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Abstract: We developed a synthesis of chiral ionic liquids from proline and one of its derivatives.
Nine chiral ionic liquids were synthesized with yields from 78% to 95%. These synthesized ionic
liquids played two roles in Michael reactions, as solvents, and as basic catalysts, where the ionic
phase could also be reused at least five times without loss of activity. The yields up to 99% were
improved by increasing the amount of dimethylmalonate from 1.2 equivalents to 3 or 4 equivalents.
Furthermore, the reaction time could be reduced from 24 h to 45 min through microwaves activation.
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1. Introduction

The impact of chemical solvents on the environment is an increasingly debated subject. Indeed,
most of these solvents are volatile organic compounds and can, therefore, be easily dispersed in the
environment. Risks often accompany this because they are flammable. In addition, they are generally
harmful from an ecological and health point of view [1]. Over the past fifteen years, green chemistry,
which has become a priority area for academic and industrial research, has undergone considerable
development. In this context, much research is focused on alternative, environmentally friendly
solvents that can replace some highly volatile and environmentally harmful solvents [2].

These include water [3–9], supercritical CO2 [10–14], and ionic liquids (ILs) [15–21]. Ionic liquids
are of particular interest because they are a new class of solvents that offer interesting opportunities as
a reaction medium for cleaner chemistry due to their multiple properties.

Ionic liquids are salts consisting solely of ions, whose melting point is below an arbitrary
temperature, often 100 ◦C. They consist of generally bulky organic cations and organic or
inorganic anions, which gives them an asymmetry of shape and charge, as well as great
flexibility [22,23]. In general, cations have a voluminous and asymmetric nature [15]. The most
commonly represented are composed of ammoniums, phosphoniums, or heteroaromatic systems
such as imidazolium, pyridinium, pyrrolidinium, oxazolium, thiazolium, pyridazinium, triazolium,
and tetraalkylammonium. Different ionic liquids can be formed either by the appropriate combination
of cations and anions or by the chemical modification of the cation or anion. This offers a choice of
considerable combinations, and the literature now reports the possible synthesis of at least 106 different
ILs [19].

Their synthesis is generally carried out in two steps: the formation of the cation followed by an
anion exchange step called anionic metathesis [24].

The properties of the ILs are also very large [19,25,26]: low vapor tension, high decomposition
temperature, high solubilizing power, and a wide variety of the structures that allow different
polarities [27,28].

Catalysts 2020, 10, 814; doi:10.3390/catal10080814 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
http://dx.doi.org/10.3390/catal10080814
http://www.mdpi.com/journal/catalysts
https://www.mdpi.com/2073-4344/10/8/814?type=check_update&version=2


Catalysts 2020, 10, 814 2 of 16

The ILs are commonly used in the domain of (bio)catalysis [18,29], organic synthesis [30,31],
electrochemistry [32], or extraction [33] as recently described in the appropriate reviews [34–36].
Catalyses (hydrogenation, oxidation, Pd-catalyzed couplings, Friedel-Crafts, Diels-Alder, etc.) in ILs
are also largely developed [37] and the use of these new solvents generally led to higher kinetics and
better selectivity’s.

However, the low biodegradability and the toxicity of the ionic liquids, in general, led the scientific
community to reduce their use or to find other greener alternatives by using renewable resources as
starting materials such as acids, amino acids, amino alcohols, and sugars which could improve the
green character of ILs [38–42]. Catalyses (hydrogenation, heck reactions) have also been performed in
such ILs [43–45].

The Michael reaction is a conjugated nucleophilic addition between a nucleophile and an
α,β-unsaturated electrophile. The nucleophiles are thiols, anions, or amines, and the electrophiles
are alkenes, alkynes in α and β position of carbonyls, amides, or nitriles. Recently, Yadav et al.
reviewed innovative catalysis in Michael addition reactions, including the use of organocatalysts and
heterogeneous processes [46]. Gu et al. in 2019 [47] also described the role of functionalized quaternary
ammonium salt ionic liquids (FQAILs) as an economical and efficient catalyst for the synthesis of
glycerol carbonate from glycerol and dimethyl carbonate.

