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Abstract: In this study, a series of new metal phthalocyanines with imidazole function MPc(Imz)
(M: Cd, Hg, Zn and Pd) were synthesized to improve the photocatalyst performances. All physical
properties such as total energy, HOMO, LUMO energies of MPc(Imz), as well as their vibrational
frequencies have been determined by DFT method using B3LYP theory level at 6-311G (d, p) and sdd
basis set. The gap of energy level between work function (WF) of ITO and LUMO of PdPc(Imdz) was
1.53 eV and represents the highest barrier beneficial to electron injection compared to WF of ZnPc(Imz),
HgPc(Imz), and CdPc(Imz). Furthermore, the PdPc(Imdz) thin films on indium tin oxide (ITO) glass
were prepared by spin coating and vacuum evaporation technique, and were characterized by X-ray
diffraction (XRD), surface electron morphology (SEM), atomic force microscopy (AFM), and UV–Vis
spectroscopy. The photocatalytic activity of the ITO/glass supported thin films and degradation rates
of chlorinated phenols in synthetic seawater, under visible light irradiation were optimized to achieve
conversions of 80–90%. Experiments on synthetic seawater samples showed that the chloride-specific
increase in photodegradation could be attributed to photochemically generated chloride radicals rather
than other photoproduced reactive intermediates [e.g., excited-state triplet PdPc(Imz) (3PdPc(Imz)*),
reactive oxygen species]. The major 2,3,4,5-Tetrachlorophenol degradation intermediates identified
by gas chromatography-mass spectrometry (GC/MS) were 2,3,5-Trichlorophenol, 3,5-dichlorophenol,
dichlorodihydroxy-benzene and 3,4,5-trichlorocatechol.
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1. Introduction

Chlorophenols are widespread environmental pollutants and professional contaminants formed
following the disinfection of water rich in organic matter residues by chlorination process [1] or by
the degradation of organochlorine pesticides [2]. These compounds which are widely used in the
chemical industry and in agriculture are known for their high toxicity and environmental persistence
and bioaccumulation in the food chain [3,4]. Metal complexes of phthalocyanine compounds (MPcs)
have received increased attention in recent years from researchers due to their chemical and thermal
properties and its versatile application in various fields of applied research, including photovoltaic
cells [5], gas sensors [6], photodynamic therapy of cancer [7], semiconductor display devices [8,9],
liquid crystal [10] and homogeneous or supported catalysts [11,12] allowing an environmentally
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friendly degradation of organic pollutants in water. Some photocatalysts such as cobalt (II)
2,9,16,23-tetrasulphophthalocyanine (CoTSPc) have been used in the sweetening process “Merox
process” to remove a major part of mercaptans from petroleum products [13] and photodegradation
of organic dyes in aqueous solutions under visible light [14]. In addition, it is well known that iron
phthalocyanine (FePc) complexes have been extensively investigated as catalysts for epoxidation of a
number of olefins [15–17] and oxidation of aromatic compounds [18], bleaching treatment of pollutants
in water [19–21], and chlorinated phenols in aqueous solutions under mild conditions [22–25].
Particular attention has been paid by our research team to degradation of pollutants with a high
pollution potential such as nitroaromatic pollutants [26] and hydroxytyrosol in olive oil mill wastewaters,
using zinc phthalocyanine modified titanium dioxide after irradiation with solar light [27]. One of the
inherent drawbacks of phthalocyanines is their low solubility in most organic solvents. This problem
can be addressed by anchoring appropriate peripheral substituents to the ring system [28]. The choice
of substituents is not intended only to improve the solubility of MPcs, but also to adjust the catalytic
properties by modifying the electron attractor or electron donor character of the substituents. In order
to avoid the profound effect on the stability of phthalocyanine by nucleophilic, electrophilic, and radical
attacks, the introduction of the imidazole moieties into phthalocyanines is one of the convenient
solutions to maintain the electron transfer processes [29]. Encouraged by this information, we report
the preparation of new phthalocyanines (Pcs) with imidazole functions Pc(Imz), which give properties
to the core system suitable for application in photo catalysis. The compounds obtained are then used for
the preparation of novel Pcs(Imz) thin film prepared by spin coating to determine whether they have
the properties required for the intended application. Recently, very interesting research on methods
of immobilizing MPcs on various supports with different work function (WF) has become one of the
attractive fields for many researchers to improve the catalytic activity often used in the decontamination
of pollutants. In this study, ITO is used as active substrate. This support has been chosen because the
energy-level gap between WF of ITO and LUMO of PdPc (Imz) (i.e., 1.5 eV) is larger than that of LUMO
of PdPc(Imz) and WF of other commonly used active substrates (e.g., Cu [30], Ag [30], TiO2 [31]).
This higher electron injection barrier of PdPc(Imz)/ITO should make electron injection into the ITO
acceptor easier and faster, which may contribute to the separation of electron–hole pairs and release
more holes and electrons in the chlorophenols’ degradation reaction. Indeed, Xu et al. [32] showed
that the photocatalytic degradation of Rhodamine B dye using iron phthalocyanine was influenced
by the nature of the substrate and the film thickness. Several approaches have been proposed to
enhance the photocatalytic process by immobilizing MPcs on different supports using various methods
including grafting, anchoring, and electrostatic process. However, only few papers have reported
fabrication of MPcs thin films using spin coating technique as photosensitizer for the photodegradation
of micro-organic pollutants in chlorinated water [32–35].

