Supporting Information

A DFT Investigation on the Origins of Solvent-Dependent Polysulfide Reduction Mechanism in Rechargeable Li-S Batteries

Guan-Ying Du, Chi-You Liu, and Elise Y. Li*

Department of Chemistry, National Taiwan Normal University

No. 88, Section 4, Tingchow Road, Taipei 116, Taiwan

* Corresponding author E-mail: eliseytli@ntnu.edu.tw

Phone: (886)-2-77496219

Fax: (886)-2-29324249

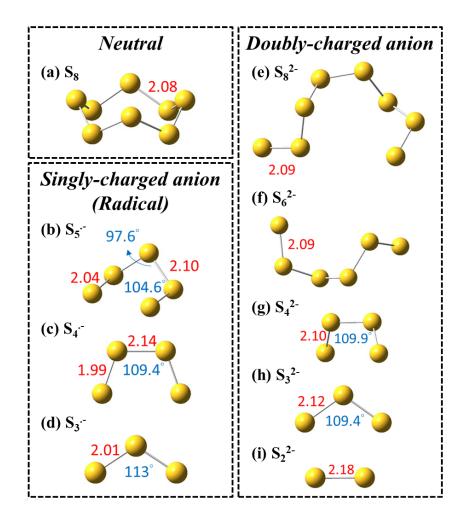


Figure S1. Optimized geometries of (a) neutral, (b-d) singly-charged, and (e-i) doublycharged polysulfides in DMSO. The average bond lengths of S-S (d, in Å) and the bond angles (θ , in °) are labeled in red and blue, respectively.

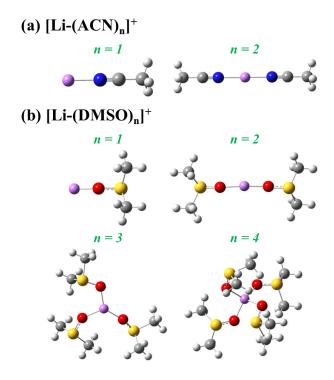


Figure S2. Optimized geometries of (a) $[Li-(ACN)_n]^+$ and (b) $[Li-(DMSO)_n]^+$ clusters with different solvent coordination numbers (n). The colors of element S, Li, C, O, N and H are labeled in yellow, purple, gray, red, blue and white, respectively.

Table S1. Theoretical values and the reported experimental results of reduction

potentials (ΔE , in V) of S ₈ , S ₈ ²⁻ , and S ₃ in different solvents.						
$\Delta E(V)$	$S_8 + 2e^- \rightarrow S_8^{2-}$		$\mathrm{S8^{2-}+2e^{-}} \rightarrow 2\mathrm{S4^{2-}}$		$S_3 - e \rightarrow S_3^2$	
Solvent	Theo.	Exp. ^a	Theo.	Exp. ^a	Theo.	Exp. ^a
DIOX	1.07	-	0.31	-	-0.84	-
DOL:DME	2.14 ^b	2.22	1.79 ^b	1.98	1.19 ^b	-
acetone	2.44	-	2.19	-	1.74	-
ACN	2.52	-	2.27	-	1.87	-
DMSO	2.54	2.70	2.30	2.29	1.92	2.10

^a Reported results from ref 1. ^b We adopt the THF solvent model to simulate the mixed-solvent system DOL:DME that is actually used in the experiment.

References

[1] Q. Zou and Y.-C. Lu J Phys. Chem. Lett. 7 (2016) 1518.