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Abstract: Arrays of titania nanotubes (TiO2NTs) were developed by electrochemical anodization and
doped with silver on their surface by photodeposition to achieve TiO2NTs/Ag. It is found that only
anatase TiO2NTs were formed, with the preferential growth direction perpendicular to the titanium
substrate, and with the length and diameter of ~2 µm and 90–120 nm, respectively. The presence
of Ag on the surface of TiO2NTs was also confirmed. The TiO2NTs and TiO2NTs/Ag were used
as photocatalysts to decolorize the methylene blue (MB) aqueous solution. The photodegradation
efficiency (PDE) is as high as 83% for TiO2NTs and 98% for TiO2NTs/Ag photocatalysts. This work
focused on the investigation of the stability and recyclability of these photocatalysts in terms of
efficiency and its physical origin by surface analysis using X-ray photoelectron spectroscopy (XPS).
It is found that PDE diminishes from 83% to 76% in TiO2NTs upon eight recycling runs and from
98% to 80% in TiO2NTs/Ag upon six recycling runs. The XPS analysis revealed that the physical
origin of diminishing efficiency is the carbon contamination on the surface of recycled TiO2NTs and a
combination of carbon contamination and Ag leaching in recycled TiO2NTs/Ag.

Keywords: water treatments; photocatalysts; TiO2 nanotubes; Ag nanoparticles; diminishing
efficiency; XPS; carbon contamination

1. Introduction

Titania nanotubes (TiO2NTs) continue to attract attention from researchers interested in
photocatalytic degradation of organic pollutants in water. The parent material TiO2 is stable and
inexpensive and the TiO2NTs have several physical properties ideal for photodegradation: their
ordered porous architecture, with a unidirectional electrical channel, large surface area, and long charge
carrier lifetime [1–7]. Two well-known drawbacks of using TiO2 in solar photocatalysis applications
are: (i) its wide band gap, which requires UV frequencies to initiate the charge transfer mechanism and
(ii) the rapid electron hole recombination rate of photogenerated carriers [8–12]. The main strategy
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used to overcome these challenges is to dope TiO2, perhaps with noble metals like Ag or Au [13–16].
Isolated impurities can provide absorbing defect states that may improve the problem (i). These
localized states can also relieve problem (ii) by trapping one carrier while the other escapes. Of course,
a reduction of the recombination rate can only prevent losses from a small initial carrier population
while the band gap remains in the UV range. There is an enormous literature describing the effects of
metallic, and nonmetallic, dopants on the optical and electrical properties of composite TiO2 [17–20].

The results of Ag loading in TiO2 have been particularly promising for photocatalytic applications.
An optimized level of Ag loading in TiO2 can dramatically increase photodegradation efficiency [21–24].
Part of this increase can be explained by the idea that photoexcited electrons trapped near isolated
Ag defects can transfer to the sample surface and initiate the desired chemical reaction before being
lost to recombination. However, the large enhancement is mainly attributed to a different physical
effect, possible only when the Ag ions agglomerate into nanostructures within the semiconductor host.
Light in the visible range can excite a plasmon on the surface of the metal nanoparticle, dubbed a local
surface plasmon resonance or LSPR. This excitation in the metal induces a carrier population in the
surrounding TiO2, making a large increase of the photocatalytic rate possible.

The two most likely ways for the LSPR in the Ag to result in a population of free carriers in TiO2 is
by direct charge transfer and local field enhancement. In the first case, electrons excited at the metallic
surface by the LSPR can hop to the conduction band in TiO2 (or electrons in the semiconductor valence
band can hop into empty states in the metal that were vacated during the LSPR). In the second case,
the LSPR produces a strong local electric field that can drive carriers across the semiconductor band
gap [25–27]. Either way, the potential enhancement to photocatalytic rates under solar radiation (which
contains a relatively small fraction of UV photons) and other visible light sources is enormous.

The silver nanoparticle loaded TiO2NTs, which realize the LSPR, have recently been incorporated
into real-life photocatalytic applications [28–32]. The stability and recyclability of catalysts in these
devices are needed for industrial viability. Ideally, the catalysts should withstand repeated reactions
without a significant loss in efficiency. However, in many TiO2-based photocatalytic devices, including
silver-loaded TiO2NTs, a drop in efficiency with the number of recycling runs has been reported [33–38].
To the best of our knowledge, there is no detailed study about the main factors responsible for the loss
of photocatalytic efficiency with repeated cycles in TiO2NTs and silver nanoparticle loaded analogs.