In this paper, zinc tetra(1H-imidazol-1-yl)phthalocyanine (ZnPc(Imz)) powder was used as a
starting material to fabricate ZnPc(Imz) thin films onto glass substrates by spin coating method.
Furthermore, thin films were characterized by means of X-ray diffraction (XRD), infrared spectroscopy
(FTIR), and UV–Vis spectroscopy. Thin films deposited on glass substrates were used for the
degradation of chlorinated phenols mixture (2-Chlorophenol (2-CP), 2,4-Dichlorophenol (2,4-DCP),
2,4,6-Trichlorophenol (2,4,6-TCP) and 2,3,4,5-Teetrachlorophenol (2,3,4,5-TeCP)) spiked in synthetic
seawater using a visible halogen-lamp as a light source in a photoreactor. The photoreactor used
has been newly designed in our laboratory by making some small modifications to the device used
in our previous studies [26,27]. The effects of initial chlorinated phenols mixture concentration,
pH solution, and catalyst dosage on the photodegradation of each component of chlorinated
Phenols Mixture were also investigated. Reaction intermediate components were identified by
gas chromatography-mass spectrometry (GC-MS). The advances brought by our work include the
enhancement of the photodegradation of specific classes of chlorinated phenols in artificial sea water.
In this regard, we found that photochemically generated chloride radicals play a more prominent
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role in photodegradation than other photoproduced reactive intermediates [e.g., excited-state triplet
PdPc(Imz) (3PdPc(Imz)*), reactive oxygen species].

2. Results and Discussion

2.1. UV–Vis Spectrum of Metallophthalocyanines (M: Zn(II), Cd(II), Hg(II) and Pd(II))

The absorption spectra of ZnPc, CdPc, HgPc, and PdPc show two typical main absorption bands of
phthalocyanines. The first is the B (or Soret) band, between 300 and 400 nm, and the other is the Q band,
observed between 600 and 750 nm [36]. The B band results from the transition between (a2u) and (eg)
lowest unoccupied molecular orbital (LUMO), whereas the Q band mainly involves a charge transfer
from the pyrrolic carbons to the other atoms of the molecule. The visible region is associated to π–π**
transition of the conjugate system doubly degenerated transition (a1u-eg) from the highest occupied
molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) [37]. The splitting
of the peaks observed in the Q-band region may be associated to the dimeric species in solution.
In addition, the Q band is strongly affected by the nature of the diamagnetic metal, which plays a role
in the shift of the Q band towards the red “redshift”. As cited in the literature [38], the ionic radius of
the metal cation in the ligand influences the size of the ligand, which can be explained by the increase
in electron density. This was verified for the studied MPcs (Figure 1a), as the mercury has an ionic
radius of 110 pm, which is greater than cadmium (95 pm), zinc (74 pm), and palladium (64 pm). On the
other hand, the more the metal ion is electronegative, the more the displacement of the Q band towards
longer wavelengths is favored, which is in good agreement with the Pauling electronegativity scale
(χr), on a relative scale running from 1.65 (zinc) to 2.2 (palladium). Leznoff et al. [39] reported that
Phthalocyanines with diamagnetic metal ion provided high singlet oxygen quantum yields and efficient
photodegradation of pollutants. The interaction of the excited triplet state of the MPc with ground-state
molecular oxygen provides hydroperoxyl ions, which allow oxidation of pollutants [40]. Compared to
zinc phthalocyanine, Cd, Hg, and Pd-substituted metalphthalocyanines display bathochromic shifts
ranging from 8 nm to 33 nm. It is to be noted that the Q band absorption is sensitive to central
metals of the Pc macrocycle. The Q-band absorptions of ZnPc(Imz), CdPc(Imz), and HgPc(Imz) are
at 676 nm, 684 nm, and 692 nm, respectively, but PdPc(Imz) has a maximum absorption at 709 nm,
which corresponds to 33 nm red-shift. According to the literature, it is well known that palladium and
its complexes are widely used in homogeneous and heterogeneous catalysis [41].

We must also emphasize that the substituted palladium phthalocyanines having Q band
absorptions shifted to the red region may be explained by the enhancement of the catalytic activity of
palladium following the cumulative effect of the metal ion and the phthalocyanine core. The presence
of peaks at high photon energies indicated the association of the d-electrons of the central metal
in the electronic transition. The shift of absorption maxima depends upon the change in electron
distribution and the size of the macrocycle. As shown in Table 1, energy gap experimentally varies
in the following order: ZnPc(Imz) < CdPc(Imz) < HgPc(Imz) < PdPc(Imz). According to the optical
gap, it can be expected that the Q bands whose wave-lengths are in inverse order of the gap would
follow the trend of ZnPc(Imz) > CdPc(Imz) > HgPc(Imz) > PdPc(Imz). In other words, a hypsochromic
shift of the absorption band occurs progressively from ZnPc(Imz) to PdPc(Imz). On the other hand,
the electronegativity according to Pauling (χ) for the central M are in the sequence of Pd (2.2) >

