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Abstract: A newly immobilized Aspergillus niger lipase (ANL@ZnGlu-MNPs) was employed
for the preparation of 1,2-epoxycyclooctane by oxidation of cyclooctene. The chosen variables,
including substrate concentration, reaction temperature, immobilized enzyme dose, and H2O2 dose,
were optimized in the reaction system of ethyl acetate. The yield and the enantiomeric excess of
the product were achieved at 56.8% and 84.1%, respectively, under the following optimum reaction
conditions: the concentration of substrate (cyclooctene) was 150 mM, the dosages of immobilized
enzyme (ANL@ZnGlu-MNPs) and hydrogen peroxide were respectively 100 mg and 4.4 mmol,
and the reaction was carried out in the system of 4 mL ethyl acetate at 40 ◦C. Further study on
the operational stability of ANL@ZnGlu-MNPs showed that more than 51.6% of product yield was
obtained after reusing for ten batches. A novel immobilized lipase was prepared and applied to
synthesize 1,2-epoxycyclooctane from cyclooctene. Although ANL@ZnGlu-MNPs performs well in
operational stability and the reaction can achieve high enantiomeric purity of the product, the yield
of the catalytic reaction needs to be further improved.
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1. Introduction

Epoxides are important functional intermediates, which play an active role in many fields such as
pharmaceuticals [1,2], pesticides [3], cosmetics [2], and materials [4]. Phenyl glycidyl ether is widely
used in the copolymerization with anhydride or lactone to synthesize linear polyesters, as well as
ionic polymerization [5], and 1,2-epoxycyclooctane can be applied to prepare various derivatives of
cyclooctane [6].

The use of biocatalysts in the synthesis of epoxides by olefins has received extensive attention
due to mild reaction conditions, environmental friendliness, excellent selectivity, and sustainability [7].
Lipases show outstanding performance in many different kinds of reactions, for instance, hydrolysis,
transesterification [8], and epoxidation [9]. Novoym 435 obtained by gene expression of Aspergillus
oryzae has been widely used in various lipase-catalyzed epoxidation reactions due to its high
efficiency [9–11]. Several olefins including cyclohexene, cyclooctene, and 1-octene can be epoxidized
by lipase to achieve a high yield of corresponding product from 75% to 100% in ethyl acetate [12].
In addition, enzyme immobilization is necessary for the epoxidation of alkenes in systems containing
strong oxidant and toxic organic solvent. With the application of nanotechnology used in enzyme
immobilization, many delightful results have been achieved in the activity or the stability of biocatalyst.
For example, Candida antarctica lipase B-inorganic crystal nanoflowers showed 25 times higher activity
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than the native lipase in the epoxidation of fatty acid [13]. Furthermore, the novel immobilized
enzyme has better operational stability than commercial Novozym 435, obtaining an over 90%
conversion rate after 20 cycles of recycling [13]. Hybrid magnetic cross-linked Candida antarctica lipase
B aggregates showed outstanding thermal stability compared to the free lipase, retaining 60% of its
initial activity after incubation at 60 ◦C for 40 min [14]. Another enzyme, Aspergillus niger lipase (ANL)
(EC. 3.1.1.3), has been used in the hydrolysis of fats to diglycerides, glycerol, free fatty acids, and
monoglycerides [15,16]. Additionally, some studies also reported that the ANL was able to transform
the olefins to epoxides with high catalytic rates, such as the biosynthesis of α-pinene oxide from
α-pinene [17], and epoxidized methyl oleate from methyl oleate [18]. According to the above fact, this
study chose ANL as a biocatalyst for the epoxidation of alkenes and discussed the catalytic performance
of the immobilized ANL on the biosynthesis of epoxidation.

In this work, we firstly screened the optimal olefin substrates of the immobilized ANL for the
production of epoxides. Moreover, the epoxidation reaction conditions of cyclooctene were assessed,
including immobilized enzyme dose, reaction temperature, hydrogen peroxide dose, and substrate
concentration. Furthermore, the operational stability of the immobilized ANL in the epoxidation
reaction of cyclooctene was also evaluated.

