pi 0.058 0.075 29%
[39] WO3/CuWO4 Mn-Pi 0.38 0.58 50%
[40] WO3/CuWO4 Co-Pi 0.20 0.37 85%
[41] WO3/CuWO4 Ni-Pi 0.40 0.60 50%

The intensity of the incident light is 100 mW·cm−2. The electrolyte used in this work and all the cited references is
0.1 M KPi solution with a pH value of 7.

By comparing the results herein with those in our previous work [35], we find that the optimized
RIr-to-Co would vary based on the number of deposition circles, the substrates for deposition. Despite this,
we still would like to highlight that IrCo-Pi, with its ease of preparation, reduced usage of high-cost Ir
and superior performance over pure Ir-Pi, can enrich the photoanode/cocatalyst systems.

The stability during solar water oxidation is another vital factor to evaluate a photoanode.
Herein, the long-term durability tests were conducted on both CuWO4 and CuWO4/IrCo(9:1)-Pi in
a neutral KPi solution. As shown in Figure 4d, CuWO4/IrCo(9:1)-Pi shows a higher photocurrent
density than CuWO4, manifesting that IrCo-Pi improves the PEC OER activity of CuWO4. Over a 4-h
continuous illumination, CuWO4 reveals a medium decrease in the photocurrent density, consistent
with the prior reports where CuWO4 is demonstrated to be slightly unstable in KPi solution [19,21,28].
This instability is closely related to the phosphate anion, not pH [21]. Upon using a potassium
borate (KBi) solution (same pH and concentration), CuWO4 would display a superior photostability
(See Figure S4c) [21,28,29]. CuWO4/IrCo(9:1)-Pi, in contrast, shows a nearly constant photocurrent
density under the same conditions. The enhanced stability can be ascribed to the two following
reasons: First, the as-deposited IrCo-Pi layer well coats CuWO4 (see Figure 1b,e) and then prevents the
photoinduced corrosion of CuWO4 in KPi solution. Second, IrCo-Pi itself shows an excellent stability
in KPi solution [35], ensuring long-term protection of the inner CuWO4 NFs.

2.4. Interfacial Charge-Transfer Behavior of CuWO4 and CuWO4/IrCo-Pi

The primary aim of IrCo-Pi modification is to reduce the interfacial electron–hole recombination.
Herein, photocurrent transient measurements were conducted on CuWO4 and CuWO4/IrCo(9:1)-Pi
under chopped illumination to study such recombination. As shown in Figure 5a and Supplementary
Figure S5a, sharp anodic/cathodic photocurrent spikes appear on both samples when the light is
suddenly on or off, indicative of interfacial charge recombination [42–44]. In detail, upon illumination,
the photoinduced holes transport to the CuWO4/solution interface and then charge the surface states
(non-Faradaic current) or oxidize H2O (Faradaic current) [44–47]. Both procedures contribute to
the initial anodic current. Then the non-Faradaic current decays rapidly owing to the electron–hole
recombination [46,47]. Therefore, water oxidation finally dominates the whole process and the
steady-state current density agrees well with the value shown in J-V curves (See Figure 4a) [47].
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When the light is off, the trapped holes at the surface states would be reduced by the electrons, giving
rise to the cathodic spike [42,43]. The current eventually decreases to ca. 0 mA·cm−2, since no reaction
occurs at this potential without illumination (see Supplementary Figure S4a). The charge-recombination
rate can be reflected by the decay time (D) of the transient spike, which is calculated via the following
equation [42]:

D = (It−Is)/(Iin−Is) (1)

where It is the current at time t, Is is the steady-state current, and Iin is the initial spike current. The time
t at which In D = −1 is generally used to evaluate and compare the transient decay time [42,43,46].
As seen from Figure 5b, CuWO4/IrCo(9:1)-Pi shows a relatively longer decay time than bare CuWO4,
suggesting a lower electron–hole recombination rate for CuWO4/IrCo(9:1)-Pi. This can be ascribed to
the fact that the photogenerated holes can be efficiently captured by IrCo-Pi and then quick consumed
in OER catalyzed by IrCo-Pi. Accordingly, the presence of IrCo-Pi on the surface of CuWO4 significantly
accelerates the separation of photoinduced electron–hole pairs and hence boosts the performance for
PEC OER.
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Figure 5. (a) Transient photocurrent density curves for CuWO4 and CuWO4/IrCo(9:1)-Pi at 1.05 V vs.
RHE for one light-on/light-off cycle. (b) The corresponding transient decay time for each photoanode.
(c) ηhc for CuWO4 and CuWO4/IrCo(9:1)-Pi. (d) Nyquist plots of bare CuWO4, CuWO4/Co-Pi,
CuWO4/Ir-Pi and CuWO4/IrCo(9:1)-Pi at 1.05 V vs. RHE within the frequency range of 10−1–104 Hz
under illumination. The inset is the corresponding equivalent circuit.

To quantify the hole-collection efficiency (ηhc) at the CuWO4/solution interface, PEC measurements
were carried out in the presence of hole scavenger Na2SO3, which can consume the photogenerated
holes rapidly and thus improve ηhc to ca. 100% [48]. Due to the nearly complete suppression of



Catalysts 2020, 10, 913 8 of 13

surface recombination, J-V curve for Na2SO3 oxidation (Supplementary Figure S5b) displays a more
negative OER onset potential and a much higher photocurrent density over the whole potential window.
Accordingly, ηhc is defined by the following equation [48]:

ηhc = Jph-H2O/Jph-Na2SO3 (2)

where Jph-H2O and Jph-Na2SO3 refer to the photocurrent density for H2O and Na2SO3 oxidation,
respectively. As shown in Figure 5c, although ηhc gradually increases with the applied potential, it only
shows a value of ca. 55% even at 1.23 V vs. RHE, indicating that near half of the photogenerated
holes on the surface are consumed via the useless recombination. With IrCo(9:1)-Pi modification, ηhc is
apparently improved in the whole potential range and shifts to ca. 90% at 1.23 V vs. RHE, suggesting
that the vast majority of photogenerated holes are captured by IrCo-Pi and then participate the OER.

Electrochemical impedance spectroscopy (EIS) measurements were conducted under illumination
to explore the reasons for the enhanced photoactivity. As shown in Figure 5d, only one semicircle
is presented for both the bare CuWO4 and cocatalyst-modified CuWO4, therefore, a simple but
typical Randel’s circuit (inset in Figure 5d) was used to interpret the obtained EIS data [21,40,41,49,50].
The equivalent circuit consists of the series resistance (Rs), the constant phase element (CPE) and
the charge-transfer resistance (Rct). The fitting results are summarized in Supplementary Table S2.
Among all the samples, CuWO4/IrCo(9:1)-Pi exhibits the smallest Rct value (ca. 1114 Ω·cm2), suggesting
the fastest interfacial charge-transfer kinetics. The reduced charge-transfer barrier can boost the
electron–hole separation on the surface and thus reduce the useless recombination, finally leading to
an enhanced hole-collection efficiency.

2.5. The Interfacial Charge-Transfer Process for CuWO4/IrCo-Pi

The charge-transfer process at the photoanode/solution interface for CuWO4/IrCo(9:1)-Pi is
illustrated in Figure 6. Upon illumination, holes are generated in the valence band of CuWO4 located
at ca. 2.80 V vs. RHE [22], and hence they have sufficient driving force to oxidize Co2+ and Ir3+ to
Co3+/4+ and Ir4+/5+, respectively [34,36]. Both the Co2+ and Ir3+ oxidation via photogenerated holes are
kinetically faster than the direct H2O oxidation, and therefore the holes are transferred rapidly with
the aid of IrCo-Pi and the electron–hole recombination is suppressed effectively. The obtained Co3+/4+

and Ir4+/5+ show high activity toward OER [34,36], and importantly, they would be reduced back to
Co2+ and Ir3+ as the OER proceeds. Such oxidation-reduction cycle ensures a lasting enhancement
effect in the photoactivity via IrCo-Pi. Therefore, through an alternative IrCo-Pi involved pathway
for photoinduced holes, the interfacial charge recombination is considerably reduced, leading to an
enhanced hole collection efficiency and an eventually improved photoactivity.
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3. Materials and Methods

