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Abstract: In asymmetric photocatalytic reactions, it is necessary to study the mechanism of
the asymmetric electromagnetic interaction between molecules and light. In this work, we theoretically
studied the electromagnetic interactions between the light-induced charge transfer reaction
and the chiral reaction of PM567 dye. We found that the chiral responses of molecules in different
wavelength ranges were partially due to pyrromethene and binaphthalene. Therefore, the catalytic
sites with different chirality also corresponds to the two-part groups. Through quantitative analysis,
we found the entire analysis process to be complete and self-consistent.

Keywords: PM567; asymmetric photocatalysis; chiral spectrum; ECD; charge transfer

1. Introduction

In recent years, the field of photocatalysis [1–5] has rapidly developed. The applications
and theoretical research for photocatalysis are endless. As a new catalytic reaction mode, photocatalysis
is particularly important for organic chemistry [6], medicinal chemistry [7,8], and natural product
synthesis chemistry [9]. Photocatalytic reactions have many advantages: high reaction rate, affordability,
and environmentally friendliness [10,11]. Over the years, the means of photocatalytic reactions have
been diverse, including surface plasmon enhancement [12], and reactions assisted by two-dimensional
materials, such as grapheme and black phosphorus [13,14]. For photocatalytic reactions, the mechanism
of photoredox is the core theory. In the photoredox reaction, the catalyst or dye molecule acts as
an energy acceptor and converter and an electron provider, and its charge transfer ability at a specific
wavelength is significant [15–18] and needs to ensure the stability under the effect of light [19,20].

As a traditional widely-used material, PM567 dye has good charge transfer ability and light
stability [21–23]. However, for chiral molecules, the problem of stereoisomerism in asymmetric catalysis
needs to be considered. Before this is possible, because of the light-driven catalytic reaction, the chiral
electromagnetic interaction when light interacts with molecules must be studied. The chiral electromagnetic
interaction between molecules and light is extremely important for asymmetric photocatalytic reactions.
The exploration of the chiral electromagnetic interaction mechanism of dyes has guiding significance for
the design of asymmetric photocatalytic reactions. In our previous work, we developed a method for
electromagnetic transition dipole moment decomposition analysis and achieved certain results in the field
of molecular systems and two-dimensional materials [24–26]. Therefore, in this work, we used this
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method to theoretically study the photo-induced chiral electromagnetic interaction of PM567 molecules to
guide the asymmetric catalytic reaction of photocatalysis.

2. Results and Discussion

Figure 1 shows the Lewis and 3D molecular structures of pyrromethene 567 (PM567) dye with
binaphthalene. The figure shows that the molecule is composed of two parts connected by boron atoms.
Since the connection between the boron atom and the oxygen atom is directional, the pi-conjugated
system connected to it is also chiral. It is necessary to study the chirality of this special bonding
system because the chirality caused by boron atoms is incredibly special. From the molecular structure,
the chirality of PM567 dye is not limited to a certain chiral center, but is determined by a part of
the atomic group.
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Figure 1. The Lewis formula (a) and 3D molecular structure (b) of PM567 dye.

The electromagnetic interaction caused by this chiral structure is significantly used in visible
light chiral photocatalytic (asymmetric photocatalytic) reactions. Therefore, it is necessary to study
the nature of chiral electromagnetic interaction in the visible region. For the PM567 dye, the absorption
peak dominated by the first excited state is in the visible region (420 nm), see Figure 2. In the near
ultraviolet region, the excited states are S3, S4, and S6. The sensitivity of the absorption spectrum
is positively related to the vibrator intensity. For the first excited state, longer wavelength light
can excite molecules. However, compared to the maximum peak, the absorption intensity is \
and the excitation efficiency are relatively low. In this part of the discussion, we selected these excited
states with stronger intensity as the analysis object. Because different excitation states correspond
to different excitation energies, the molecular orbits corresponding to the excitation process are also
different. Combining the configuration coefficient and molecular orbital during the excitation process,
the electron-hole-pair density in the transition process can be calculated and visualized by the following
formula:
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where the ϕ is the wavefunction of molecular orbital. The subscripts loc and cross represent
the contribution of local and cross terms to the electron and hole density. This visualization method has
many advantages over molecular orbital analysis methods. First, because molecular orbitals are linear
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combinations of atomic orbitals, their wave function forms are dispersed throughout the molecular
space, which is inconvenient for the analysis of transition contributions. Second, any excitation process
is not limited to a single pair of molecular orbitals, but a combination of excitations between multiple
molecular orbitals. Therefore, for the case where the configuration coefficients are evenly distributed,
the molecular orbital analysis method is extremely complicated. The electron-hole-pair density can be
analyzed with a contour map of the entire excitation process.
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of PM567 dyes.