2. Results and Discussion

2.1. The Catalytic Performance of ANL@ZnGlu-MNPs on the Epoxidation of Different Substrates

In order to determine the appropriate substrate, the epoxidation reactions of ANL@ZnGlu-MNPs
were carried out with five kinds of olefins as the substrates, which were 2-phenyl-1-propene, 1-octene,
1-methyl-1-cyclohexene, styrene, and cyclooctene. As illustrated in Table 1, for the five substrates
mentioned above, cyclooctene epoxidation obtained the maximum yield (47.2%). However, the yield of
1-methyl-1-cyclohexene was the worst (only 17.9%). In an aspect of enantiomeric excess, the epoxidation
reactions of cyclooctene, styrene, and 1-methyl-1-cyclohexene showed the preferable optical purity of
product at 80.4%, 85.8%, and 86.1%, respectively. Therefore, cyclooctene was selected for further study.

Table 1. Epoxidation of various olefins catalyzed by ANL@ZnGlu-MNPs.

Olefins Structure Yield (%) e.e. (%)
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Reaction conditions: ethyl acetate 4 mL, various olefins 100 mM, ANL@ZnGlu-MNPs 75 mg, H2O2 4.4 mmol,
200 rpm, 40 ◦C.

The experimental data also suggested that the ANL can be used for the preparation of epoxides
by the epoxidation of alkenes to achieve excellent optical purity of the product. In addition, this work
indicated that an excellent enantiomeric excess (e.e.) could be obtained when the substrate contains
significant steric hindrance of the group. However, the studied lipase showed a relatively low product
yield compared to the typical lipase Novozym 435. For example, Novozym 435 can epoxidize a range
of alkenes with the yield exceeding 75% [12]. Similarly, their results proved that excellent yields could
be achieved when using cyclic olefins as substrate.
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2.2. Effect of Substrate Concentrations on the Epoxidation of Cyclooctene by ANL@ZnGlu-MNPs

Figure 1 displays the effect of substrate concentrations within the range from 25 mM to 225 mM,
on the oxidation of cyclooctene by ANL@ZnGlu-MNPs. Product e.e. declined slightly from 87.4%
to 82.7%, while substrate concentration improved, indicating that the cyclooctene concentration
examined had little impact on the stereoselectivity of ANL@ZnGlu-MNPs. Differently, as the substrate
concentration increased from 25 mM to 150 mM, the initial rate of reaction was boosted from 10.7 mM/h
to the maximum 15.6 mM/h; nevertheless, the initial rate of reaction remarkably decreased and the
concentration of cyclooctene continually rose. This result indicated that substrate inhibition occurred
noticeably when the concentration of cyclooctene exceeded 150 mM. Furthermore, the highest yield
of product could be achieved at 150 mM of substrate concentration, while no significant change was
found in the product yield with substrate concentration further increased. The results suggest that
the reaction was mainly determined by the substrate inhibition but not product inhibition at the
substrate concentrations examined. Consequently, 150 mM of cyclooctene concentration was selected
for further study.
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2.3. Effect of Reaction Temperatures on the Epoxidation of Cyclooctene by ANL@ZnGlu-MNPs

The impact of reaction temperature on the catalytic performance of ANL@ZnGlu-MNPs is shown
in Figure 2. The tested reaction temperature affected the product e.e. values slightly but had a
significantly impact on product yield and initial rate. The initial reaction rate gradually increased to
the maximum as the temperature rose from 25 ◦C to 40 ◦C. However, when the reaction temperature
rose further, the initial rate of the reaction decreased rapidly. The results indicated that more than
40 ◦C of reaction temperature would accelerate the inactivation of ANL@ZnGlu-MNPs. The maximum
of initial reaction rate and product yield could be achieved simultaneously at 40 ◦C.
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Figure 2. Effect of temperature on epoxidation of cyclooctene catalyzed by ANL@ZnGlu-MNPs.

Reaction temperature, as one of the essential factors for enzyme catalysis, not only had a dramatic
impact on the number of active substrate molecules but also influenced the catalytic activity of the
enzyme remarkably. Our results showed that the catalytic activity of lipase would be damaged
if the reaction temperature exceeded 40 ◦C. The yield of the product did not change much when
the temperature ranged from 25 ◦C to 45 ◦C. However, when the reaction temperature reached 50
◦C, the yield of the product decreased significantly. This result may be explained in this way: the
simultaneous action of hydrogen peroxide and high temperature led to the damage of the enzyme and
the reduction of enzyme activity [19].

