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Abstract: Based on previous Computational Fluid Dynamics (CFD) design results, an 11 channel
microreactor of dimensions (0.5 mm × 0.5 mm × 100 mm) (width × depth × length) and optimal
manifold geometry was fabricated, coated with a newly-developed Au/SBA-15 catalyst and then
integrated in an experimental rig specifically built for this research. Propane (as model volatile
organic compound) oxidation experiments were conducted at three different flow velocities, 12.5,
15.4 and 17.5 m/min, respectively, at six temperatures, 150, 200, 225, 250, 275, and 300 ◦C,
respectively. The catalyst was prepared by one-pot sol-gel synthesis of SBA-15 with MPTMS
(3-mercaptopropyl-trimethoxy-silane) before loading with HAuCl4 gold precursor and then
characterized by SEM/EDX, TEM and wide angle XRD. A novel catalyst coating technique was
developed, using airbrush (0.3 nozzle) to spray a catalyst slurry into the microchannels that produced
a thin, firm and uniform layer of Au/SBA-15 catalyst coating inside the microreactor. The experimental
measurements revealed that propane conversion increased as the flow feed rates decreased and
increased with increasing temperatures in the reactor. For the built microreactor and for the flows
and temperatures set, the combustion of propane was possible with measurable conversions and
reasonable reactor stability, the performance of the catalyst appeared to be central to the satisfactory
operation of the reactor.

Keywords: microreactor; CFD; VOCs; Au/SBA-15 catalyst; propane; complete oxidation; catalyst coating

1. Introduction

1.1. VOCs and Elimination Methods

Volatile organic compounds (VOCs) are stable organic compounds such as alkanes, olefins, alcohols,
ketones, aldehydes, esters, aromatic and halogenated hydrocarbons with high vapor pressures due to
their low boiling points at room temperature which causes them to vaporize easily into atmospheric
environment [1,2]. The European Community (EC) Solvents Emission Directive 1999/13/EC [3] defined
VOC as any organic compound having at 20 ◦C, a vapor pressure of 0.01 kPa or more or having
a corresponding volatility under the particular condition of use. The increasing levels of VOCs
emitted into the atmosphere constitute major toxic air pollutant in cities and indoor spaces, which is
fast becoming a major global health and environmental concern [4–7]. Case studies conducted in
different countries all agree that the levels of indoor air VOCs are much higher than outdoor air levels,
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a worrisome development as most people spend more than 80% of their time in homes, offices and
vehicles [8–13]. Inhalation of VOCs over time have been linked to acute diseases such as sick building
syndrome (SBS), headaches, fatigue, mucous membrane irritation and chronic diseases such as cancer,
leukemia, breakdown of liver, kidney, excretory and central nervous systems. VOCs also contribute
significantly to pollution of the atmosphere, causing acid precipitations, photochemical smog and
global warming [14–19]. High density of vehicular traffic in urban areas have been identified as
the major source of outdoor VOCs as the combustion of fossil fuels from engines exit the exhausts
into the atmosphere which can also enter buildings in the area to increase the level of indoor VOCs.
Other outdoor sources include large scale use of solvents in industrial processes, petroleum refining and
storage, natural gas leakages and surface coatings [7,20–24]. Indoor sources of VOCs include cigarette
smoking, heating, wet paints and vanishes, cleaning supplies and pesticides, electronic gadgets,
printing ink, adhesives, carpet, synthetic rubber, paper products, pressed wood and insulations [25–28].
With more stringent government regulations on VOCs emission coming on stream [29], a more practical,
efficient and cost saving solution is required to eliminate VOCs from industrial and indoor gas streams.

To improve indoor air quality, source control, increased ventilation and air cleaning have been
suggested. While it is practically difficult to control the VOCs indoor sources and as increased
ventilation might bring in more pollutants from outdoors, air cleaning has been proposed as the most
reliable method to eliminate indoor VOCs [8,30]. Industries also require improved and cost saving
clean-up systems to eliminate VOCs from their gas streams before discharging them to the atmosphere

The various methods used in elimination of VOCs include adsorption, absorption, condensation,
biological treatment, thermal and catalytic oxidation or incineration. Thermal and catalytic oxidation
are the most effective methods, however, catalytic oxidation has an edge over thermal oxidation due to
its higher VOCs removal capability, lower operating temperature which reduces cost and prevents the
formation of harmful reaction intermediates associated with high temperature reactions [1,31–38].

Catalytic Oxidation of VOCs

Noble metal catalysts (Pt, Pd, Ru, Ag, Au) have exhibited higher catalytic activity at lower
temperatures compared to transition metal catalysts (Mn, Co, Cu, Fe, Ni) for VOCs oxidation to carbon
dioxide and water, however, most of the reported catalysts still operate between 200–500 ◦C which
makes air clean-up technology expensive, especially for removal of low concentration of VOCs [8,39–43].
Some researchers, however, have reported lower oxidation temperatures with photocatalysis of VOCs
using TiO2 even for very low concentrations. Unfortunately, these catalysts, just like most catalysts,
are unstable in water, especially at low temperatures, as moisture present in the atmosphere easily
deactivate them [44,45]. The development of catalysts which can oxidize VOCs below 200 ◦C and are
resistant to deactivation from moisture will be a major breakthrough into efficient and cost-effective air
clean-up technology.

