

Supplementary Materials Polymer-assisted biocatalysis: Polyamide 4 microparticles as promising carriers of enzymatic function

Nadya Dencheva ¹, Joana Braz ¹, Dieter Scheibel ², Marc Malfois ³, Zlatan Denchev ^{1,*} and Ivan Gitsov ^{2,4*}

- ¹ IPC-Institute for Polymers and Composites, University of Minho, Guimarães 4800-056, Portugal
- ² Department of Chemistry, State University of New York-ESF, Syracuse, New York 13210, United States
- ³ ALBA Synchrotron Facility, Cerdanyola del Valés, Barcelona 0890, España
- ⁴ The Michael M. Szwarc Polymer Research Institute, Syracuse NY 13210, United States
- * Correspondence: denchev@dep.uminho.pt (ZD), igivanov@syr.edu (IG);

Figure S1. Chemical reactions occurring during AAROP of 2PD to PA4 microparticles: C20 and the chemical structure of the active substance of the C20 activator; DL and the chemical structure of dicaprolactamato-bis-(2-methoxyethoxo)-aluminate (initiator), $R = OCH_2CH_2OCH_3$; 2PD = 2-pyrrolidone.

Viscosity measurements

The intrinsic viscosity measurements were performed with PPD-MIP and PPD-NIP samples in 97% sulfuric acid at a concentration of 0.2 g/dL with a suspended level Ubbelohde viscometer thermostatted at 23°C. Flow times are recorded as an average of at least 10 runs.

Optical microscopy

Bright field optical microscopy of the PA4, PA4-Fe and PA4-Fe₃O₄ supports and the respective laccase containing samples, i.e., adsorption-immobilized (PA4@iL series) or entrapped (PA4@eL series) was performed evaluating the particles' sizes, roundness, and their distributions were performed in an Olympus BH-2 microscope (Japan) equipped with the Leica Application Suite 4.4 software for image processing. Figure 2S presents the data for the three supports.

Figure S2. Histograms of the average size (d_{max}) and roundness (d_{max}/d_{min}) distirbutions for PA4 MP supports based on optical microscopy.

Brunauer-Emmet-Teller (BET) analysis.

The BET analysis was performed in a Quantachrome Autosorb IQ automatic gas sorption system using nitrogen gas, outgas time of 1h, bath temperature of 77°C and equilibrium time of 1 h. The amount of the samples was in the 300-400 mg range. S_{BET} = surface area; V_{total} = pore volume; σ_{ave} = average pore size

Sample	Sbet (m ² /g)	V _{total} (cm ³ /g)	σave (Å)
PA4	2.766	0.0112	31.69
PA4-Fe	2.052	0.004	85.29
PA4-Fe ₃ O ₄	2.542	0.008	41.60

Table S1. Data from BET for empty PA4 supports.

Z-potential measurements

The electric charge of the PPD-MIP and PPD-NIP systems was evaluated by zeta potential determined at pH 4.0, pH 5.0 (both phosphate buffer 0.01 M) and pH 7 (deionized water), at 25.0 \pm 0.1 °C. Measurements were performed with a microelectrophoresis cell (DLS Nanosizer, Malvern) in a Zetasizer Nano ZS apparatus of Malvern Instruments. The applied voltage was 200 V and each mean value consisted of 100 recordings.

Comple designation	Z potential, eV			
Sample designation	pH 7	pH 5	pH 4	
PA4	-35.8	-16.2	- 4.9	
PA4-Fe	-35.8	-12.9	+1.5	
PA4-Fe ₃ O ₄	-33.6	-14.5	-3.0	

Table S2. Z-potential values of empty particulate PA4-based supports.

Table S3. Consolidated DSC data from an initial heating scan, subsequent cooling scan and a second heating scan at 10 deg/min.

Sample designation	Т ¹ т °С	ΔH^{1_m} J/g	Тс, °С	-ΔHc J/g	Т ² т °С	ΔH^{2_m} J/g
PA4	235.0	78.1	197.8	36.9	236.8	13.4
PA4-Fe	247.5	60.7	183.7	40.8	247.5	27.4
PA4-Fe ₃ O ₄	240.5	63.8	187.0	30.8	243.1	20.0
PA4-iL	262.3	45.8	211.6	28.4	247.5	10.0
PA4-Fe-iL	260.4	55.2	214.0	20.3	245.9	10.3
PA4-Fe ₃ O ₄ -iL	261.2	59.7	210.1	29.0	248.9	10,1
PA4-eL	245.8	64.3	174.2	8.7	225.1	5.6
PA4-Fe-eL	249.4	61.8	188.9	10.0	234.3	5.7
PA4-Fe ₃ O ₄ -eL	224.1	72.23	172.9	11.7	228.9	2.5

Notes: T^{1_m} and ΔH^{1_m} – melting temperature and enthalpy during the first scan; T_c and ΔH_c – crystallization temperature and enthalpy during the cooling scan; T^{2_m} and ΔH^{2_m} –melting temperature and enthalpy during the second scan.

Figure S3. Disappearance of the scattering peak at q = 3.73 nm-1 in the SAXS patterns after melting and recrystallization of PA4 MP support – see the curves at 270C and 30a270C.

Figure S4. Structures of the dyes used in the discoloration studies with PA4@iL and PA4@eL laccase conjugates: MG = malachite green; BPB = bromophenol blue.

Figure S5. | PA4-Fe-eL sample fast removal from DDW suspension: 1 – Conjugate suspension in water; 2, 3 - phases of conjugate separation applying a constant magnet (BPB-bromphenol blue; MG-malachite green).