2.4. Effect of ANL@ZnGlu-MNPs Doses on the Epoxidation of Cyclooctene

Figure 3 reveals the effect of different doses of ANL@ZnGlu-MNPs on the epoxidation of
cyclooctene. There was no significant change in e.e. value of the product at different immobilized
enzyme doses. With the increase of enzyme dosage, the initial rate of the reaction gradually increased
to the maximum. When the addition of immobilized enzyme exceeded 100 mg, the product yield
would only change slightly. However, the product yield was notably lower with an enzyme dose less
than 100 mg, demonstrating that the reaction was affected not only by the reaction time but also by the
catalyst dose. The similar result suggests that the yield of ethyl (R)-3-hydroxybutyrate is also affected
by the immobilized cell dose [20]. Other researchers, however, have found that there was no significant
change in the yield of HMF at different biocatalyst doses [21]. Finally, we chose the concentration of
100 mg as the best dosage of ANL@ZnGlu-MNPs.
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ANL@ZnGlu-MNPs.

2.5. Effect of H2O2 Doses on the Epoxidation of Cyclooctene by ANL@ZnGlu-MNPs

Figure 4 shows the effect of H2O2 doses on the synthesis of R-cyclooctene oxide. The dosage of
hydrogen peroxide examined had only a marginal impact on the product optical purity. Our results
showed that the amount of H2O2 had a remarkable effect on the initial reaction rate and product
yield. The initial reaction rate and product e.e. value increased to the maximum with the increase in
the amount of hydrogen peroxide from 1.1 mmol to 4.4 mmol. Moreover, the further increase in the
amount of H2O2 resulted in a decline of both of the two values mentioned above. The result indicates
that adding more than 4.4 mmol of hydrogen peroxide will destroy the activity of ANL@ZnGlu-MNPs.
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H2O2, as an essential factor in the epoxidation reaction, can provide oxygen to start the reaction.
However, excessive hydrogen peroxide can lead to inactivation of biocatalysts because of its strong
oxidation capacity [22]. In addition, many side effects can be caused by the excessive addition of
hydrogen peroxide. Finally, we chose to add the oxygenant in four batches to avoid the shortcomings
mentioned above. The results showed that the initial rate and product yield of the reaction decreased
significantly when the amount of hydrogen peroxide added to the reaction system exceeded 1.1 mmol.
This result meant that the lipase used might be inactivated by adding more than 1.1 mmol hydrogen
peroxide in one step, resulting in a lower yield of the product. Moreover, when the total amount
of hydrogen peroxide was more than 4.4 mmol, the product e.e. values decreased slightly with the
increase of oxygenant, indicating that the side effects occurred. According to these results, we tended
to inject hydrogen peroxide multiple times. Although these results differed from some published
studies, which suggested that there was no difference in the product yield when hydrogen peroxide
was added into the reaction system in one step or multiple steps, even higher initial reaction rates
could be observed with one step of complete addition [23].

2.6. Operational Stability of ANL@ZnGlu-MNPs

As shown in Figure 5, the relative yield of ANL@ZnGlu-MNPs was still over 85% when it was
reused continuously for five batches, while with the increase of reuse times, the catalytic properties
of the immobilized enzyme decreased significantly. For instance, when the immobilized enzyme
was reused ten times, the relative product yield of the immobilized enzyme was approximately 52%.
Additionally, no significant change in the product e.e. was observed with the increase of recycling
number, within the range from 82.5% to 84.5%.
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The main advantages of enzyme immobilization are easy separation and stronger stability.
The improvement of operational stability of an enzyme is a benefit for reducing the cost of the catalytic
reaction. Comparison of our findings with those of other studies confirms that our immobilized
lipase had better operational stability. For example, the catalytic yield of Candida antarctica lipase B
immobilized in hydroxyl-propyl-methyl cellulose microemulsion-based organogels preserved only 25%
of the initial yield when it was reused ten times [10], while the yield of ANL@ZnGlu-MNPs retained
more than 50% of the initial yield after the same number of recycling times, as mentioned above.
This result indicated that the catalytic activity of ANL was still partly affected by the components of
the reaction system, although the ANL was immobilized. However, it also emphasized the necessity of
ANL immobilization in industrial applications.
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3. Material and Methods

3.1. Material

Aspergillus niger lipase was purchased from Shenzhen Lvweikang Bio-Engineering Co. Ltd.
(Shenzhen, China). The preparation of immobilized lipase (ANL@ZnGlu-MNPs) was referenced by
our previous work [24]. Ethyl acetate was purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Hydrogen peroxide and acetic acid were purchased from Chinasun Specialty
Products Co., Ltd. (Jiangsu, China), and 2-phenyl-1-propene, 1-octene, 1-methyl-1-cyclohexene, styrene,
and cyclooctene were purchased from Shaen Chemical Technology (Shanghai) Co., Ltd. (Shanghai,
China). All reagents used in the study were from commercial sources and of analytical grade.