Ever since the unprecedented and extraordinarily high catalytic activity of gold nanoparticles
(1–5 nm) towards carbon monoxide oxidation at −76 ◦C was reported by Haruta [46], many researchers
have tried to use gold on Fe2O3, TiO2, CeO2, Co3O4 and Mn2O3 supports for low temperature oxidation
of VOCs, even though VOCs are much harder to oxidize compared to carbon monoxide due to their
higher stability [47]. In most cases, the low temperature oxidation of VOCs by supported gold catalysts
has been less impressive compared to platinum, palladium and some transition metal-based catalysts.
It therefore seems that the extraordinary capability of gold towards lower temperature oxidation
have not been fully exploited for VOCs oxidation reactions. To this end, an attempt was made to
develop gold nanoparticles less than 2 nm supported on highly surface area support for the complete
oxidation of VOCs. To the best of our knowledge, no such catalyst has been reported for VOCs
oxidation. Gold nanoparticles and SBA-15 mesoporous silica support materials have been reported to
be stable in moisture and since SBA-15 offers other exciting features in addition to its high surface
area, such as large pore size, large pore volume and thick pore walls for higher hydrothermal stability,
a novel Au/SBA-15 catalyst for the elimination of VOCs by complete oxidation at low temperatures
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was successfully developed by our group. Surprisingly, there has been no publication dealing with
the VOCs complete oxidation on any Au/SBA-15 catalysts. To boost the commercial viability of the
Au/SBA-15 newly-developed catalyst for VOCs oxidation, this paper proposes an innovative reaction
system, namely a large surface area multi-channel microreactor, which only requires very small
amounts of catalyst for coating its inner channel’s walls. Propane was used as model VOC compound
to evaluate the performance of the catalyst coated microreactor.

1.2. Microreactors

Microreactors are devices in which chemical reaction takes place in narrow confinement typically
less than 100 µm. Unlike the large traditional reactors, microreactors house chemical reactions to the
scale of 5–100 mL. Microreactor are constructed from a network of miniaturized reaction channels.
The main distinctions between microreactors and traditional chemical reactors are directly related to
their size and especially to their surface-to-volume ratio.

For an ordinary 30 m3 reaction vessel and a microreactor having reaction channels with a diameter
of 30 µm, this ratio is different by a factor of 100,000. This allows for even very fast and very exothermic
reactions to be performed isothermally [48–50] and, in the case of multiphase reactions, the mass
transfer path is minimal.

The application of the microreactor technology to catalytic oxidation reactions is proving
to be advantageous due to the ability to avoid problems such as high exothermicity and
poor control of reaction conditions, commonly associated with catalytic oxidation reactions [51].
Likewise, a microreactor would be an ideal reaction vessel for certain hazardous materials which
cannot be dealt with in large-scale processes but can be safely handled in very small quantities.
This inherent safety is due to both the small reactant volume being present at any time in the reactor
and the well controllable operating reactor and reaction conditions. For instance, diazomethane is
extremely toxic and explosive in nature, but owing to the precise control of heat and low residence
time in microreactors, diazomethane can be continuously converted to the target product in a safe
manner [52]. Some intermediates pose high explosive risk if formed in large quantity in a traditional
macroscale system but chemistries with highly energetic intermediates have been successfully studied
in microreactors [53]. Fast mixing and diffusion can be achieved in microreactors due to small
characteristic size and low volume.

Moreover, the avoidance of mass-transfer limitation is the one of the main objectives in the
development of microreactors. For reactions that are mass transfer limited in traditional macroscale
systems, the improved mass transfer in microreactor can lead to higher observed reaction rates and
process intensification. As for example, the hydrogenation of cyclohexane reaction in a microreactor
showed higher mass transfer coefficient of approximately 5–15 s−1 compared to that of conventional
reactors of 0.01–0.08 s−1 [54]. Microreactors have been used for production where small quantities of
products are required, such as in the pharmaceutical and fine chemical industries and when safety is
of a concern. One of the first commercially available microreactors, produced by a collaboration of
Caliper Technologies and HP, were designed to be used for medical tests. Microreactors have been
used in several research projects including portable energy, assays of proteins and biological analysis
of cells and for kinetic and mechanistic studies [55–59]. A number of chemical systems have been
successfully integrated with microreactors including ultraviolet and visible spectroscopy and Raman
spectroscopy [60,61].

The aim of this work is to use the design, modelling and simulation results, as detailed in our
previous study [62], to fabricate, coat and test a microreactor system for propane complete oxidation.
The design was performed by using the CFD package of COMSOL Multiphysics to model the flow
dynamics and to determine the size and number of channels. The simulations were used to optimize
the manifold geometry of the reactor and to find the best operation parameters of the flow system.
The designed microreactor with the optimum size and shape is fabricated using a micro-milling machine.
A newly-developed Au/SBA-15 catalyst is prepared and physically characterized. The coating of
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the channel’s inner walls is achieved by injecting and by spraying of catalyst slurries with different
composition. To assess the performance of the catalytic microreactor for propane complete oxidation,
a testing ring is built. Experiments with mixtures of propane and air, with ratios around 1:5.5,
are performed at temperatures of 150, 200, 225, 250, 275 and 300 ◦C, respectively, for three different
flow rates (three different residence times).