In 2003, Salunkhe and coll. studied the use of hydrophobic or hydrophilic ionic liquids ([bmim]PF6,
[bmim]BF4, [BuPy]BF4) as solvents in the conjugated addition reaction of dimethyl malonate to
chalcone in the presence of a quaternary ammonium salt derived from quinine (Scheme 1) [48]. This last
compound used as a chiral phase transfer agent led to moderate ee’s.
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The yields were quantitative and the ee up to 56%. Next, in 2005, Ranu and coll. performed the
Michael addition of activated methylene compounds on ketones, esters, and conjugated nitriles in
the presence of the ionic liquid [Bmim]OH (Scheme 2). This one was used as a solvent and catalyst
for the reaction. The reaction products were obtained with good yields; furthermore, the compound
issued from the double addition could also be easily obtained in one step, which was surprising when
compared to conventional methods [49].
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In 2005, Rao and Jothilingam described how microwaves could drastically decrease the reaction
time for the Michael addition of active methylene compounds to α,β-unsaturated carbonyl compounds
in the presence of a large excess of K2CO3 as a base [50]. The reaction took place on the surface of
potassium carbonate under microwave irradiation (450 W) and led to good to high yields (50% to 90%)
in short times (5–10 min).

As previously mentioned, we prepared some biobased ionic liquids with natural carboxylates
and used these in hydrogenation and Heck couplings [38–45]. Among these ILs, we prepared
tetrabutylphosphonium and tetrabutylammonium prolinate or hydroxyprolinate. This paper aims to
show how these proline-based ionic liquids could be used as solvents and basic catalysts in a Michael
model reaction. Furthermore, this study will be extended to cholinium cation, and we will demonstrate
that microwaves could generate greener activation conditions for this reaction in ionic liquids.

2. Results and Discussion

Biosourced ionic liquids were prepared using an acid-base reaction between the
tetrabutyl-ammonium or -phosphonium hydroxides (TBAOH and TBPOH, respectively) or cholinium
hydroxide ChOH with natural chiral amino acids (S-proline, R-proline, and trans-4-hydroxy-S-proline)
(Scheme 3). The synthetic methodology was inspired by Ohno’s work [51] in 2005 and previously
reported works for some phosphonium or ammonium derivatives [38–45].
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Scheme 3. Synthesis of chiral ionic liquids.

Nine ionic liquids were prepared easily with high yields and purity (Table 1), and the
cholinium-based ionic liquids were synthesized following similar procedures previously used with
ammonium or phosphonium-based ionic liquids.

The decomposition temperature values obtained by TGA confirmed the good thermal stability of
all synthesized ionic liquids (Tdec ≥ 198 ◦C). We noticed that the thermal stability of ionic liquids was
more dependent on the nature of the cation, particularly with phosphonium cations, as described in
the literature [41]. Indeed, the ionic liquid TBP+ prolinate was the most stable. However, we could
remark that the cholinium based ionic liquids were more stable than the ammonium-based ones when



Catalysts 2020, 10, 814 4 of 16

prolinate or hydroxyprolinate were present as a counter anion (Figure 1); this observation is probably
due to the formation of hydrogen bonds which could explain this slightly higher thermal stability [52].

Table 1. Synthetized ionic liquids.

Acid Cation Ionic Liquid Yield (%)
Dec.

Temperature
Tdec (◦C)

Viscosity
(cp) at 60
◦C

Ref.

S-proline
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Figure 1. Thermal decomposition of ionic liquids 1–3.

The viscosities also show the importance of the anion (Table 1). In fact, with (R)-prolinate or
(S)-prolinate as counter-anions, the viscosities at 60 ◦C are relatively low between 70 and 100 cp.
With the same cation, we observed that the viscosity of choline-based ionic liquids was higher, probably
due to the OH group present in this cation involved in hydrogen bonds. The same conclusions could
be deduced when trans-4-hydroxy-S-prolinate was used as anion following much higher viscosity
values due, in this case, to the presence of two OH groups (Table 1).