Below we track photocatalytic performance over several cycles and investigate the likely
mechanism for its decline. Since experiments are done under UV light, which can excite carriers across
the native band gap, we do not address any decline that might result from a reduction in the initial
carrier population. Rather, we aim to isolate the part of the decline that still occurs when excited
carriers are abundant. It would seem necessary to disentangle the two potential causes for the observed
drop in photocatalytic efficiency in this way.

We present a study primarily focused on an exploration of the physical origin of diminishing
photocatalytic efficiency of TiO2NTs and TiO2NTs/Ag after repeated recycling runs. First,
we characterize the structural and optical properties of TiO2NTs/Ag. Particularly, we observe the
formation of a visible absorption band, attributed to the LSPR, with increasing concentration of Ag.
This band emerges abruptly: a 0.1 M concentration of Ag has no effect on visible absorption of the
titania nanotube but for concentrations above 0.5 M, the broad band is present and dominates visible
absorbance. The appearance of sample nanostructure, inspected by scanning electron microscopy (SEM),
exhibits a similar qualitative difference between the 0.1 M samples and those of higher concentration.
We attribute it to a change in Ag morphology, with silver nanoparticles (AgNPs) forming above a
critical Ag concentration. The efficiency of these catalysts in degrading the organic pollutant, methylene
blue, in aqueous solution was then measured under UV light irradiation. The optimal Ag content
of TiO2NTs for photocatalytic performance is identified and discussed in relation to the observed
nanostructure. Finally, we used X-ray photoelectron spectroscopy (XPS) on the optimally loaded
sample to track the change in the local structure surrounding each atomic species in the sample
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that occurs with repeated catalytic cycles. In this way, we identify the most likely mechanism for
diminishing photocatalytic performance.

2. Results and Discussions

2.1. Physicochemical Properties of TiO2NTs and TiO2NTs/Ag

Figure 1 shows the field emission scanning electron microscopy (FESEM) micrographs of TiO2NTs
and TiO2NTs/Ag-0.1 M, -0.5 M and 1.0 M samples. The TiO2NT arrays are apparently well-ordered.
The inner diameter of the average nanotube is 90–120 nm and its average length is ~2 µm. Inspecting
Figure 1, there is a qualitative difference between the structural characteristics of TiO2NTs and
TiO2NTs/Ag-0.1 M, on the one hand, and those of TiO2NTs/Ag-0.5 M and 1.0 M on the other. That is,
the smallest Ag concentration of 0.1 M does not have any apparent effect on the morphology of the
titania nanotubes. At higher concentrations, there is a clear indication of silver deposition on the
surface of TiO2NTs. This is relevant to the putative LSPR effect discussed above. If Ag atoms are
incorporated as isolated impurities (isolated atoms or very small clusters of atoms), they will modify
optical properties mainly via localized states in the band gap. However, if the silver forms clusters large
enough then it can support surface plasmons excitable by visible light. While we have not established
the actual morphology of the Ag in the TiO2NTs, the SEM images should be considered alongside the
visible absorbance shown below.
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Figure 1. FESEM micrographs of (a) TiO2NTs, (b) TiO2NTs/Ag-0.1 M, (c) TiO2NTs/Ag-0.5 M and
(d) TiO2NTs/Ag-1.0 M. Inset in (a): the cross-section SEM image showing the length of TiO2NTs.

The crystalline phase of TiO2NTs and TiO2NTs/Ag annealed at 500 ◦C was examined using X-ray
diffraction (XRD). In the XRD profiles (Figure 2), the diffraction peaks at 25.2◦, 37.8◦, 47.9◦, 53.8◦,
54.9◦ and 62.9◦ could be indexed to (101), (004), (200), (105), (211) and (204) crystalline planes of the
anatase TiO2. For nanoparticles, anatase is usually the most stable of the three possible TiO2 crystal
structures—and is slightly advantageous in charge separation applications because of its surface
chemistry. There was no significant change in the crystal structure that occurred with Ag concentration.
While the FESEM indicated that Ag was incorporated in the form of metallic Ag, no Ag crystal peaks
were detected in the XRD patterns of TiO2NT/Ag-0.1 M, -0.5 M and -1.0 M samples. The deposited Ag
is likely too small and few in number to be detected.
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Figure 2. XRD patterns of TiO2NTs and TiO2NTs/Ag-0.1 M, -0.5 M and -1.0 M.