2. Results and Discussion

2.1. Newly-Developed Au/SBA-15 Catalyst Physical Characterization

The physical characterization results are shown in Table 1 and Figures 1 and 2.

Table 1. Physical properties of the newly-developed Au/SBA-15 catalyst. The BET surface area, pore
size and pore volume measured for the support are given for comparison.

Catalyst. BET Surface Area (m2/g) Pore Size (nm) Pore Volume (cm3/g) Au Loading (%wt.) Au Size (nm)

Au/SBA-15 726 5.3 0.76 3.5 1.4

SBA-15 794 5.4 0.86 - -
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Figure 1 shows the wide angle diffractogram of the catalyst along with the support one. As the
diffraction peak at 2θ = 38 assigned to cubic shaped gold is small and broad, one can conclude that
the gold nanoparticles are only small, and, as seen in Figure 2A, they are uniform and well dispersed
in the SBA-15 channels. Their size was determined from the TEM images (Figure 2B,C), as equal to
1.4 nm. It can be easily noticed that gold metallic nanoparticles are incorporated and dispersed on the
internal surface of the SBA-15, which explains the decrease in BET surface and pore volume and the
slight decrease in pore size, as seen in Table 1.

As seen in Figure 2D, the catalyst preserves the worm-like morphology of the support (Figure 2F),
which was not altered by the catalyst preparation method used. The primary particle sizes of the
catalysts (1.2–3.1 µm lengths and 0.4–0.6 µm widths) remained the same with that of the SBA-15 support.
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Figure 2. TEM images (A–C) and SEM image (D) of the newly-developed Au/SBA-15 catalyst, TEM
and SEM images of SBA-15 (E and F, respectively).

2.2. Catalyst Coating

The catalyst-coated microchannels using the three coating techniques described within Section 3.6
were characterized using a GXCAM-5 microscope and a Scanning Electron Microscope Hitachi S-3400
N variable.

Results obtained by using Technique 1 are presented in Figure 3.
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Figure 3. GXCAM-5 microscope images (A,B) and SEM images (C,D) of Au/SBA-15 catalyst coating in
the channels of the microreactor before (A,C) and after (B,D) heat treatment; Technique 1.

This coating technique failed to produce a thin, firm and uniform catalyst coating. Coating
cracks are seen everywhere in the channels which can easily flake off and block the channels of the
microreactor. A possible cause could be the burning off the organic binder, which is 60 weight% more
than the catalyst; an enormous amount of stress can be exerted on the coatings, which could lead to
cracks even though the heat treatment was slowly ramped by 1◦/min.

Results obtained by using the coating Technique 2 are presented in Figure 4.
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Unfortunately, this technique produces even deeper cracks all over the channels of the microreactor
after air drying.

As for the results obtained by using the coating Technique 3, they are presented in Figure 5.
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By using this technique, a thin, firm and uniform coating was achieved. No cracks were
observed before or after heat treatment with the catalyst coating strongly and uniformly attached to
the microchannels.

It is important to note that the coated microreactor is intended for gas phase reactions operated
with laminar flow. Liquid phase reactants might wash off the coating and as such, different coating
techniques might be required. Unlike the dip coating and syringe method, spraying was done in
multiple steps in order to achieve the desired loading or thickness.

2.3. Catalytic Oxidation of Propane

Within the limits set by the equipment, three input flow rates, i.e., 27.0, 33.2 and 37.9 mL/min,
respectively, were set and for each flow rate a temperature range from 150 to 300 ◦C was investigated.
For all three input flow rates, the propane: oxygen molar ratio was kept around 1:5.5 (a slight excess
compared to the stoichiometric ratio, as seen in Table 2).

Table 2. Selected propane and air flowrates with molar ratios in the micro-reactor.

Reactants Fuel: Oxygen Molar Ratio Initial Propane Concentration
in the Mixture

Propane Flowrate
(mL/min)

Air Flowrate
(mL/min)

Mole% oxygen in
air flowrate

Total flow
rate (ml/min) Propane Oxygen (ppm)

1.0 26.0 5.5 27.0 1.0 5.5 37,000

1.2 32.0 6.7 33.2 1.0 5.6 36,000

1.4 36.5 7.7 37.9 1.0 5.5 37,000

The investigations were carried out in the reactor with the catalyst present and, for comparison,
without the catalyst present. The results over the catalyst are presented in Figure 6.
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The complete propane oxidation reaction over the newly-developed Au/SBA-15 catalysts was
studied according to Equation (1).

C3H8 + 5O2 => 3CO2 + 4H2O (1)

Propane conversion was calculated using Equation (2).