3.1. Chemicals and Substrates

Tungstic acid (H2WO4), polyvinyl alcohol ((C2H4O)n), hydrogen peroxide (H2O2), acetonitrile
(C2H3N), urea (H2NCONH2), oxalic acid (H2C2O4), hydrochloric acid (HCl), and acetic acid (C2H4O2)
were purchased from Beijing Chemical Works. Cupric nitrate trihydrate (Cu(NO3)2·3H2O) was
purchased from Sinopharm Chemical Reagent Co., Ltd. Cobalt(II) chloride hexahydrate (CoCl2·6H2O,
99.9%), iridium(III) chloride hydrate (IrCl3·xH2O, 99.9%), potassium dihydrogen phosphate (KH2PO4,
99.5%), and dipotassium hydrogen phosphate (K2HPO4, 99.5%) were purchased from Alfa Aesar
Chemicals (Co., Ltd. Shanghai, China). Fluorine-doped tin oxide (FTO) substrates (8 Ω·cm2,
transmittance of 80%) were purchased from Asahi Glass (Co., Ltd. Tokyo, Japan). All the chemicals
used herein were of analytical grade without further purification. All the aqueous solutions herein
were prepared using deionized water (18 MΩ·cm).

3.2. Preparation of CuWO4 and CuWO4/IrCo-Pi

CuWO4 NFs were synthesized using a sacrificial template method introduced by our group [24],
where WO3 NFs prepared via a reported hydrothermal approach [7] served as the templates. IrCo-Pi
was coupled with CuWO4 NFs via a CV co-deposition method within a potential window from 0.65 V
to 1.85 V vs. RHE at a scan rate of 0.05 V·s−1 for different cycles. The solution for deposition consisted
of 0.1 M KH2PO4/K2HPO4 (KPi) (pH 7) and a 0.5 mM mixture of CoCl2 and IrCl3. The nominal molar
ratio of Ir to Co (RIr-to-Co) was altered within a predefined range. For convenience, RIr-to-Co = 1:0 or 0:1
refers to pure Ir-Pi or Co-Pi, respectively.

3.3. Characterization

X-ray diffraction (XRD) data were recorded by a D/MAX-2500 advance powder X-ray diffractometer
(Rigaku Co., Tokyo, Japan) with Cu Kα radiation. High-resolution transmission electron microscopy
(HRTEM) data were collected by a field emission JEM-2100F microscope (JEOL Ltd., Tokyo, Japan)
under an accelerating voltage of 200 kV. The morphologies and elemental compositions were analyzed
using a S-4800 field emission scanning electron microscope (FESEM) (Hitachi Ltd., Tokyo, Japan)
equipped with an energy dispersive X-ray analysis (EDXA) system under an accelerating voltage
of 5 kV. UV–vis diffuse reflection spectra were gathered via a 3600 UV–vis–NIR spectrophotometer
(Shimadzu Co., Kyoto, Japan). X-ray photoelectron spectroscopic (XPS) spectra were recorded via an
Escalab 250Xi (Thermo Fisher Scientific Co., Waltham, MA, USA) using an Al-monochromatic X-ray
with a power of 200 W. All the binding energies herein have been calibrated against C 1s at 284.8 eV.