Hg (2.0) > Cd (1.69) > Zn (1.65). The Pd has the smallest positive charges, which makes it less
likely to lose its electrons and consequently has the most stable electron configuration among the
studied metals: (Ar) 3d104s2 for Zn, (Kr)4d105s2 for Cd, (Xe)4f145d106s2 for Hg, and (Kr) 4d105s0

for Pd. Most studies have focused on interpreting UV-vis spectra to study the different nd series
of diamagnetic metal-phthalocyanines and their excited states in order to select the best metal
phthalocyanine, which has good electrocatalytic activity and stability for the oxidation of organic
compounds, leading to a high rate of singlet oxygen ratio. To our knowledge, no study has been
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undertaken on the effect of nd10metal Pcs (e.g., 3d10: ZnPc; 4d10CdPc; 5d10: HgPc; 6d10: PdPc) on the
sensitivity and selectivity of their films towards different analytes (chlorophenols in this study).
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Table 1. Values of optical band gaps of MPc(Imz) (M: Zn; Hg; Cd; Zn; Pd).

Optical Band Gaps

MPc(Imz) HgPc(Imz) CdPc(Imz) ZnPc(Imz) PdPc(Imz)

Optical band gap (eV) 2.94 2.87 2.83 2.76
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2.2. FT-IR Study of Metallophthalocyanines (M: Zn(II), Cd (II), Hg(II), and Pd(II))

FT-IR spectra have been made for CdPc(Imz), HgPc(Imz), ZnPc(Imz), and PdPc(Imz) synthesized
in this work (see Supplementary Materials). FT-IR results indicate a high stability of the metal
phthalocyanines and corroborate UV–vis analysis. Detailed IR spectra analysis is provided in
Supplementary Materials.

The analytical data for all metallophthalocyanines were in good agreement with the proposed
structures. It can be believed that the PdMPc(Im) could be a promising catalyst for application in
photocatalytic degradation under visible-light due its lower HOMO-LUMO energy gap (~2.2 eV).

The Optical Band Gap of Tetra [4-(1H-imidazol-1H-imidazol-1-yl)] MPcs (M: Cd, Zn, Hg, Pd)

To find out the value of the optical band gap for semiconductor nanostructures [42,43],
thin films [44], and liquids [45], Tauc plot is tremendously used. In the present study, Tauc plot
was used to find out the value of the optical band gap of solutions containing MPc(Imz). Tauc plot
is deduced from Figure 1a, and linear parts of the curves are extended to intersect with energy axis.
The intersection point provides the value of the optical band gap Eg (Figure 1b). A substantial variation
is observed in the value of indirect optical band gap of MPc(Imz) (M: Pd, Cd, Hg) (Table 1) when the
same amount of MPc(Imz) was dissolved in DMSO. Among all solutions used in the present study,
HgPc(Imz) solution showed highest value of the indirect optical band gap (2.94 eV), compared to
CdPc(Imz) (2.87 eV) and PdPc(Imz) (2.76 eV) solutions. These optical bands Eg were determined from
the analysis of the absorption spectrum as described by Tauc plot using the formula [46,47]:

αhν = α0(h− Eg)n (1)

where hν is the energy of incident photons and Eg is the value of the optical band gap corresponding
to transitions indicated by the value of n (n = 1/2 for direct transition and n = 2 for indirect transition).
α0 is the Tauc coefficient describing the efficiency in light absorption [42,48]. From Table 1, we can
notice that the energy of the gap of CdPc, HgPc, and ZnPc are much larger than PdPc, which causes
for them some limitation to effectively absorb the visible light. We then chose to use PdPc for the
remainder of the study.

The geometric optimization of PdPc using the Gaussian W program (detailed in Supplementary
Materials) shows a planar structure (Figure 2).
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Figure 2. The planar structure of the palladium phthalocyanine PdPc molecule. The Pd and N atoms
are respectively labeled in green and blue. The Pd–N bond length of the optimized structure is 2.006 Å.

In the Q-band, the electronic transition occurs from HOMO, which has an electronic density
mainly located on the phthalocyanine molecule, to the LUMO, which has a small electronic density on
Pd–N bond as shown in Figure 3. The calculated energy gap (HOMO-LUMO) is Eg = 2.23 eV.
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2.3. Preparation and Characterization of Photo-Catalytic PdPc Thin Films

The synthesis of palladium (II) phthalocyanine (PdPc) has been extensively presented in our
previous work [49]. The films were deposited at room temperature, by vacuum thermal evaporation
onto 1 mm thick rectangular ITO/glass substrate. The structure of the PdPc thin films was studied using
X-ray diffraction (XRD) technique. The diffraction spectra were measured at 2θ scanning ranging from
0 to 90 degrees diffraction angle. Figure 4a shows the XRD spectrum of ITO (JCPDS card no. 6-0416) [50]
and PdPc thin films deposited on ITO. The XRD spectrum of the ITO sample is characterized by peaks
at 21.03, 30.27, 35.16, 50.55, and 60.16 from indium tin oxide, a polycrystalline ITO substrate [51] of
cubic crystalline ITO [52]. For the PdPc films deposited by vacuum thermal evaporation technique,
a new peak appears at 43.98 besides the peaks from the ITO substrate.
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Figure 4. (a) XRD spectra and (b) SEM image of PdPc thin films grown by vacuum thermal evaporation
technique on ITO/glass substrate.