These ionic liquids have been used as a catalyst and solvent in Michael reaction models involving
dimethyl malonate and chalcone as starting materials. Preliminary results were obtained with a slight
excess of dimethyl malonate towards the chalcone (1.2 eq.) at 50 ◦C for 24 h (Table 2). DMF was used
as a unique solvent or was associated with ionic liquid in a lower amount to reduce the viscosity of the
reacting medium.

Table 2. Michael reactions under thermic conditions.
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The results obtained proved the positive impact of the use of ionic liquids for this Michael reaction
while higher conversions of chalcone were observed (Table 2, entries 2–7, 9 and 10 vs. entry 1).
Nevertheless, the conversions were not complete, and further experiments were conducted using an
excess of dimethylmalonate. Indeed, with 3 or 4 equivalents of dimethylmalonate, the conversions
obtained are much higher; furthermore, the reaction time could also be reduced to 4 h (Table 3, entry 4).

Table 3. Michael addition with an excess of dimethylmalonate (conditions: 1 eq. chalcone, 1.2 eq. (S)
prolinate TBP+, 2 mL DMF, 50 ◦C).

Entry Equivalent of 11 Time (h) Conversion of 10 (%)

1 1.2 24 69
2 3 24 89
3 4 24 84
4 4 4 97

Based on these results, Michael’s reaction was carried out using the various synthesized ILs as
solvents (without the addition of DMF) under microwaves activation.

The conditions were adjusted after several experiments; at the beginning, the reactions were
carried out with a power of 220 W leading to significant temperature variations depending on the
ionic liquid. This aspect was unfavorable to the stability of the reactants or products. In addition,
we observed that the presence of water in the ILs could also influence the conversion of the chalcone.
Indeed, according to the results obtained in GC, the conversion rate of chalcone was low, and this was
probably due to the low solubility of chalcone in water. Therefore, it was important to work with ionic
liquids containing as little water as possible. Michael reactions were performed under microwaves
during 45 min with a power limited to 100 W, and the ionic liquids were dried under vacuum for 4 h
before use.

The reaction conducted under microwaves in DMF with the addition of K2CO3 as a base led to
a high conversion of chalcone over 45 min (Table 4, entry 1). Next, the DMF and the base could be
substituted by the ionic liquid, which played further roles (Table 4, entries 2–10). Good to very good
conversions of chalcone (60 to 85%) were obtained again in 45 min, proving that the microwaves could
decrease the activation energy [53,54]. According to the literature concerning the Michael addition [55],
we proposed a mechanism that is described in Scheme 4.

The anion plays the role of the base towards the dimethyl malonate, the Michael’s donor,
which subsequently reacts with the chalcone (the Michael’s acceptor) to produce a stabilized enolate.
The latter will recover the proton and regenerate the anion from the ionic liquid to produce the coupling
adduct. The pKa of proline (10.64) and the hydroxyproline (9.65) led to suitable basic media when
ionic liquids 1–9 were used. The anions of the ionic liquids played the role of the base. The whole ionic
liquids played the crucial role of phase transfer agents as explained by Ceccarelli and et al. in 2006 [56].

Concerning the enantioselectivity of the reaction, all coupling compounds were racemic. The chiral
anion of the ionic liquids seemed not to influence the protonation of the enolate species. The presence
of residual water in the ILs could also explain the lack of enantioselectivity. The size of our anions was
also relatively small contrary to the PCT agents used by Mahajan and al., leading to good enantiomeric
excesses in similar Michael’s additions [57].
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Table 4. Michael’s reaction under microwaves.
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Scheme 4. A plausible mechanism for Michael’s addition in ionic liquids.

The final work was to prove the possibility of recycling our ILs in the studied Michael’s addition.
One of the advantages of ionic liquids is the possibility to recycle them. We studied this possibility with
the (S)-prolinate TBA. We chose this ionic liquid and not the trans-4-hydroxy-S-prolinate TBA, which
furnished the best conversions because the yields of the first run were high (90%), and secondly, the price
of the counter anion (S-prolinate) was lower than the trans-4-hydroxy-S-prolinate one. The procedure
is described in Scheme 5.
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Scheme 5. Recycling procedure for the Michael addition in (S)-prolinate TBA.