To verify the presence of AgNPs on TiO2NTs, the UV-vis diffuse reflectance spectra for TiO2NTs,
TiO2NTs/Ag-0.1 M, -0.5 M and -1.0 M were acquired and shown in Figure 3. We see similar optical
properties for the 0.1 M sample and pure TiO2. The lowest concentration of Ag had no effect on
visible light absorption. However, for the TiO2NTs/Ag-0.5 M and -1.0 M samples, a broad absorption
peak centered between 450 and 500 nm emerges. This peak is attributed to the local surface plasmon
resonance (LSPR) of AgNPs. The data again suggests that there is a qualitative difference between
samples with an Ag concentration as low as 0.1 M compared to those with a concentration above
0.5 M. Our results strongly imply that the AgNPs only form above some minimum concentration of
Ag. Below this concentration, we expect that the silver is deposited in a different form, perhaps as
isolated impurities. If the associated impurity levels were mainly near band edges, they would have
no effect on visible absorbance, which appears to be the case for 0.1 M Ag. Previous studies [39,40]
have addressed the size-dependence of the visible absorbance spectra for AgNPs. A broad visible band
is present for AgNPs as small as 3 nm (though its shape depends on both the size and shape of the
nanoparticle). The presence of nanoparticles of this size would cause a dramatic increase in visible
absorption, as is clearly seen for concentrations above 0.5 M.
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The surface composition of TiO2NTs and the oxidation states of Ag on the surface of TiO2NTs
were investigated by XPS. Figure 4a shows the wide-scan XPS spectra in which titanium, oxygen,
carbon, nitrogen and silver (in TiO2NTs/Ag) are detected. That is, we investigate the local structure
of all native ions, the Ag dopants, and additional species present due to adventitious contamination
on the surface. A tiny amount of nitrogen may come from electrolyte (ammonium fluoride solution).
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The high-resolution XPS spectra of Ag 3d, Ti 2p and O 1s are depicted in Figure 4. The XPS spectra
of Ag 3d in Figure 4c reveal two prominent peaks with 6 eV spin–orbit separation that are centered
around 374.2 eV and 368.2 eV. These correspond to Ag 3d5/2 and Ag 3d3/2, respectively. This is the
characteristic of metallic silver (Ag0) [41] indicating that the Ag+ ions are reduced to metallic silver
(Ag0) on TiO2NTs during the UV light irradiation. The intensities of the Ag 3d peaks understandably
increased with increasing Ag concentration. In the XPS spectra of Ti 2p and O 1s in Figure 4a,b,
two peaks of Ti 2p3/2, Ti 2p1/2 and one peak of O 1s are observed at the binding energy of 458.5 eV,
464.3 eV and 530.0 eV respectively. The difference in binding energies of Ti 2p3/2 and Ti 2p1/2 is 5.8 eV,
implying that Ti has a tetravalent state in TiO2NTs [21,23]. The measured binding energies of Ti 2p3/2

peak, Ti 2p1/2 peak and O 1s peak are in good agreement with the usual results for anatase TiO2 [42].
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Table 1 lists the surface Ti, O, C, N and Ag atomic concentrations determined by XPS peak
intensities for all samples. The XPS results verified the presence of Ag on the surface of all Ag-loaded
TiO2NTs samples. Indeed, the amount of Ag on the surface, as indicated by XPS, is approximately
proportional to the total concentration of Ag throughout the sample. This means that Ag is always
present on the nanotube surfaces, but that at lower concentrations it does not modify structural and
optical characteristics of the samples. This is again consistent with our claim that the qualitative
difference in optical absorbance between samples with 0.1 M Ag compared to those of higher Ag
content indicates a change in Ag morphology, with AgNPs present in the latter.

Table 1. The surface Ti, O, C, N and Ag atomic concentrations determined by XPS for TiO2NTs and
TiO2NTs/Ag samples.