XC3H8 =
γiC3H8 − γ fC3H8

γiC3H8

× 100 (2)
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where XC3H8 is the fractional conversion of propane, γiC3H8 is the initial partial pressure of propane
in torr (taken from the experimental run without catalyst), and γ fC3H8 is the final partial pressure of
propane (taken from the experimental run with catalyst), in torr.

The propane conversion is presented as a function of temperature for each flow rate. If each flow
rate is considered individually, at a flow rate of 27.0 mL/min the propane conversion rises from about
15% to just under 70% over the temperature range 150–300 ◦C.

At a flow rate of 33.2 mL/min, the propane conversion increases with temperature, as expected.
However, as a lower residence time is expected (if a proportional calculation is carried out based on
the input flow rate, the number of channels in the reactor and the tubular cross sectional area then the
unmodified velocities corresponding to 27.0 mL/min and 33.2 mL/min are 12.5 m/min and 15.4 m/min,
respectively), the conversion at each temperature is lower than the one measured at the lower flow
rate. The measured difference increases with temperature.

At a higher flow rate, namely 37.9 mL/min, (where the nominal velocity calculated as above is
17.5 m/min) the same trend of conversion increasing with temperature is observed but as with the
previous flow rate, the conversions are lower at the same comparable temperatures. For this flow rate
the conversion at 150 ◦C is zero.

As expected, the mass transfer limitations at high temperatures are not as severe as those observed
in the conventional reactor; in fact, for the flow rates of 33.2 mL/min and 37.9 mL/min, respectively, no
mass transfer limitations were observed in the microreactor. At low temperatures, the rate determining
step was the reaction kinetics while at intermediate temperatures, the pore diffusion was the main
factor affecting the progress of the reaction, for both, microreactor and conventional flow reactor.

From our previous theoretical analyses [62], it was reported that as the temperature in the reactor
increased the dominant influence would be the kinetic rate for the oxidation reaction. The simulation
results for the oxidation of propane on Au/Cr/γ-Al2O3 catalyst also show a similar trend of conversion
of propane increasing with temperature and residence time.

As the kinetic data were not available on the newly-developed Au/SBA-15 catalyst used to
coat the microreactor, it was impossible to perform CFD simulations, for a direct comparison with
the experimental data on catalytic activity. However, in our previous paper [62], CFD simulation
were performed on Au/Cr/γ-Al2O3 catalyst, using propane as VOC model compound, at velocities
between 0.01 and 1 m/s and temperatures between 563 (290 ◦C) and 673K (390 ◦C), over all the four
microreactor’s geometries. The best results were obtained on the A2 geometry. Figure 7 below (taken
from our previous paper) shows the propane conversion as a function of temperature, for four flow
velocities, 0.01, 0.05, 0.1 and 1 m/s, respectively.
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The same variation trend, as the one on the Au/SBA-15 catalyst used in this study, is observed
for velocities between 0.1 and 1 m/s (the velocities used for this study were 0.2, 0.26 and 0.3 m/s,
respectively). This is an indirect confirmation of the same mechanism for total oxidation of propane
over both catalysts.

The difference consists on the activity. For the Au/SBA-15 catalyst, as shown in Figure 6, the propane
conversion was higher than that obtained on the Au/Cr/γ-Al2O3 catalyst, at comparable temperature.

It is interesting to note that for the experiments attempted on the microreactor without the catalyst
present there is essentially no significant reaction. This would indicate that for a reactor of this type
with the temperatures and flow rates used, the presence of the catalyst is essential for the successful
conversion of the VOC.

This planned amount of experimental work gives preliminary indications that a microreactor
having the size and geometry described has the potential to deal with small amounts of a typical VOC
and produce sensible and predictable results.

3. Materials and Methods

3.1. Brief Presentation of the Design and CFD Modelling and Simulation Results Obtained in Our
Previous Study

A two-stage modelling process was adopted. The first stage dealt with the microchannel modelling
based on a simplified model, the dispersion model, while the second stage dealt with CFD simulations
for the multichannel microreactor. The residence time distribution (RTD) among parallel microchannels
is one of the key design specifications for microreactors, because poor flow uniformity reduces the
yield or the selectivity of reaction products.

Stage One: Microchannel’s shape and size selection
Although different cross-sections such as rectangular, circular, trapezoidal, triangular,

and elliptical have been investigated by several researchers to understand the flow behaviour in
microchannels [63–69], the rectangular cross-section was chosen for this study, mainly due to practical
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considerations such as fabrication techniques, cost, ease of manufacturing, as the final goal was to build
the microreactor with an optimal configuration and to assess its performance against the modelled one.

For the first stage, a narrow RTD for microchannels was assumed because of the small channel
dimensions compared to typical channel length and short lateral diffusion times. The size of the
microchannel was then calculated to produce this narrow RTD. The next step was the estimation of the
number of parallel microchannels, with the same cross-sectional area and length, to assure equal flow
rates in all of them (numbering-up process).