The chalcone conversions for the three first cycles were good (81 to 94%). Then, we observed a
loss of activity of the reacting medium, probably due to the loss of the anion, which plays a basic role
in the Michael’s reaction mechanism and led to the amino acid by protonation. This hypothesis has
been confirmed by NMR spectrum of the regenerated IL where a slight modification of its structure
has been observed (See Table 5).

Table 5. Chalcone conversion during 5 runs.

Entry Run Chalcone Conversion (%)

1 1 94
2 2 90
3 3 81
4 4 66
5 5 61

conditions: 1 eq. chalcone, 4 eq. dimethylmalonate, 1.2 eq. (S)-prolinate TBA, 100 W, 45 min.

3. Experimental

All reagents were commercially available and used as received. Solvents were dried and distilled
under argon before use (CH2Cl2 over CaCl2 and THF over sodium/benzophenone) and stored over
molecular sieves. 1H and 13C NMR spectra were recorded on an AC 250 Bruker in CD3OD for 1H and
13C spectra. The infrared spectra were recorded with a Spectrafile IRTM Plus MIDAC. Chromatography
was carried out on an SDS Silica 60 (40–63 µm), Art 2050044 (flash-chromatography), or silica 60 F254

(TLC plates).
The GC analyses were recorded on a Hewlett Packard 6890 Series. The conditions used are

specified in this Table 6.

Table 6. The microwaves oven is a monomode CEM DISCOVERS-CLASS.

Conditions Columns

B-DM (Chiral) TR-1

Initial Temperature (◦C) 60 60
Initial time (min) 5 5

Gradient (◦C/min) 10 10
Final Temperature (◦C) 220 220

Final time (min) 20 20
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3.1. Synthesis of Phosphonium Based Ionic Liquids-General Procedure [21d]

In a 100 mL two-neck round-bottom flask, one equivalent of a 40% wt aqueous solution of
tetrabutylphosphonium hydroxide TBP+OH− (30 mmol, 21 mL) and 1.2 equivalents of (R), (S)-proline
or trans-4-hydroxy-S-proline (36 mmol) previously dissolved in 40 mL distilled water were stirred
at 100 ◦C during 24 h. After cooling, the solvent was evaporated, and the resulting mixture was
washed with ethyl acetate (4 × 80 mL) to remove the small excess of amine. Finally, the aqueous phase
was evaporated.

tetrabutylphosphonium (S)-prolinate
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tetrabutylphosphonium
trans-4-hydroxy-(S)-prolinate
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H3′b); 1.71 (m, 1H, H3′a); 2.4 (m, 1H, H1′a); 2.92 (dd, J = 12.3; 5.1 Hz, H1′b); 3.21 (m, 8H, H1); 3.41
(m, 1H, H2′); 4.00 (m, 1H, H4′). δC (62.5 MHz; D2O) ppm: 13.4 (C4); 19.5 (C3); 24.4 (C2); 41.3 (C3′);
55.4 (C1′); 58.7 (C1); 61.9 (C4′); 72.2 (C2′); 177.7 (C=O). IR: ν (cm−1) 1746 (C = O). Analysis: calculated
for: C21H44NO3P: C 64.75; H 11.38; N 3.60%. Found: C 64.39; H 10.98; N 3.32%.

3.2. Synthesis of Ammonium Based Ionic Liquids-General Procedure [21c,e]

In a 100 mL two-neck round-bottom flask, one equivalent of a 40% wt aqueous solution of
tetrabutylammonium hydroxide TBA+OH− (30 mmol, 19.6 mL) and 1.2 equivalents of (R), (S)-proline or
trans-4-hydroxy-S-proline (36 mmol) previously dissolved in 40 mL distilled water were stirred at 100 ◦C
during 24 h. After cooling, the solvent was evaporated, and the resulting mixture was washed with ethyl
acetate (4 × 80 mL) to remove the small excess of amine. Finally, the aqueous phase was evaporated.