A plan view scanning electron microscopy (SEM) micrograph of the PdPc thin films deposited on
ITO/glass substrate at 300 K is shown in Figure 4b. The SEM image shows that the sample surface is
completely covered with nanosized PdPc spherical particles. The film was also covered with uniformly
distributed grains having different shapes without any cracks. The SEM micrograph reveals a uniform
rough surface with no clear crystal grain structure. The EDX pattern confirms the presence of only C,
O, N, and Pd in the sample.
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Figure 5a shows the 3D AFM image for an area of 5 µm× 5 µm of the palladium phtalocyanine thin
film surface. The image exhibits a rough surface, with forms that might indicate that phthalocyanine
molecules grew in aggregation rows, rather than in the parallel or in the zig-zag arrangement.
This suggests that the roughened surface of the thin film would be due to growth mechanism of the
technique. Figure 5b shows the transmittance data of the prepared PdPc/ITO thin film in the range of
200–1800 nm. The most important feature in this figure is the shift of the absorption band edge toward
the lower wavelengths. This shift is translated as optical band gap enlargement. Furthermore, a high
absorption region can be noted at wavelengths λ < 350 nm, allowing energy gap value adjustment.
A direct energy gap is observed for PdPc, whereas for a semiconductor with indirect gap, it is degraded.
A second high transparency region is also observed at λ > 350 nm, giving a transparent character to the
thin layers.
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2.4. Photocatalysis

2.4.1. Effect of Initial pH and Initial Concentration

The extent of compound degradation by PdPc(Imz)/ITO/Glass in the presence of great amount
of oxygen was found to be highly dependent on pH and initial chlorophenols’ concentration
[CPs]0. The control of chlorophenols’ decomposition as well as the intermediates and final products
identification has been realized using gas chromatography–mass spectrometry (GC-MS). In this part
of the study, we focused on the optimization of photocatalytic degradation of some chlorophenols
using Response Surface Methodology (RSM), based on statistical design of experiment evaluation in
which two parameters are varied simultaneously. The influence of parameters (initial pH and initial
concentration for each chlorophenol) was investigated by employing experimental design with 23 level
factorial design 23. The results are reported in Supplementary Materials.

2.4.2. Photocatalytic Mechanism of PdPc(Imz)

Based on the results discussed above, the proposed photocatalytic mechanism of chlorophenols
degradation using PdPc(Imz)/glass thin film in the presence of oxygen and under visible light irradiation
is illustrated in Figure 6. Work function (WF) of investigated glass was between 4.4 eV–4.80 eV as
reported elsewhere [53]. The luminescence center is explained by the oxygen vacancy model and by
interlobular oxygen bound by the ionized silicon atom [53].
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The calculated energy gap of PdPc(Imdz) was 2.26 eV, the lowest unoccupied molecular orbital
(LUMO) of PdPc(Imdz) was (−3.27 eV), and the highest occupied molecular orbital (HOMO) of
PdPc(Imdz) was (−5.54 eV). As reported in the literature [54,55], the height of the electron injection
barrier depends on the difference between WF of the cathode and the energy level of the polymer.
A higher barrier is favorable for the injection of electrons. The energy–level gap between WF of
Glass and LUMO of PdPc(Imdz) in the system was 1.53 eV and the higher electron injection barrier
played a part in the separation of electron-hole pairs and released more electrons and holes in the
chlorophenols degradation reaction. It is assumed that the electron-hole pair separation efficiency
plays a key role in the photocatalytic reaction [56]. Visible light irradiation generates electrons which
can reduce O2 to O2 radicals. On the other hand, holes can oxidize OH− to •OH. The number of
radicals produced depends on the efficiency of electron–hole pair’s separation (Figure 6). It has been
reported in the literature [54–56] that all these radicals (O2 and OH, and 1O2) could be responsible for
chlorophenols degradation.

In most studies, the reaction mechanism and the active species assumed to be involved in the
photodegradation reaction are based on the results obtained from experiments carried out in deionized
water or in aqueous solutions with low chloride concentration. In order to validate the hypothesis
of the corresponding photochemical pathways, a series of experiments was conducted in synthetic
water matrices containing only 20 mM phosphate buffer at pH = 8 to isolate or quench specific
reaction pathways. Common scavengers were used for trapping experiments such as methanol as a
hole scavenger h+, isopropyl alcohol (IPA) as a scavenger (•OH) (and AgNO3 as electron scavenger
(e−), while 1,4-Diazabicyclo[2.2.2]-octane (DABCO) have been used to quench singlet molecular
oxygen 1O2. Application of 25 mM of methanol as a radical quencher resulted in a high reduction in
chlorophenols’ photodegradation. Similarly, a moderate contribution of e- to chlorophenol degradation
resulted from application of 25 mM of AgNO3. An additional test was conducted using 50 mM of
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1,4-Diazabicyclo[2.2.2]-octane (DABCO) [55], which indicated low contribution of 1O2 to chlorophenols’
photodegradation and suggested that 1O2-mediated pathways are not the dominant contributors to
chlorophenols’ photodegradation in synthetic water matrices containing 20 mM phosphate buffer.
These results confirmed the assumptions reported in the literature [56–58]. The sensitization process
increased the photocatalytic yield due to new possible routes for generating more active species
following three steps:

PdPc(Imz) + hν→ 3[PdPc(Imz)]* (2)

3[PdPc(Imz)]* + 3O2→ PdPc(Imz) + 1O2 (1∆) (3)

Following absorption of visible light, the thin film PdPc(Imz)/ITO/Glass is promoted to the excited
triplet state 3[PdPc(Imz)]* (Equation (2)), and could react with molecular 3O2 (Equation (3)), leading to
the excited singlet molecular oxygen (O2-1∆g) and forming an excited state complex (exciplex).
The molecular oxygen quenching by chlorophenols (CPs) involved an intermediate with partial charge
transfer according to Equation (4):

CPs + 1O2→[CPs . . . . . . 1O2]→ Degraded product (4)

However, high chloride concentration is the key characteristic distinguishing artificial seawater
from low or free chloride aqueous solutions. Indeed, chlorides are the predominant sink for •OH in
seawater, with Cl− scavenging (Equation (5)), resulting in decreased •OH concentrations:

•OH + Cl−→ Cl• + OH− (5)

It appears clearly that some important reactive intermediates in aqueous solution (including •OH)
would play a less prominent role in PCs photodegradation in artificial seawater (Figure 6).

2.5. Kinetic Evaluation

The photocatalytic activity of thin films of PdPc(Imz)/ITO/Glass for removing the chlorophenol
compounds (2-CP, 2,4-DCP, 2,4,6 -TCP and 2,3,4,5-TeCP) from aqueous solution follows the
pseudo-first-order kinetic model. The simplified kinetic model equation [56] describing first-order
kinetics is given as:

ln
[CP]0
[CP]t

= kobst, (6)

where kobs represents the apparent rate constant, [CP]0 is the initial concentration (mg·L−1), [CP]t is the
t time concentration. By plotting ln([CP]0/[CP]t) versus irradiation time, a straight line was observed
for all compounds with a slope of kobs (Figure 7).

The initial rate of photocatalytic degradation (r0), first order rate constants for degradation (kob),
correlation coefficients, and half-lives (t1/2) at various initial concentrations of each chlorophenol are
summarized in Table 2.

Table 2. First–order rate constant (kob), initial rate of photocatalytic degradation (r0),
correlation coefficients and illumination times during which 50% (t1/2) or 99% (t99%) of pollutant
are degraded.

Pollutant kobs (min−1) × 103 r0 (µmol min−1) t1/2 (min) t99% (min) R2

2-CP 38 1.26 18.24 121.18 0.9989
2,4-DCP 156 3.10 4.44 29.52 0.9968

2,4,6-TCP 27 0.67 25.67 170.56 0.9966
2,3,4,5-TeCP 21 0.40 33.00 219.29 0.9974
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Figure 7. The kinetics model of photodegradation performance of the thin film PdPc(Imz)/ITO/glass
at pH8.

All of the four experiments showed a good fit for the pseudo-first-order model. However,
the 2,4-DCP photocatalytic experiment with an initial concentration of 5 mg L−1 (39 µmol min−1)
had a better fit than the other chlorophenols (2-CP, 2,4,6-TCP and 2,3,4,5-TeCP). Based on the results
depicted in Table 2 and Figure 7, it can be concluded that the reactivity of the chorophenols decreases
with the increasing number of chlorine atoms on the aromatic ring. The first order degradation rate
constants (kob) may be influenced by the interaction of the chlorine electron withdrawing and the steric
effect of the chlorine, which can block some favorable positions susceptible to the hydroxyl radical
attack. For tetra-chlorophenols (2,3,4,5-TeCP), steric hindrance plays an important role during their
dechlorination process. Indeed, the dechlorination process is all the more difficult as the chlorine atoms
are closer to each other on the aromatic cycle. The rate constant value of 2,3,4,5-TeCP obtained at pH = 8
(kobs = 20 × 10−3 min−1) is in good agreement with the results obtained at pH 11 by Czaplicka et al. [59]
(kobs = 18.3 × 10−3 min−1). Moreover, the oxidation of the monochlorophenols was faster than that of
the trichlophenols and tetrachlorophenols, but less easy than the dichlorophenols. Figure 8 shows
the photocatalytic degradation of each chlorophenol during different illumination times and in the
presence or the absence of the photocatalyst (PdPc(Imz)/ITO/glass thin films). This photocatalyst
did not exhibit any photoactivity in the dark, neither in the absence nor in the presence of oxygen
(Figure 8), suggesting that it is necessary to photoexcite the photosensitizer (PcPd(Imz)). Furthermore,
the increase of the number of chlorine atoms has a significant effect on the initial rates (r0) as well as the
degradation rate constants (kobs). The values of (r0) for 2,4-DCP, 2-CP, 2,4,6-TCP and 2,3,4,5 TeCP were
3.10, 1.26, 0.67, and 0.40 µmol min−1, respectively. This can be explained by the fact that the excited
molecules have different polarizations.