Since the microreactor with the optimum geometry and configuration is foreseen to be used as
a mobile devise for indoor VOCs catalytic combustion, a microchannel length of 0.1 m was chosen.
For this length, and for Bodenstein numbers, Bo, higher than 100, the air flow velocity should be
lower or equal to 10 m/s. Under these conditions, the microchannel can be considered as a plug flow
reactor. Finally, the proposed microreactor consists of eleven parallel channels of square cross-section,
with 0.5 × 10−3 m width, 0.5 × 10−3 m height and 0.1 m length.

Stage Two: CFD simulation of the microreactor
This stage involved the CFD modelling of the microreactor with different configurations

(geometries), for cold flow, namely air in this case. The proposed geometries were simulated,
and the results were compared to determine the best configuration/geometry for the construction of
the catalytic microreactor.

In addition to the effect of the number of branched microchannels and the microchannel’s shape
and size, the flow distribution is strongly affected by the shape and volume of the inlet and outlet
manifolds. The main design challenge was to establish the manifold geometry which allows a uniform
flow-distribution into the microchannels. For this reasons, four different geometries namely type A1,
A2, A3, and A4 (named according to the shape of the manifold) were proposed as shown Figure 8.
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Type A2, Type A3 and Type A4, respectively [62].

To obtain a quantitative indication of the cold flow behavior in the multiple parallel microchannels,
a 2-D model was developed, and numerical simulations were performed for the four proposed
geometries, using COMSOL Multiphysics software, in order to determine optimum geometry with
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uniform flow distribution. COMSOL Multiphysics is a powerful interactive environment for modeling
and solving of all kinds of scientific and engineering problems based on partial differential equations
(PDEs). When solving the PDEs, COMSOL Multiphysics 4.4 uses the finite element method (FEM).
In the finite element model, the geometry is divided into several triangles and the differential equations
are solved for each node of the resulting mesh. The division of the geometry is called meshing
and should obey certain restrictions to guarantee the convergence of the calculations. The software
runs the finite element analysis together with adaptive meshing and error control using a variety of
numerical solvers.

In our study. the model adopted constant room temperature (since the model was developed for
removal of VOCs at room temperature). For this reason and due to the low pressure drop, a constant
value of air density was assumed. The Navier–Stokes equations for incompressible flows along with
the continuity equation were used to model the air flow [70]. The boundary conditions assumed were:

• no-slip at the walls (which means that the fluid at the wall is not moving),
• fully developed laminar flow,
• uniform velocities for the inflow,
• zero relative pressure for the outflow.

This last boundary condition is physically equivalent to a boundary that is adjacent to a large
container (inlet manifold) or exiting into a large container (outlet manifold).

The model equations are the Navier–Stokes equations (conservation of momentum):

ρ
∂u
∂t

+ ρu · ∇u = −∇p +∇ · (µ
(
∇u +

(
∇u)T

)
−

2
3
µ(∇ · u)I

)
+ Fv (3)

and the continuity equations (conservation of mass):

∂ρ

∂t
+∇·(ρu) = 0 (4)

where ρ is the solution’s density (kg/m3), µ dynamic viscosity of the fluid (Ns/m2), u is the velocity
vector (m/s), I denote the identity matrix, Fv is the volume force vector (N/m3), T is the absolute
temperature (K) and p is pressure (Pa). Another indication that the flow in this microreactor can be
assumed as incompressible is that the Mach number (Ma) is much less than 0.3 for flow velocities
≤ 10 m/s.

The 2-D model of parallel rectangular microchannels with integrated inlet and outlet manifolds
was generated for the four different potential geometries and the flow behavior was simulated for flow
velocities between 0.01 m/s and 100 m/s. A single phase laminar incompressible flow was simulated
for cold flow (without reaction) at normal temperature and pressure. When combined with a no-slip
boundary at the walls, a fully developed laminar flow condition at the inlet, and a pressure condition
at the outlet, the Navier–Stokes equations describe the flow field in the channels.

The geometries were simulated, and the results were compared to determine the best configuration
for the construction of a catalytic microreactor. Graphs showing flow rate and contour velocity plots
were used to evaluate the results. Variations in fluid distribution were studied to evaluate and
determine the best distribution from the viewpoint of flow uniformity in each of the parallel channels
and was based on the values of the relative standard deviation across the channels. The simulation
results indicated two flow regimes depending on the inlet velocity for the four geometries. For all
geometries at low flow rates (below 10 m/s), the flow distribution appears to be completely determined
by wall friction. In this regime all 4 geometries yielded similar results. For operation below this
velocity the flow distribution appears to be independent of flow rate. At flow rates above a transitional
velocity (60 m/s for Type A2, A3, and A4 and 90 m/s for type A1), inertial effects start to influence the
flow distribution with a constant relative standard deviation. Geometries A2, A3, and A4 showed
similar trends; for type A1 a different effect is observed, the relative standard deviation continues to
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increase until it appears to level off at a higher velocity. Type A2 gave the flow distribution with the
lowest relative standard deviation and was extruded in a 3D for the construction of the microreactor.