Samples Ti at.% O at.% C at.% N at.% Ag at.%

TiO2NTs 29.64 59.54 9.38 1.44 -
TiO2NTs/Ag-0.1 M 28.54 58.97 11.87 - 0.62
TiO2NTs/Ag-0.5 M 27.11 57.67 11.89 0.52 2.81
TiO2NTs/Ag-1.0 M 25.81 56.53 12.98 0.43 4.25
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2.2. Photodegradation Efficiency of TiO2NTs and TiO2NTs/Ag Photocatalysts

The propensity for the TiO2NTs and TiO2NTs/Ag to degrade the organic pollutant, methylene
blue (MB), is considered next. Figure 5a shows the photodegradation efficiency (PDE) of TiO2NTs
and TiO2NTs/Ag over the UV irradiation time of 1 to 5 h. The PDE is enhanced by the addition of
Ag, and begins to increase immediately. That is, the TiO2NTs/Ag-0.1 M sample exhibits a significantly
larger PDE than the pure TiO2. With increasing Ag loading, the PDE first increases, being largest for
TiO2NTs/Ag-0.5 M, then decreases. This limited data set indicates that the optimal Ag concentration
for ultraviolet photodegradation of MB lies between 0.1 and 1.0 M. For a given irradiation time of 5 h,
the PDE of TiO2NTs/Ag-0.1 M, -0.5 M and -1.0 M are respectively 89%, 98% and 87% as compared to a
value of 83% for pure TiO2NTs. It is noted that when no photocatalyst was used, blanc experiments,
the measured photodegradation efficiency was relatively low (4%, 7%, 12%, 15% and 17% for 1-, 2-, 3-,
4- and 5-h of UV irradiation.)
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Since the experiments were carried out under UV irradiation, the enhanced absorption of visible
light, due to the LSPR, is not responsible for the improved PDE. Indeed, the increase in PDE occurred
even for the AgNPs-0.1 M sample, which showed no evidence for silver nanoparticles and no difference
in optical properties from those of pure TiO2. Rather, the improved PDE may be attributed to reduced
charge recombination rate occurring in the presence of Ag loading [43–45]. A decrease in PDE with a
further increase of Ag (1.0 M) is ascribed to an increased agglomeration of Ag nanoparticles on the TiO2

surface which blocks the UV light (less photoactivity) and decreases an effective area for photocatalytic
reaction [46,47]. The plots of ln(Ct/C0) versus time, shown in Figure 5b, exhibit approximately linear
behavior, indicating first-order kinetics. The degradation rate constant (k) is found to be 0.0060 min−1,
0.0081 min−1, 0.0112 min−1 and 0.0075 min−1 for TiO2NTs, TiO2NTs/Ag-0.1 M, -0.5 M and -1.0 M,
respectively. It is noted that the degradation rate constant for TiO2NTs/Ag-0.5 M was determined for
the UV irradiation only up to 4 h.

2.3. Physical Origin of Diminished Efficiency in Recycled TiO2NTs and TiO2NTs/Ag Photocatalysts

Recycling experiments, in which several photodegradation trials were performed successively,
were carried out for these systems. For each trial, an initial concentration of 12mg/l of MB with pH = 1
was used. Figure 6 shows the photodegradation efficiencies of TiO2NTs and TiO2NTs/Ag-0.5 M for these
recycling runs. It is found that the photodegradation efficiency of TiO2NTs dropped from 83% to 76%
after eight cycles while that of the TiO2NTs/Ag-0.5 M decreased from 98% to 80% after six cycles. Two
plausible explanations for the diminishing photodegradation efficiency upon recycling are (i) carbon
enrichment on the surface of the photocatalysts and (ii) Ag depletion. Central to the present work is an
effort to identify which mechanism is more important. Since XPS is a surface-sensitive technique for
chemical analyses, it is ideal for addressing this question.
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photocatalysts for degradation of MB.