Figure 3 shows the electron hole-to-density isosurface of the four main excited states and their TDM
diagram. We examined the isosurface graph and the color-filling matrix graph and found that the first
excited state of the molecule exhibits strong local excitation characteristics, and the electron and hole
density were concentrated on the pyrromethene, as shown in Figure 3a. However, the transition
characteristics of S3 were different. The intensity corresponding to S3 is relatively low, and a strong
charge transfer characteristic can be seen by looking at the electron-hole density map in Figure 3b.
The electrons are transferred from dinaphthalene to pyrromethene. The weaker vibrator strength can
also be confirmed from the side as the excited state of charge transfer. The other two main excited
states S4 and S6 are localized excitations, as shown in Figure 3c,d. The difference is that the excited
state of S4 is the contribution of pyrromethene and the main contribution of S6 is dinaphthalene.

The electron-hole density can show the transition characteristics, but only the overall transition
dipole moment can be analyzed. During the interaction between molecules and electromagnetic waves,
molecules respond differently to the electric and magnetic fields. In other words, different parts of
the molecule respond differently to electric and magnetic fields. Therefore, molecules respond to
polarized light to form an ECD spectrum. The ECD spectrum of PM567 dye is shown in Figure 2b. It
can be seen that the ECD peaks contributed by S1 and S2 in the visible region show different positive
and negative phenomena. Immediately afterward, S3 and S4 are also two oppositely excited states.
Finally, S6 is the strongest ECD peak in the positive direction.
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Figure 3. The electron-hole pair density (left) and transition density matrix (TDM) (right) of (a) S1, (b)
S3, (c) S4, and (d) S6. The pink and green isosurfaces signify the electron and hole density, respectively.
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To further analyze the mechanism of chiral electromagnetic interaction of each excited state, we
decomposed and analyzed the electromagnetic interaction in the transition process. The transition
electric dipole moment and transition magnetic dipole moment of S1 were found to be distributed
in the pyrromethene part. This showed that the S1 excited state mainly contributes chirality by
pyrromethene, as shown in Figure 4. This is an electromagnetic interaction different from the traditional
chiral center. The ECD response of S2 is the opposite to that of S1, and the transition electric/magnetic
dipole moment distribution is mainly distributed on pyrromethene. However, the dinaphthalene
portion also has a large transition magnetic dipole moment density, as shown in Figure 5.
Therefore, the chiral response of S2 is determined by the entire molecule. The equivalent surface of
the transition electric/magnetic dipole moment density of S2 is relatively small, which is why the ECD
peak corresponding to S2 is relatively low. For S3 and S4, the difference between excitation energy
and rotor strength is small.
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Figure 4. The transition electric (a) magnetic (b) dipole moment matrix (upper) and density (under)
isosurface of S1 in PM567. The yellow and purple isosurfaces represent the positive and negative
transition electric dipole moments, respectively, and the red and blue isosurfaces denote the positive
and negative transition magnetic dipole moments, respectively.



Catalysts 2020, 10, 882 6 of 11
Catalysts 2020, 10, x FOR PEER REVIEW 6 of 12 

 

 
Figure 5. The transition (a) electric/magnetic (b) dipole moment matrix (upper) and density (under) 
isosurface of S2 in PM567. The yellow and purple isosurfaces indicate the positive and negative 
transition electric dipole moments, respectively, and the red and blue isosurfaces represent the 
positive and negative transition magnetic dipole moment, respectively. 

 The transition electric/magnetic dipole moment deficiencies of these two excited states are 
significantly different. First, according to the previous statement, S3 is the excited state of charge 
transfer. However, the density of S3 transition magnetic dipole moment in the Y and Z directions is 
significantly higher than the electrical dipole moment density, as shown in Figure 6. The transition 
electric/magnetic dipole moment density distribution of S4 is basically the same as S3. However, the 
density distribution at the same location is the opposite, as shown in Figure 7. This is the fundamental 
reason why the ECD responses of S3 and S4 are opposing. The electromagnetic interaction of S4 is 
significantly different from other excited states. Firstly, the transition electric/magnetic dipole 
moment density of S6 is distributed in the binaphthalene part. Secondly, the transition 
electric/magnetic dipole moment density is exceptionally large, and significantly larger than the 
previous excited state, as shown in Figure 8. Correspondingly, the ECD peak of S6 is also 
extraordinarily strong. Based on the above analysis, the chiral mechanism of the molecule was 
quantitatively analyzed after combining the transition electric/magnetic dipole moments 
(TEDM/TMDM) separately. The values of the transition electric/magnetic dipole moments of five 