3.2. Reactor Fabrication

The designed microreactor (Type A2) was fabricated in stainless steel (type 316 L) plate of 8 mm
thickness, by using a CNC (Computer Numerical Control) micro-milling machine. Two microchannel
plates were fabricated by micro-milling 11 rectangular slots of 1 mm × 1 mm × 100 mm with
a semi-circular inlet and outlet manifolds in SS 316L plates. This dimension will be reduced to
0.5 mm × 0.5 mm × 100 mm due to the catalyst coating on the microchannel wall. The CAD drawing
of the microreactor (see Figure 9) was used to generate the NX-10 software code (see Figure 10).
The generated code is shown having 12 drills, 11 slots/channels and 2 cavity/manifolds. The resulting
microreactor produced from the generated code by the Bridgeport Interact 412X CNC milling machine
(Bridgeport, UK) is shown in Figure 11. Three G-code were generated, one for the slots/channels,
one for the cavity/manifold and the other was for the 12 drill.
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Stainless steel is selected based on its high corrosion resistance, strength and heat resistance.
Type 316 L has very good resistance to corrosion because it is extremely low in carbon content. Its use
has been broadened to handle many chemicals in the process industries. Machining characteristics of
stainless steels are substantially different from other metals. In varying degree, most stainless steels,
especially type 316 L, are tough, gummy, and tend to seize and gall. It can withstand higher loads with
greater unit stress. Stainless steel fasteners are easy to make unlike aluminum alloy. Aluminum is
much softer than SS-316 L and easier to machine.

3.3. Building the Microreactor System

The images in Figure 12 show the sequence in which the system was built. Swagelok tubing
(Swagelok, TX, USA), connectors and all accessories are connected on a 14 × 10-inch panel box.
The aim is to be able to move the rig from one location to another. Swagelok tubing, two non-return
valves, three pressure regulators, and a differential pressure transducer were first connected as seen in
Figure 12A. Two mass flow controllers Bronkhorst (Brokhorst, UK) were then connected (Figure 12B).
Two 3-way valves, fittings and three pressure transmitters were connected in sequence C, then,
sequence D followed, i.e., the electrical wiring up of the mass flow controllers, and then the differential
pressure transmitter as seen in Figure 12E, sequence F for wiring of sensing instrument. Gems sensor
and (OMEGA, U) temperature controller was done in sequence G and finally, as image H shows,
the instrument panel meter was ready.
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3.4. Newly-Developed Au/SBA-15 Catalyst Preparation

The catalyst was prepared by one-pot sol-gel synthesis of SBA-15 with MPTMS (3-mercaptopropyl-
trimethoxy-silane) before loading with HAuCl4 gold precursor.

One pot functionalization of SBA-15 with MPTMS was carried out as follows. First, 4 g of triblock
copolymer (P123) was dissolved in 30 mL water with 120 g of 2M HCl (final solution had 1.60 mol/L
HCl) added and stirred at 35 ◦C for 2 h. Then, 8.5 g of silica precursor, tetraethyl orthosilicate (TEOS)
in this case, was introduced drop wise with the solution stirred for 2 h at 35 ◦C. The addition of
0.6 g of MPTMS and stirring for another 18 h at 35 ◦C followed. The suspension was filtered under
vacuum, washed with water, then acetone and dried at 80 ◦C overnight. P123 template removal from
as-synthesized SBA-15-SH was done by ethanol soxhlet extraction for 48 h. Recovered sample was
dried at 60 ◦C for 24 h. 1.0 g of functionalized support was then suspended in 80 mL of distilled water
and stirred for 30 min at 80 ◦C before adding 0.08 g of HAuCl4. 3H2O dissolved in 10 mL water. After
20 min, the solution was allowed to cool at room temperature for 20 min while stirring, then recovered
by filtration, air dried for 18 h and then at 60 ◦C for 24 h in an oven.

3.5. Catalyst Characterzation

Synthesized Au/SBA-15 catalyst was characterized before coating using the following techniques:
Scanning Electron Microscopy/Energy Dispersive X-ray spectroscopy (SEM/EDX), Transmission
Electron Microscopy (TEM), wide angle X-Ray Diffraction spectroscopy (XRD), and nitrogen
physisorption measurements.

SEM was carried out with a Hitachi S-3400N scanning electron microscope (Hitachi, Japan)
operated at an accelerating voltage in the 15–20 kV range. EDX on the same instrument was used for
elemental analysis and gold weight percent determination on the surface of SBA-15 support.

TEM images were obtained using a JEOL 2100F FEG transmission electron microscope (JEOL Ltd.,
Tokyo, Japan) operated at 200 kV. The catalyst sample was homogenously dispersed in pure acetone
using ultrasonic bath and then deposited onto holey carbon grid. The acetone solvent was allowed to
evaporate under vacuum before examination of the catalyst sample in TEM mode.

Wide angle X-ray powder diffraction patterns of Au/SBA-15 catalyst were collected in a Siemens
D500 diffractometer (Siemens, Germany) with Bragg-Brentano geometry, using nickel-filtered Cu-Kα

radiation (λ = 0.15406 nm), at tube voltage of 40 kV and 20 mA current, with date collected over 2θ
range from 10–90◦ to determine the presence of gold on SBA-15, its crystalline structure and gold
particle sizes which was done in conjunction with Scherrer equation.