Figure 7 depicts the XPS spectra and atomic concentration of Ti 2p, O 1s and C 1s and for fresh
and recycled TiO2NTs photocatalysts. The characteristic peak positions of Ti 2p3/2, Ti 2p1/2 and O
1s are the same for all trials. This suggests that there is no change in the valence state of these ions.
The photoelectron signals of C 1s originated from different carbon species adsorbed on the samples.
These signals contribute broad peaks shown in Figure 7c. The atomic concentrations of Ti, O and C
deduced from the XPS spectra are given Figure 7d. It is noted that a small amount of nitrogen, less
than a few at %, was also detected and not shown in the figure. As shown in Figure 7d, the atomic
ratio between Ti and O is not 1:2. There is additional oxygen coming from surface contaminants. The
obvious changes from the fresh to recycled TiO2NT samples are observed in the XPS spectra of C 1s.
The peak associated with C increases rapidly with cycle count. It is well-known that the XPS C1s
spectrum for organic contaminants typically has C–C, C–O–C and O–C=O components with peak
positions at 284.8, 286.0 and 288.5 eV, respectively.
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The carbon measured by XPS from the fresh TiO2NTs sample was found to be about 8 at
%. This carbon is the typical contamination on the surface of the sample. After two runs of the
photocatalysis reaction, the amount of detected carbon increases by a factor of three. It should be
noted that the sample was rinsed in water and dried under air blow after each photocatalysis trial.
The amount of carbon did not change significantly after the first few runs: the amount of C was
approximately the same after four and eight runs than detected after two runs. The additional carbon
detected after two photodegradation cycles is likely that of CO2 and other products of a complete
photocatalytic oxidation process. This explains the increase of the intensity of C 1s photoelectrons at
binding energies of 286.0 and 288.0 eV, due to C–O–C and O–C=O components, respectively. Given
that the large increase in C contaminants, seen during the first two photodegradation cycles, coincides
with the significant drop in PDE, there is an indication that the decline in the performance of TiO2NTs
as a photocatalyst results from carbon contamination on the surface. It is speculated that among
several possible sources of carbon contamination, hydrocarbon adsorption (getting air-exposed) within
recycling experiments and carbonate precipitation/MB sedimentation during photocatalytic reactions
most likely contributed to surface carbon contamination in our samples.

Figure 8 shows the XPS spectra of Ti 2p, O 1s, Ag 3d and C 1s for fresh and recycled TiO2NTs/Ag-0.5
M photocatalysts. There are no observable changes in the oxidation state of Ti and O over serval
recycling runs. From the XPS spectra, the surface atomic concentrations of Ti, O, Ag and C in fresh and
recycled TiO2NTs/Ag photocatalysts are calculated and plotted in Figure 9. A striking feature is the
rapid reduction of Ag concentration. After the 6th run, AgNPs could not be detected. The diminishing
Ag concentration may be due to leaching of AgNPs from the surface of TiO2NTs since the samples
were rinsed with water and dried under air blow after each cycle. It is interesting to point out that the
increase in carbon did not begin until the AgNPs were stripped from the samples. Once the Ag was
removed, the bare TiO2NTs experienced the same rapid accumulation of carbon contaminants that was
seen in Figure 7. Obviously, as the Ag was stripped from the samples, the photodegradation capability
of TiO2NTs/Ag approached that of TiO2NTs, which is seen in Figure 6.
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3. Materials and Methods

3.1. Development of TiO2NTs and TiO2NTs/Ag Samples

Titanium foils (area—2.5 cm × 2.0 cm, thickness—0.02 cm, purity 99.7%) were ultrasonically
cleaned with acetone, ethanol and isopropanol for 10 min each. They were rinsed with distilled water
and dried under air blow. The titanium dioxide nanotube (TiO2NT) arrays were developed on the Ti
base by electrochemical anodization. The anodization process was carried out with magnetic agitation
at room temperature in a two-electrode system with the Ti foil acting as the working electrode and a
Pt rod as the counter electrode, which were connected to the positive and negative terminals of a dc
power supply respectively. The distance between the two electrodes was fixed at approximately 2 cm.
The electrolyte for anodization was a mixture of ethylene glycol and water (90 wt %:10 wt %) with
0.5 wt % of ammonium fluoride. The anodization was carried out with the applied voltage of 50 V for
3 h. When the anodization process was completed, the samples were removed from the electrolyte,
then rinsed with distilled water and dried under air blow. They were subsequently annealed in a
muffle furnace at 500 ◦C for 3 h for crystallization. Silver was loaded on the surface of TiO2NTs by the
photodeposition method to achieve the TiO2NTs/Ag. In this process, the TiO2NTs samples were soaked
into silver nitrate aqueous solutions with three different concentrations (0.1 M, 0.5 M and 1.0 M) for 2 h
followed by UV-illumination for 2 h. Each sample is named according to the concentration of silver
nitrate solution, i.e., TiO2NTs/Ag-0.1 M, TiO2NTs/Ag-0.5 M and TiO2NTs/Ag-1.0 M. The amount of the
photocatalyst for each experiment may be estimated from the volume of the photocatalyst, which is
the multiplication of the substrate dimensions and the film thickness (2 cm × 2 cm × 2 µm).