3.2. Screening of Substrates

The appropriate substrate for the epoxidation of ANL was sought from five olefins as follows:
2-phenyl-1-propene, 1-octene, 1-methyl-1-cyclohexene, styrene, and cyclooctene. Briefly, 100 mg of
ANL@ZnGlu-MNPs and 8.8 mmol of acetic acid were mixed with 4 mL of ethyl acetate, and one of the
above substrates (0.6 mmol) was injected. The reactions were subsequently conducted in a constant
temperature shaker at 40 ◦C and 200 rpm. During the reaction, hydrogen peroxide solution (4.4 mmol
in total, 30%, w/w) was added four times within one hour to drive the reaction. No special annotation
of hydrogen peroxide solution means that its concentration is 30% (w/w) and its amount is in total.
Samples (20 uL) were periodically withdrawn from the reaction mixture and extracted with the equal
volume of ethyl acetate. n-Dodecane was used as the internal standard. After adequate extraction,
the supernatants obtained by centrifugation at 13,000 rpm for 3 min were used for the analysis of
product yields and enantiomeric excess (e.e.) values by gas chromatography.

3.3. Reaction Parameter of ANL@ZnGlu-MNPs

In the typical experiment, the reaction solvent consisting of ethyl acetate (4 mL) and acetic
acid (8.8 mmol) was contained in a 10-mL Erlenmeyer flask capped with a septum. The amount of
immobilized ANL arranged from 50 mg to 150 mg was added. The above mixture was previously
incubated in a constant temperature shaker at different temperatures (25–50 ◦C) and 200 rpm for 15 min.
Then, the reaction was triggered by the addition of substrate at various amounts (25 mM to 225 mM),
and 1.1–8.8 mmol of hydrogen peroxide was added four times within one hour during the reaction.
Samples (20 uL) were periodically withdrawn from the reaction mixture and extracted with an equal
volume of ethyl acetate. N-dodecane was used as the internal standard. After adequate extraction,
the supernatants obtained by centrifuging at 13,000 rpm for 3 min were used for the analysis of product
yields and product e.e. values by gas chromatography.

3.4. Operational Stability of ANL@ZnGlu-MNPs

The reuse batch of the immobilized lipase in the epoxidation of cyclooctene was used to evaluate
the operational stability. The evaluative reaction system comprised 4 mL of ethyl acetate, 8.8 mmol of
acetic acid, 0.6 mmol of cyclooctene, 100 mg of ANL@ZnGlu-MNPs, and 4.4 mmol of hydrogen peroxide.
The epoxidation reaction was conducted at 40 ◦C and 200 rpm for 6 h. In the meantime, 4.4 mmol
of hydrogen peroxide was added four times within one hour. After each batch, ANL@ZnGlu-MNPs
was separated from the reaction medium by a magnet, washed thrice with ethyl acetate, and dried at
40 ◦C for 30 min. The dried immobilized enzyme was added to a fresh batch of reaction medium again.
The product yield of each batch was analyzed, and the relative product yield of the first batch was
defined as 100%.
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3.5. Analytical Methods

The product was assayed for the e.e. values and yield using a Shimadzu 2010 gas chromatograph
(Japan) equipped with a flame ionization detector and an HP-Chiral-10B (30 m × 0.25 mm, Agilent,
Santa Clara, CA, USA) chiral column. The carrier gas in GC analysis was nitrogen. The initial
reaction rates were calculated according to the generated amount of product within a 30 min reaction.
All experiments were repeated at least twice. The relative standard deviation was to be not be greater
than 1%, and the data were expressed as mean ± standard deviation.

4. Conclusions

In this investigation, ANL@ZnGlu-MNPs was developed as an efficient and selective
biocatalytic approach for the epoxidation reaction of cyclooctene and applied to synthesize chiral
1,2-epoxycyclooctene. ANL@ZnGlu-MNPs exerted excellent enantioselectivity and good operational
stability for the epoxidation of cyclooctene. The enantiomeric excess rate of the product could reach
more than 88% when it was reused for five batches. However, it probably still has enormous potential
for increasing the product yield. Further study should be concentrated on the advancement of epoxide
yield and the discovery of enzymes with highly efficient catalytic performance.
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