Tetrabutylammonium (S)-prolinate
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δH (250.1 MHz; D2O) ppm: 0.89 (t, J = 7.3 Hz, 12H, H4); 1.31 ppm (m, 16H, H2 and H3); 1.5 (m, 1H,
H3′b); 1.7 (m, 1H, H3′a); 2.4 (m, 1H, H1′a); 2.9 (dd, J = 12.2; 5.1 Hz, H1′b); 3.20 (m, 8H, H1); 3.41 (m, 1H,
H2′); 4.00 (m, 1H, H4′). δC (62.5 MHz; D2O) ppm: 13.5 (C4); 19.9 (C3); 24.0 (C2); 41.3 (C3′); 55.4 (C1′);
58.7 (C1); 61.9 (C4′); 72.2 (C2′); 177.7 (C=O). IR: ν (cm−1) 1741 (C = O). Analysis: calculated for:
C21H44N2O3: C 67.70; H 11.90; N 7.52%. Found: C 67.31; H 11.48; N 7.23%.

3.3. Synthesis of Cholinium Based Ionic Liquid

In a 100 mL Bicol, a mixture of 46% wt aqueous solution of cholinium hydroxide (1 eq.
30 mmol, 7.37 mL) and proline (1.2 eq., 36 mmol, 14 g) previously dissolved in 40 mL
distilled water was stirred under reflux for 24 h at 100 ◦C. After cooling, the mixture was
evaporated, washed (4 × 80 mL) with ethyl acetate, and finally, the aqueous phase was evaporated.

cholinium-(S)-prolinate
Yield: 93%

Decomposition temperature: 230 ◦C
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δH (250.1 MHz; D2O) ppm: 1.60 (m, 3H, H2′ and H3′a); 2.00 (m, 1H, H3′b); 2.70 (m, 1H, H1′a); 2.80 (m, 1H,
H1′b); 3.11 (s, 9H, H1); 3.30 (t, 2H, H2); 3.45 (t, 1H, H4′); 3.80 (t, 2H, H3). δC (62.5 MHz; D2O) ppm:
(62.5 MHz; D2O): 22.8 (C2′); 32.3 (C3′); 46.5 (C1′); 55.7 (C1); 64.2 (C3); 67.5 (C4′); 70.2 (C2); 180.4 (C=O).
IR: ν (cm−1) 1741 (C = O). Analysis: calculated for: C10H22N2O3: C 55.02; H 10.16; N 12.83%. Found:
C 54.78; H 9.78; N 12.47%.

cholinium-(R)-prolinate
Yield: 74%

Decomposition temperature: 230 ◦C
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2H, H2), 4 (m, 1H, H4′). δC (62.5 MHz; D2O) ppm: 41.3 (C3′); 54.6(C1′); 55.4 (C1); 61.9 (C4′); 64.9 (C3); 
70.2 (C2); 72.2 (C2′); 177.7 (C=O). IR: ν (cm-1) 1738 (C = O). Analysis: calculated for: C10H22N2O4: C 
51.26; H 9.46; N 11.96 %. Found: C 51.49; H 9.58; N 11.66 %. 

3.4. Michael Addition Procedures 

3.4.1. General Procedure without Ionic Liquids 

In a Schlenk tube, the chalcone (1 eq., 2 mmol, 0.42 g), the dimethyl malonate (1.2 eq or 4 eq.) 
and K2CO3 (1.2 eq.) were mixed in DMF (10 mL). The reaction mixture was stirred for 24 h at 50 °C. 
The reaction was stopped by adding 15 mL of ice water with the formation of a white precipitate that 
corresponds to the coupling product. This precipitate was dissolved in diethyl ether. Extractions with 
diethyl ether were carried out (3 × 60 mL). The organic phases were then dried over sodium sulfate 
and then evaporated. The resulting compound was purified by chromatography (silica and eluent: 
Petroleum ether/Ethyl acetate (7/3)).  