Following photocatalytic treatment of chlorophenols’ mixture (2-CP, 2,4-DCP, 2,4,6-TCP and
2,3,4,5-TeCP) at equal initial concentration [CP]0 = 5 mg/L, an increased overlap of chromatographic
peaks was observed. Therefore, many difficulties to follow the degradation of the chlorophenols’
mixture from a chromatographic analysis have arisen (Figure 9).
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2,3,4,5-TeCP) after 120 min illumination time.

In fact, these four reactants and their degradation intermediates compete to react with the free
radicals generated during the illumination of the PdPc(Imz) thin film, so that changes in the kinetics
(Figure 10) are not unexpected in comparison with individual degradation. It is therefore difficult
to predict the degradation kinetics for a mixture of several chlorophenols in water. Based on the
obtained results, we may conclude that the chlorophenols’ mixture has a significant influence on the
initial reaction rate for each single chlorophenol. This effect has a very similar tendency for the four
chlorophenols within the studied pH region, but its influence on the initial rate turns out to be different.
In all cases, our results suggest that over a relatively wide pH range, the efficiency of the process is
mildly affected, which is interesting as the process could be applied to different types of water.
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2.6. Intermediates from the Photodegradation of Chlorophenols

Various reaction by-products formed during the degradation of monochlorophenols [60,61],
dichlorophenols [56,62] and trichlorophenols [62] have been previously studied in detail.
The main by-products identified include phenols, quinones, catechols, chlorohydroquinone,
and hydroxyhydroquinone. Furthermore, many of the degradation pathways and mechanisms
have been proposed, involving a sequence of hydroxylation, giving some intermediate compounds,
which are subsequently degraded via ortho-, or meta-cleavage pathway through the formation of
short-chain aldehydes and carboxylic acids. Finally, the short-chain aldehydes and carboxylic acids
are transformed into CO2 and H2O by a decarboxylation mechanism [63–65]. Although a large
number of papers treated the subject of degradation by-products of various chlorophenols, studies on
2,3,4,5-tetrachlorophenol photodegradation remain very few [59]. This can be explained by the fact
that 2,3,4,5-TeCP has more Cl atoms on the aromatic ring especially at the ortho- and para- positions,
which makes it more stable and more difficult to photodegrade.

In order to have information on the main degradation by-products of 2,3,4,5-TeCP,
GC/MS technique was employed. All data were acquired with an Agilent 6890-5973N GC/MS system
in a raw (profile) scanning mode and followed by NIST MS Database Search and elemental composition
determination by Mass Works library. Figure 11b gives major reaction intermediates including
trichlorophenols as 2,4,5-TCP, 2,3,5-TCP, 3,4,5-TCP, and trichlorocatechol. Some dichlorophenols as
dichlorodihydroxy-benzene and 3,5-DCP have also been identified.

Given the intermediate products identified by GC-MS, we suggest the following degradation
mechanism: After hydroxyl radicals’ formation following electron transfer from OH- groups to
the PdPc(Imz) photoexcited surface, the hydroxyl radicals attack 2,3,4,5-TeCP, converting it to
3,4,5-trichlorocathechol and then to dichlorodihydroxy-benzene. The 2,3,4,5-TeCP can also be
dechlorinated to give a mixture of 2,3,5-TCP, 2,3,4-TCP and 3,4,5-TCP, which then can be for a
second time dechlorinated to give 3,5-DCP.
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(1) 2,3,5-TCP, (2) 2,3,4-TCP, (3) 3,5-DCP, (4) dichlorodihydroxy-benzene, (5) 3,4,5-trichlorocatechol,
(6) 2,3,4,5-TeCP, and (7) 3,4,5-TCP ([TeCP]0 = 5 mg/L, pH = 8).

This part of the study shows the potentialities of PdPc(Imz)/ITO/Glass as photocatalyst in
water decontamination. This method requires only oxygen as a chemical reactant. For 2,3,4,5 TeCP,
chosen as a model of chlorinated aromatic pollutants, the intermediate products such as TCP, DCP,
and trichlorocatechol still remain after illumination. However, the complete degradation of the
compounds requires much longer illumination time (t > 120 min). The chemical structure of
intermediates with chlorine atoms and large number of hydroxyl groups should affect more significantly
the photoreaction pathway than the hydroxyl groups from water. Furthermore, the degradation
efficiency in this system depends on the film surface, and the degradation rate of a pollutant in low
concentration can be decreased in the presence of more concentrated compounds by competition for
the surface sites. This can be verified by comparing the decomposition of the four chlorophenols
separately (Figure 8) with the simultaneous degradation (Figure 10), which generates numerous
photochemical intermediates.