3.2. Physicochemical Characterization

The physicochemical properties such as size, size distribution, surface morphology, crystalline
phase, optical behavior of TiO2NTs and TiO2NTs/Ag were investigated by field emission scanning
electron microscopy (FESEM) (AURIGA CrossBeam Workstation, Carl Zeiss, Germany), X-ray
diffraction (XRD) (SmartLab X-ray diffractometer with Cu Kα radiation, Rigaku, Japan), and
Ultraviolet-visible diffuse reflectance spectroscopy (UV-DRS) (UV-2600 UV-VIS Spectrophotometer,
Shimadzu, Japan). The surface properties and chemical states of TiO2NTs and TiO2NTs/Ag
photocatalysts before and after the photocatalysis reactions were carried out were studied using
X-ray photoelectron spectroscopy (XPS) (PHI5000 Versa Probe II, ULVAC-PHI, Japan) at the
SUT-NANOTEC-SLRI joint research facility, Synchrotron Light Research Institute. The monochromatic
Al Kα X-ray (1486.6 eV) was used.
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3.3. Photocatalytic and Recycle Experiments

Methylene blue (MB) was used as a representative organic pollutant. It is a traditional dye widely
used in textile industries, thus forming a common ingredient in wastewater from such industries.
It contaminates the aquatic environment. In addition, it can cause eye burn which might lead to a
permanent injury to human eyes. Therefore, the removal or separation of MB from water is considered
one of the most environmental challenges during recent years. An MB solution was prepared by mixing
1.2 mg of MB and 100 mL of distilled water at pH-1. The TiO2NTs, TiO2NTs/Ag (0.1 M, 0.5 M and
1.0 M) were used as photocatalysts for degradation of MB in the aqueous solution. The reaction was
carried out under the 24-W UV-A lamp (high-pressure mercury lamp, λ = 365 nm). Every 30 min, 2 mL
of MB solution was withdrawn to measure the MB concentration using the UV-1600 spectrophotometer.
The photodegradation efficiency, indicating simply the fraction of MB that remains after a given time,
is η(%) = [(C0 − Ct)/C0] × 100 where, C0 and Ct are the concentration of MB at t = 0 s and any time t,
respectively. To study the changes in the system after multiple photodegradation cycles, we carried
out repeated trials under identical conditions. The photocatalysts were rinsed with water and dried
under air blow after each trial.

4. Conclusions

In summary, the electrochemically anodizedTiO2NTs and TiO2NTs loaded with varying amounts
of Ag (TiO2NTs/Ag) were used as UV-driven photocatalysts for the degradation of an organic pollutant
(MB) in aqueous solution. The TiO2NTs possess the anatase phase and the size of TiO2NTs are
90–120 nm in diameter and ~2 um in length. The photodegradation experiment indicated that
theTiO2NTs/Ag-0.5 M catalyst provided a photodegradation efficiency of 98% and degradation rate
constant of 0.0138 min-1which are higher than those of pristine TiO2NTs (83%, 0.0059 min−1). This can
be attributed to enhanced charge separation and higher reductive power in the presence of Ag, thereby
suppressing charge recombination. The recycling experiment revealed that the PDE is diminished
by 8.4% after eight runs of TiO2NTs and by 18.4% after six runs of TiO2NTs/Ag catalyst. The XPS
surface analysis demonstrated that the physical origin of diminishing efficiency is a combination of
carbon contamination and Ag leaching in recycled TiO2NTs/Ag. The interesting finding was that the
presence of silver on TiO2TNs could reduce the accumulation of carbon contamination on the surface
of TiO2TNs. This suggests that a proper preparation method is required to decorate silver on TiO2NTs
to reduce a leasing rate in order to prolong the lifetime of the TiO2NTs/Ag photocatalyst.
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