Nitrogen adsorption-desorption isotherms were obtained in a Micrometrics Tristar II 3020 Surface
Area and Porosity Analyser (Micromeritics Instruments Corporation, USA) at 77 K. The catalyst sample
was degassed at 350 ◦C, under vacuum, for two hours, before analysis. The surface area was calculated
by BET method.

3.6. Slurry Preparation, Catalyst Coating onto Microchannel and Characterization

Although significant progress has been made in terms of the design and fabrication of
micro-channel reactors, the introduction of the active catalyst in thin, firm and uniform layer which
does not flake off from the channel walls remains a big research issue [71]. To analyze how well the
support or catalysts binds to the metal surface, SEM is normally used to characterize the coatings
which reveals if there are cracks or flaking of the catalyst from the microreactor channels.

Despite several publications on Au/SBA-15 catalysts and the unusually high activity of gold
catalysts towards oxidation and hydrogenation reactions at lower temperatures [72–74], no publication
was found for coating of any of Au/SBA-15 catalysts onto microreactors.

To develop the best coating technique three different coating methods where explored to coat the
stainless steel machined microreactor, namely:
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1. Injecting catalyst, polyvinyl alcohol as binder with acetic acid slurry into the channels of the
microreactor with a syringe (Technique 1).

2. Spraying catalyst, polyvinyl alcohol as binder with acetic acid slurry into the channels at room
temperature using a manual fine airbrush with 0.3 mm nozzle (Technique 2).

3. Spraying catalyst-colloidal silica-methyl cellulose-water slurry with the same airbrush onto the
micro-reactor plates heated up to 150 ◦C (Technique 3).

For Technique 1, a small amount of Au/SBA-15 catalyst, i.e., 2.6 mg, was added to water, polyvinyl
alcohol as binder with acetic acid in the weight ratio of 10:84:5:1. The mixture, while stirring,
was heated at 65 ◦C for 3 h and left to stir at room temperature for 1 h to achieve a homogenous
solution. A syringe was manually used to fill each channel to the brim. The coated plates were dried at
room temperature before heat treatment at 500 ◦C with ramping at 1◦/minute to remove the polyvinyl
alcohol organic binder.

For Technique 2, the same catalyst slurry was used; however, a manual air brush with 0.3 mm
nozzle and 2 bar air pressure was used to spray the catalyst slurry into all the channels of the
microreactor. The coated plates were air dried before heat treatment at 500 ◦C to remove the polyvinyl
alcohol organic binder.

Technique 3 used a mixture of 10 mg catalyst, 7 g colloidal silica, 7 g methyl cellulose and 6 g of
water. Homogeneity of the mixture for technique 3 was achieved within 30 min of stirring at room
temperature as shown in Figure 13A. The reactor plate was heated at 150 ◦C before spraying with the
manual airbrush as shown in Figure 13B. The coated plates were air dried before heat treatment at
500 ◦C to remove methyl cellulose organic binder as shown in Figure 13C. Excess catalyst outside the
channels in all cases were easily wiped off.
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Figure 13. Catalyst preparation and spraying into the microchannels (Technique 3).

To improve the adherence of the catalyst layers onto the microchannels the microreactor was
rinsed with acetone followed by deionized water and dried in an oven at 65 ◦C to remove organic
material from the surface prior to the catalyst deposition steps.
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The coatings in the channels of the micro-reactor were observed using GXCAM-5 microscope
(Prior Scientific Instruments Ltd., Cambridge, UK) with a 5 MP resolution camera attached to capture
images. Scanning Electron Microscopy Hitachi S-3400 N variable was used to view and capture the
images of the coated microreactor channels with 500 µm resolution.

3.7. Experimental Setup and Procedure

The microreactor system designed and built specifically for the purpose of this research was
integrated into an experimental rig as shown in Figures 14 and 15.
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Figure 15. Photo of the microreactor system of the experimental setup.

The experimental set-up for the complete oxidation of propane (as model VOC) consists of the
feeding system, the microreactor and the gas analyzer, which is a quadrupole mass spectrometer Hiden
QIC-20. Twelve grooves were made across in the back of the plate, where a K-type thermocouple could
be inserted in the middle groves to measure the temperature of the reaction plate. Stainless steel bolts
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were used to hold the different parts. The inlet and the outlet for the gases used 1/8” Swagelok fittings
and 1/8” stainless steel tubing. The inlet and outlet holes were sealed with Viton O-rings to a heat
able interface block that connects the external tubing to the microreactor. The pressure drop across the
reactor was monitored using the differential pressure transducer.

A pressure drop leak test is performed prior switching on the furnace in order to make sure all the
flow lines are leak proof. Once the desired temperature inside the furnace is stabilized, the reactants,
a 1:5 propane to air mixture, at the desired flow rate are supplied upstream to the reactor using mass
flow controllers operating in the range from 0–100 mL/min. The inlet and outlet gases to the mass
flow controllers used 1/8” Swagelok fitting and stainless tubing. The error in the flow measurements is
around 0.01% for each controller, and as such, the maximum error of about 0.02% in the gas mixture to
the reactor could be expected.