2.6.1. Effect of Ionic Strength on Photodegradation

In order to extrapolate our study to seawater, and quantify the contribution of PdPc(Imz) thin
film in the photocatalytic degradation of chlorophenols, a series of experiments was conducted in
artificial seawater to determine whether salinity (NaCl) and ionic-strength influence photodegradation.
To determine the effects of salinity, laboratory experiments were conducted using 2,4-DCP as target
compound. The chemical was dissolved in artificial seawater with varying NaCl concentrations.
The red sea salinity varies slightly around 4%, which corresponds to 683 Mm [66]. We have therefore
chosen this value as artificial seawater chloride concentration in our experiments. Three synthetic
water matrices were created by mixing 5 mg/L of 2,4-DCP as a target compound in deionized water
containing 20 mM phosphate buffer (pH 8) alone, with 683 mM NaClO4 (ionic strength), or with
683 mM NaCl (seawater chloride). The degradation curves of 2,4-DCP in the synthetic matrices as a
function of time are shown in Figure 12. It can be noted that compared to deionized water containing
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20 mM phosphate buffer, photodegradation rates of 2,4-DCP were increased up to three fold in seawater
chloride (683 mM NaCl). Furthermore, kobs for 2,4-DCP increased from 153 × 10−3 min−1 in synthetic
ionic strength matrix (683 mM NaClO4) to 236 × 10−3 mn−1 in the deionized water matrix.
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matrices containing 20 mM phosphate buffer alone at pH = 8, with 683 mM seawater (chloride), or with
683 mM NaClO4 (ionic strength) after 30 min illumination time.

Quenching experiments including radical [•OH; 250 mM isopropanol], singlet oxygen
[1O2; DABCO experiments], 3[PdPc9(Imz)/ITO/glass]* electron transfer reactions (i.e., oxidation)
[25 mM methanol as scavengers] resulted in ~10–50% reduction of 2,4-DCP photodegradation in
seawater chloride (683 mM NaCl). Our results indicate that chlorides present in seawater increase the
photodegradation of 2,4-DCP by a factor of 3. This could be attributed to photochemically generated
chloride radicals, predominantly by direct oxidation of Cl− by 3PdPc9(Imz)/ITO/glass, according to the
following reaction mechanism:

3(PdPc9(Imz))* + Cl−→ 3(PdPc9(Imz))*− + Cl− (7)

→
3(PdPc9(Imz))*2−

→ (PdPc9(Imz))•− + Cl2•− (8)

The hydroxyl radicals can be also formed from Buxter reaction [67]:

Cl2•− + HOH→ HOClH• + Cl− (9)

HOClH•↔ H+ + HOCl•− (10)

HOCl•−↔ Cl− + •OH (11)

These results indicate that chlorides increase the photodegradation of chlorophenols and modify
its transformation pathway.

2.6.2. Concentration and Major Inorganic Ions Effect on Photodegradation Rate

A series of experiments were carried out to determine whether the major ion composition of
seawater could affect the photocatalytic degradation rate of chlorophenols. To approximate the
composition of the Red Sea, the results reported by Masoud et al. [68] were used to create the
synthetic seawater solution employed to study the effect of the composition of other ions on the rate of
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degradation of 2,4-DCP. Synthetic seawater containing 680 mM NaCl, 4.55 µM Na2PO4, 0.2 µM Iron,
1.29 µM KNO3, and 1.49 mM CaCO3 as total alkalinity were prepared using reagent-grade chemicals.
Figure 13 shows the effect of seawater constituents on photodegradation rate in synthetic matrices of
2,4-DCP at initial concentration of 5 mg/L, compared to seawater chlorine 680 mM.
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2.7. Reusability of PdPc(Imz)/ITO/Glass Thin-Film

The reusability of the spent PdPc(Imz)/ITO/Glass thin film was examined to evaluate the
photostability and effectiveness of the photocatalyst. The results revealed that PdPc(Imz)/ITO/Glass
thin-film displayed very good photostability. Compared with powder catalyst, this film
had the advantage of having low loss of photocatalytic activity after four cycling runs (see
Supplementary Materials).

3. Materials and Methods

3.1. Materials

All reagents for synthesis were of analytical quality and used as such. The anhydrous metal
salts [Cd(OAc)2, Hg(OAc)2, Pd(OAc)2 and Zn(OAc)2] and silver nitrate (AgNO3) were purchased
from Merck Co. Doubly distilled water was used everywhere. Dimethyl sulfoxide (DMSO), N,
N-dimethylformamide (DMF), isopropyl alcohol, methanol, n-pentanol and 2-(dimethylamino) ethanol
(DMAE) were purchased from Sigma-Aldrich (Germany). Standard materials for chlorinated
phenols [2-chlrophenol (2-CP), (2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP)
and 2,3,4,5-tetrachlorophenol (2,3,4,5-TeCP)] were supplied by Supelco, 4-nitrophthalonitrile,
DABCO (1,4-diazabicyclo [2.2.2] octane) and DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene) were also
obtained from Sigma-Aldrich. The phosphate buffer (pH = 8) used for the photocatalysis
of chlorophenols was prepared using potassium dihygrogen orthophosphate reagent grade
(Sigma-Aldrich) and dipotassium hydrogen phosphate (Sigma-Aldrich).

3.2. Synthesis

Synthetic pathways of the phthalonitrile and Pc derivatives are given in Schemes 1
and 2, respectively.
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3.2.1. Synthesis of 4-(1H-imidazol-1-yl)phthalonitrile

The synthesis of 4-(1H-imidazol-1-yl)phthalonitrile was carried out by base-catalyzed aromatic
nitro displacement of 4-nitrophthalonitrile with 1,3-Diaza-2,4-cyclopentadiene, in DMF; K2CO3 was
used as the base for this displacement (Scheme 1).