3.4.2. General Procedure in Ionic Liquids 

δH (250.1 MHz; D2O) ppm: 1, 60 (m, 3H, H2′and H3′b); 2.00 (m, 1H, H3′b); 2, 70 ppm (m, 1H, H1′a);
2.80 (m, 1H, H1′b); 3.10 (s, 9H, H1); 3.30 (t, 2H, H2); 3.45 (s, 1H, H4′ ); 3.80 ppm (t, 2H, H3). δC (62.5 MHz;
D2O) ppm: 22.6 (C2′); 32.3 (C3′); 46.7 (C1′); 55.4 (C1); 64.9 (C3); 67.3 (C4′); 70.7 (C2); 180.3 (C=O).
Analysis: calculated for: C10H22N2O3: C 55.02; H 10.16; N 12.83%. Found: C 54.89; H 9.78; N 12.36%.

cholinium-trans-4-hydroxy-(S)-prolinate
Yield: 82%

Decomposition temperature: 222 ◦C
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3.4. Michael Addition Procedures

3.4.1. General Procedure without Ionic Liquids

In a Schlenk tube, the chalcone (1 eq., 2 mmol, 0.42 g), the dimethyl malonate (1.2 eq or 4 eq.)
and K2CO3 (1.2 eq.) were mixed in DMF (10 mL). The reaction mixture was stirred for 24 h at 50 ◦C.
The reaction was stopped by adding 15 mL of ice water with the formation of a white precipitate that
corresponds to the coupling product. This precipitate was dissolved in diethyl ether. Extractions with
diethyl ether were carried out (3 × 60 mL). The organic phases were then dried over sodium sulfate
and then evaporated. The resulting compound was purified by chromatography (silica and eluent:
Petroleum ether/Ethyl acetate (7/3)).
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3.4.2. General Procedure in Ionic Liquids

In a Schlenk tube, 1.2 eq. of ionic liquid (2.4 mmol) was introduced and placed under vacuum
for 10 min. Then at atmospheric pressure, 1 eq. of chalcone (2 mmol, 0.42 g) and an excess of
dimethyl malonate (4 eq.) were dissolved in DMF (2 mL) in order to fluidify the mixture. The reaction
mixture was stirred for 24 h at 50 ◦C and in the presence of argon. The reaction was stopped by
adding 15 mL of ice water. We observed the formation of a white precipitate that corresponded
to our product. The latter was dissolved by adding diethyl ether. Extractions with diethyl ether
were carried out (3 × 60 mL). The organic phases were then dried over sodium sulfate and then
evaporated. The resulting compound was purified by chromatography (silica and eluent: Petroleum
ether / Ethyl acetate (7/3)). Finally, the aqueous phase was also evaporated to recover the ionic liquid.

2-(3-oxo-1,3-diphenylpropyl)
dimethylmalonate [58]

C20H20O5

White Powder
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δH (500 MHz; CDCl3) ppm: 3.50 (m, 4H, H1b and OMe); 3.55 (dd, 1H, H1a); 3.75 (s, 3H, OMe); 3.85 (d, 
1H, H3); 4.25 (m, 1H, H2); 7.15 (m, 1H, Harom); 7.25 (m, 4H, Harom); 7.43 (t, 2H, Harom); 7.50 (m, 1H, Harom); 
7.85(m, 2H, Harom). IR: ν (cm-1) 1735 (C = OEster), 1715(C = OKetone). 

3.4.3. General Procedure in Ionic Liquids under Microwaves 

In a balloon, 1.2 eq. of ionic liquid (2.4 mmol) was introduced and placed under vacuum for 10 
min. 1 eq. of chalcone (2 mmol, 0.42 g) and an excess of dimethyl malonate (4 eq.) was added, and the 
mixture was stirred for 45 min under 100 W. The extraction of the Michael’s adduct and the recycling 
of the ILs was as previously described for the reaction under thermic conditions. 

4. Conclusions 

Nine proline-based ionic liquids were synthesized in water with high yields and at the best 
sustainable chemistry processes. Michael reactions were performed using these synthesized ionic 
liquids as both solvent and base with improved yields by increasing the amount of 
dimethylmalonate. Furthermore, the use of microwaves activation reduced the reaction time 
drastically. Therefore, the combined use of recyclable biosourced ionic liquids and microwaves 
represents an alternative to achieve greener synthesis processes than commonly used methods. Eco- 
and cyto-toxicological analyses are in progress to support the use of such biosourced ionic solvents, 
and the Michael addition will be tested with more sterically enhanced compounds in order to induce 
good ee values.  
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