3.4. Electrochemical and PEC Measurements

All the electrochemical and PEC measurements were carried out on a CHI 660E work station (CH
Instruments Co., Austin, TX, USA) equipped with a three-electrode configuration. The bare CuWO4 or
CuWO4/cocatalyst, a Pt mesh, and a saturated calomel electrode (SCE) acted as the working, auxiliary,
and reference electrode, respectively. A 300 W Xe lamp equipped with an AM 1.5 G filter (PLS-SXE300,
Beijing Perfectlight Co., Ltd. Beijing, China) was employed as the light source. The samples were
immersed into the electrolyte with a contact area of 0.21 cm2 under front-side illumination and
the light intensity was to 100 mW·cm−2. The impedance spectra obtained in the electrochemical
impedance spectroscopy (EIS) tests were fitted and analyzed via Zview software. The data of incident
photon-to-current efficiency (IPCE) were obtained by recording the current density at 1.23 V vs. RHE
under a certain monochromatic light (wavelength range: 350–600 nm, step: 5 nm). The detailed values
were calculated via Equation (3) below [51]:

IPCE = (1240J)/(λIlight) × 100% (3)
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where λ is the wavelength of the incident light (nm), J is the current density (mA·cm−2) under a certain
monochromatic light, and Ilight is the intensity of the incident light (mW·cm−2). The electrolyte was a
0.1 M KPi buffer solution (pH 7) with or without adding 0.1 M Na2SO3. All potentials herein were
against SCE and converted to RHE via the Equation (4) below [24]:

ERHE = ESCE + 0.059*pH + 0.244 (4)

4. Conclusions

In summary, IrCo-Pi was electrodeposited on CuWO4 NFs to alleviate the interfacial electron–hole
recombination and thereby enhance the photoactivity of CuWO4. After the CuWO4 NFs are modified
with IrCo(9:1)-Pi, the photocurrent density of the obtained composite photoanode at 1.23 V vs. RHE
increases from 0.32 mA·cm−2 to 0.54 mA·cm−2. Such an improvement stands as the highest level ever
achieved on cocatalyst-modified single-phase CuWO4. The high photoactivity is attributed to the
greatly enhanced hole collection efficiency, which results from the reduced interfacial charge-transfer
resistance. In addition, CuWO4/IrCo(9:1)-Pi exhibits a superior photostability in neutral KPi solution
over the bare CuWO4. This work reveals that it is feasible to obtain a highly-enhanced PEC OER
performance for CuWO4 via cocatalyst modification.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/8/913/s1,
Figure S1: The detailed thickness distribution of (a) CuWO4 NFs and (b) CuWO4/IrCo-Pi NFs. (c) EDS spectrum
of CuWO4/IrCo-Pi. (d) XRD patterns of FTO, FTO/Co-Pi, FTO/Ir-Pi, and FTO/IrCo-Pi, Figure S2: XPS survey of
(a) CuWO4/Co-Pi (b) CuWO4/IrCo-Pi and (c) CuWO4/Ir-Pi, Figure S3: (a) The photocurrent density vs. applied
potential (Jph-V) curves of CuWO4 and CuWO4/IrCo(9:1)-Pi with varied deposition cycles. (b)The corresponding
Jdark-V and Jtotal-V curves of CuWO4 and CuWO4/IrCo(9:1)-Pi with varied deposition cycles, Figure S4: (a) Jdark-V
and Jtotal-V curves of CuWO4 and CuWO4/IrCo-Pi with varied RIr-to-Co. (b) The enlarged Jdark-V curves of CuWO4
and CuWO4/IrCo-Pi within the potential range from 1.40 V to 1.80 V vs. RHE. (c) Current density-time responses
of CuWO4 at 1.23 V vs. RHE under continuous illumination, Figure S5: (a) Transient photocurrent density curves
for CuWO4 and CuWO4/IrCo(9:1)-Pi at 1.05 V vs. RHE for multiple light-on/light-off cycles.(b) Jph-V curves of
CuWO4 and CuWO4/IrCo(9:1)-Pi obtained in the presence or absence of hole scavenger (0.1 M Na2SO3), Table S1:
The nominal and actual RIr-to-Co for CuWO4/IrCo-Pi samples, Table S2: The fitting values for Rs, Rct and CPE
using the equivalent circuit displayed in the inset of Figure 5d.
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