Figure 5. The transition (a) electric/magnetic (b) dipole moment matrix (upper) and density (under)
isosurface of S2 in PM567. The yellow and purple isosurfaces indicate the positive and negative
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The transition electric/magnetic dipole moment deficiencies of these two excited states are
significantly different. First, according to the previous statement, S3 is the excited state of charge transfer.
However, the density of S3 transition magnetic dipole moment in the Y and Z directions is significantly
higher than the electrical dipole moment density, as shown in Figure 6. The transition electric/magnetic
dipole moment density distribution of S4 is basically the same as S3. However, the density distribution
at the same location is the opposite, as shown in Figure 7. This is the fundamental reason why
the ECD responses of S3 and S4 are opposing. The electromagnetic interaction of S4 is significantly
different from other excited states. Firstly, the transition electric/magnetic dipole moment density
of S6 is distributed in the binaphthalene part. Secondly, the transition electric/magnetic dipole
moment density is exceptionally large, and significantly larger than the previous excited state, as
shown in Figure 8. Correspondingly, the ECD peak of S6 is also extraordinarily strong. Based on
the above analysis, the chiral mechanism of the molecule was quantitatively analyzed after combining
the transition electric/magnetic dipole moments (TEDM/TMDM) separately. The values of the transition
electric/magnetic dipole moments of five different excited states are shown in Table 1. We calculated
the tensor product between TEDM and TMDM according to Equation (2). The last row in Table 1
shows the eigenvalues of the tensor product, and the results exactly match the intensity and direction
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of the ECD spectrum. This also showed that the analysis and discussion of the chiral mechanism
mentioned above are complete and self-consistent.
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Table 1. The value of transition electric/magnetic dipole moment and the eigenvalue of their
tensor product.

S1 S2 S3 S4 S6

TEDM
X −1.0509 −0.2037 −0.9342 0.2153 −0.1139
Y −2.0543 −1.0207 0.0663 1.1107 −1.4158
Z −0.5993 −1.1083 −0.0632 0.3309 0.4909

TMEM
X 0.3253 0.0835 0.1045 0.247 0.266
Y 0.3235 0.3412 −0.0583 0.0245 0.7349
Z −2.8867 −0.7827 0.089 0.3917 0.8694

Eigenvalue −0.7234 0.2327 −0.0994 −0.21 0.644

3. Method

Experimentally, electronic circular dichroism (ECD), vibration circular dichroism (VCD),
and Raman spectroscopy (ROA) can be used to observe the chirality of molecules. ECD can effectively
characterize the chirality of chromophores in molecules. In theory, the intensity of ECD can be
defined as [26]:

I ∝
〈
ϕ j

∣∣∣µe
∣∣∣ ϕ i

〉〈
ϕ j

∣∣∣µm
∣∣∣ ϕ i

〉
B (2)

where the ϕ i and ϕ j are the ground and excited state wave function, respectively. The B is
the magnetic induction intensity. Theµe andµm are the transition electric/magnetic moment, respectively.
The transition electric dipole moment is defined by:

D(µ)
2 = Ptan

µµ

〈
χµ

∣∣∣−z
∣∣∣χµ〉+∑

v,µ

[
Ptan
µv

〈
χµ

∣∣∣−z
∣∣∣χv

〉
+ Ptan

vµ

〈
χv

∣∣∣−z
∣∣∣χµ〉]/2 (3)
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where the Pt·cm
µv =

occ∑
i

vir∑
j

wi→ j
K CµiCµ j is the transition density matrix, Cµi and Cvi are the linear combination

coefficients of molecular orbitals, and µ is the number of basis functions. This allows calculation of
the atomic contribution of the transition electric dipole moment. When analyzing ECD and ROA
spectra, a transition magnetic dipole moment is also required, which is defined as follows:

M(µ)
z = Ptran

µµ

〈
χµ

∣∣∣∣∣x ∂∂y
− y

∂
∂x

∣∣∣∣∣χµ〉+∑
v,µ

(
Ptan
µv

〈
χµ

∣∣∣∣∣x ∂∂y
− y

∂
∂x

∣∣∣∣∣χv

〉
+ Ptan

vµ

〈
χv

∣∣∣∣∣x ∂∂y
− y

∂
∂x

∣∣∣∣∣χµ〉)/2 (4)

On this basis, molecular structure optimization was achieved with Gaussian 16 software combined
with the density functional theory (DFT) method [27], B3LYP functional [28], 6-31G(d) basis function,
and the DFT-D3 [29] correction method. After optimizing the molecular structure, the TDDFT method
was used in combination with the CAM-B3LYP functional [30] and the same basis function. After this,
we combined it with Multiwfn-3.6 software [31], VMD-1.9.3. software [32], and self-programming [24]
to visually analyze the chiral electromagnetic interaction.

4. Conclusions

In this work, we first performed a visual analysis of the absorption spectrum of the PM567 dye
and the corresponding excitation characteristics of the excited state. We found that there are charge
transfer excitation characteristics in the visible region and near ultraviolet region. This is an especially
important conclusion for the photoredox reaction, which can be used to design photocatalytic reactions.
Secondly, we conducted a decomposition analysis of the chiral electromagnetic interaction between
molecules and electromagnetic waves during light excitation, explaining the source of the chiral
spectrum. The chiral electromagnetic interactions in PM567 mainly come from the pyrromethene
and binaphthalene moieties. This asymmetric chiral electromagnetic interaction is the key basis for
the selection of the asymmetric catalytic reaction path driven by photon.
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