High purity propane (99.9%) and synthetic dry air (oxygen 20.995%–21.005% balance nitrogen)
were used as the reactant gases. Assuming an oxygen concentration of 21% in air, the gas flow rates
given in Table 3 were used.

Table 3. Flow rates and fuel to air molar ratio in the reactor.

Flow Rate (mL/min) Fuel:Oxygen
Molar Ratio

Propane Air Oxygen Total flow rate (mL/min) Propane Oxygen

1 26.0 5.5 27 1 5.46

1.2 32.0 6.7 33.2 1 5.6

1.4 36.5 7.7 37.9 1 5.5

Experiments were performed at a constant pressure of 1.36 bar. The reactor was heated stepwise
to specific temperatures between 150 and 300 ◦C. The microreactor effluent is piped directly to
the gas analyzer. The line connecting the microreactor and the gas analyzer is insulated to avoid
condensing water formed in the product line. Partial pressure of propane and reaction products in the
effluent flow was monitored continuously at each temperature for at least 1 h until equilibrium was
established. Mass spectrometer can be used to perform both qualitative and quantitative measurements.
A MID (multiple ion detector) was used to directly monitor the following ions: propane (m/z = 29),
CO2 (m/z = 44), water (m/z = 18), and oxygen (m/z = 32), as the sample was heated up to 300 ◦C.
The catalytic activity was measured at 150 ◦C, 200 ◦C and then the temperature was increased in 25 ◦C
increments to 300 ◦C. The wall temperature is taken as the reactor temperature, because the temperature
difference between the upper cover wall and the actual reacting species is considered negligible.

The propane complete oxidation follows the reaction shown in Equation (5).

C3H8 + 5O2 => 3CO2 + 4H2O (5)

The catalyst coated microreactor was initially treated with 5% H2 in argon stream 30 mL/min at
300 ◦C for 2 h and then flushed with a pure argon flow for 30 min. In order to avoid any re-oxidation
of the catalyst prior to the reaction, C3H8 flow was fed immediately after and allowed to stabilize
before adding the air flow to the feed. Prior to the catalytic study, thermal oxidation experiments were
performed using the non-coated reactor. This allowed measurements to be made that distinguished
between catalytic oxidation effects and thermal conversion effects. There was no measurable thermal
oxidation reaction at the temperatures observed. Propane conversion was calculated using Equation (4).

In order to get robust gas composition/conversion data (accurate and reliable) the gas analysis
was repeated for two consecutive samples/experiments.

XC3H8 =
γiC3H8 − γ fC3H8

γiC3H8

× 100 (6)
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where XC3H8 is the fractional conversion of propane, γiC3H8 is the initial partial pressure of propane in
torr (experimental run without catalyst), and γ fC3H8 is the final partial pressure of propane in torr.

3.8. Heating the Reactor

A tubular furnace has been designed and built consisting of a tubular stainless steel pipe (35 cm
length and 10 cm diameter) coiled with a fiber glass heating tape (Omega Engineering Inc. Manchester,
UK, FGH102-100, 1040 W, 240 V) and a ceramic jacket (VITCAS ceramic fiber blanket 25 mm thick)
(which was used to prevent the heat loss). The ceramic fiber blanket is wrapped with a heat resistant
aluminum foil tape, 25 mm × 45 m for excellent insulation. The microreactor is introduced at the
center of the tubular furnace. Its temperature is monitored by a K-type thermocouple with 1 ms time
response (according to the manufacturer), inserted at the wall (see Figure 16). The high temperature
heating tape is controlled using an auto tuning PID temperature controller (Omega Engineering, Inc.,
Manchester, UK, CN7500 series). The temperature controller is mounted on the front of the instrument
cabinet/panel meter for the purpose of regulating the energy that is used to heat the furnace.
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Figure 16. Tubular furnace sealed with ceramic fiber blanket with the microreactor inserted at the
center of the furnace.

It is necessary to achieve a steady temperature inside the furnace before allowing gases to flow to
the analyzer. To do this, the temperature controller plug is switched on to power the heating tape.

The heating tape and an auto tuning PID controller with a thermocouple sensor maintained the
furnace temperature to within 1 ◦C of the set point.

4. Conclusions

The experimental operation of the microreactor with the propane/air mixture showed that
propane conversions increased with temperature but decreased as the flow rates increased at the same
temperatures. It did appear that for the microreactor constructed and the flows and temperatures set
the combustion of propane was possible with measurable conversions and reasonable reactor stability.
The performance of an active and stable Au/SBA-15 catalyst appeared to be central to the satisfactory
operation of the reactor.

This work has demonstrated that it is possible to design and model/simulate a microreactor by
using CFD calculations and then to build the physical reactor based on the design results and to exploit
it to achieve the predicted results.

Based on literature data [75,76] and our assessment of the catalytic activity, we assume that the
total oxidation of propane is well-described by a Mars-van Krevelen mechanism.
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