3.2.2. Synthesis of the Phthalocyanines

The desired metallophthalocyanines were synthesized in a one-step reaction by
cyclotetramerization of 4-(1H-imidazol-1-yl) phthalonitrile (3 mmol) in the presence of n-pentanol
using DBU as the catalyst, in 2-(dimethylamino)ethanol (DMAE) under an inert atmosphere, at 140 ◦C
for 18 h and stirred during one day to increase the yield (Scheme 2). We conducted the reaction
in the presence of anhydrous metal salts [Cd(OAc)2, Hg(OAc)2, Pd(OAc)2 and Zn(OAc)2] (1 mmol)
at reflux temperature. 1H NMR, MALDI-TOF-MS, and UV–Vis analyses confirmed the proposed
structures of the synthesized compounds. All phthalocyanines displayed good solubility in DMSO,
DMF, chloroform, and THF.

3.3. Preparation of Thin Films and Sensitization Process

Thin layers of the MPc(Imz) (M: Cd, Zn, Hg, Pd) have been prepared by a spin-coating technique
on a glass substrate at 120 ◦C. The coating liquid was obtained by dissolving an adequate amount of
MPc(Imz) to obtain a 5 mg/mL solution in a solvents mixture (Trifluoroacetic acid (TFA): Tetrahydrofuran
(THF) = 1:1 in volume). Before deposition, substrates were cleaned by ultrasonication with acetone,
isopropyl alcohol, and deionized water, followed by UV-ozone treatment. Finally, in the sensitization
process, 1 mL of the coating solution was applied by spinning at a speed of 2000 rpm for 15 s in a closed
spinner. These two parameters controlling the thickness of the resulting layers have been previously
optimized by several tests to obtain the best crystalline structure. Afterwards, the resulting sensitized
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film coatings were quickly placed in the oven set to 120 ◦C for 1 h to investigate the crystalline phase
transition. Finally, the films are annealed at 200 ◦C temperature during 2 h.

3.4. Photocatalytic Experiments

In order to simulate contaminated sea water condition, synthetic seawater sample was spiked
with appropriate amounts of stock solutions of a mixture of four chlorophenols. Based on previous
works in our laboratory [26,27], photocatalytic degradation was achieved using a self-made designed
photoreactor with slight modifications (Figure 14). A Lightex LT50 lamp with 128 W was used as a
source of illumination and immersed in the reactor at a distance of 1 cm from the film supported on the
ITO/glass substrate. Throughout the photocatalytic process, the solution enriched with chlorophenols
was saturated with oxygen. The duration of illumination for each run was set at 140 min to ensure
maximum degradation of the chlorinated phenols. 25 mL of mixed chlorophenols spiked in synthetic
seawater solution (5 ppm) was used as target solution. The pH value of the batch reaction was fixed at 8.0
and the temperature in the photo-reactor set at 300 K with oxygen bubbling inside the reaction medium.
At different intervals of illumination, a 5 mL aliquot containing the unreacted chlorophenols was
taken and filtered through 0.45 µm cellulose esters (MCE) membrane (MF-Millipore). After acetylation
and centrifugation, 1 µL aliquot of the organic phase was injected into the GC–MS system after
pre-concentration and solid-phase extraction (SPE) clean-up procedure. The concentration of unreacted
chlorophenols was determined to establish a calibration curve with concentration values ranging from
1 to 100 mg/L. For each test, three measurements were undertaken. Calibration curves showed good
linearity with correlation coefficients (R2) ranging from 0.9972 to 0.9998 for all the chlorophenols.Catalysts 2020, 10, x FOR PEER REVIEW 18 of 22 
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Figure 14. Scheme of the photo-oxidation experimental system.

4. Conclusions

In summary, a series of new metal phthalocyanines (CuPc, HgPc, ZnPc and PdPc) with imidazole
function have been synthesized. These complexes were characterized with UV/VIS, FT-IR, and RMN1H.
All MPc(Imz) imidazole as well as their vibrational frequencies have been studied by DFT method
using B3LYP theory level. The total energy and dipole moments of the studied molecules were
also calculated. FTIR spectrum suggested that the PdMPc(Im) can be used as an important and
promising catalyst for application in photocatalytic degradation under visible-light due to its band
gap of ~2.76eV. Experimental results of MPcs studies were confirmed by numerical calculations by
Gaussian W. HOMO-LUMO gaps, which have been determined for all ImzPCs (see Supplementary
Materials). These numerical calculations of PdPc(Imz) values are close to the Uv-vis experimental
results, indicating a semiconductor behavior. The surface morphology, crystal structure and electronic
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properties of PdPc films on ITO glass have been also investigated. Based on the present study, the
contribution of chloride radicals to the photochemical degradation of the critical organic compound
may have important implications for decontamination of seawaters rich in chlorophenols, in the
presence of a photosensitizer (e.g., PdPc(Imz)).

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/8/906/s1,
FT-IR study of metallophthalocyanines (M: Zn(II), Cd (II), Hg(II) and Pd(II)), Numerical calculations by Gaussian
of Palladium tetra (1H-imidazol-1-yl) Phtalocyanine, Effect of initial pH and initial concentration, Reusability of
PdPc(Imz)/ITO/Glass thin-film.
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