Supplementary Information For

Catalytic and electrochemical properties of Ag infiltrated perovskite coatings for propene deep oxidation

<u>T-G. Truong</u>^{1,2}, B. Rotonnelli¹, M. Rieu³, Jean-Paul Viricelle³, I. Kalaitzidou², D. Marinha¹, L. Burel², A. Caravaca², P. Vernoux², H. Kaper¹

¹LSFC Laboratoire de Synthèse et Fonctionnalisation des Céramiques UMR 3080 CNRS / Saint-Gobain CREE, Saint-Gobain Research Provence, 550 avenue Alphonse Jauffret, Cavaillon, France

²Université de Lyon, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, UMR 5256, CNRS, Université Claude Bernard Lyon 1, 2 avenue A. Einstein, F-69626 Villeurbanne, France

³ Mines Saint-Etienne, Univ Lyon, CNRS, UMR 5307 LGF, Centre SPIN, F - 42023 Saint-Etienne France

Figure S1 Grain size distribution of LSCF_{syn}, LSCF_{syn_3min}, LSCF_{syn_30min} and LSCF_{com}.

Figure S2 SEM images of the different LSCF powders. a) and b) $LSCF_{com}$, c) and d) $LSCF_{syn}$ and e) and f) $LSCF_{syn_3min}$.

	XRF				
	_	~	~	_	SSA /
	La	Sr	Co	Fe	m²/g
LSCF_syn	0.6	0.4	0.19	0.8	7
LSCF_syn_3min	0.6	0.4	0.19	0.8	10
LSCF_com	0.6	0.4	0.2	0.8	4

Table S1 XRF- and Surface area of $LSCF_{syn},\,LSCF_{syn_3min}$ and $LSCF_{com}$

Figure S3 XRD of $LSCF_{syn}$, $LSCF_{syn_3min}$, $LSCF_{syn_30min}$ and $LSCF_{com}$.

Figure S4 XRD of thin films of LSCF deposited on YSZ and calcined at 950 °C: LSCF_{syn}/YSZ, LSCF_{syn_3min}/YSZ, and LSCF_{com}/YSZ.

Table S2 Crystallite size of LSCF determined using Scherrer's equation (LSCF_{com}, LSCF_{syn}), LSCF deposited on YSZ and calcined at 950 $^{\circ}$ (LSCF_{com}-SP, LSCF_{com}-SC and LSCF_{syn}-SC) and Ag infiltrated into the LSCF layers (Ag/LSCF_{com}-SP, Ag/LSCF_{com}-SC and Ag/LSCF_{syn}-SC). For LSCF, the peak at 22.9 $^{\circ}$ was used and for Ag the peak at 38.2 $^{\circ}$.

	crystallite size /	omustallita siza of A a/mm
	11111	crystante size of Ag/init
LSCF _{com}	56	
LSCF _{syn}	26	
LSCF _{syn} _3min	34	
LSCF _{com} -SP	76	
LSCF _{com} -SC	85	
LSCF _{syn} -SC	68	
Ag/LSCF_com-SP	61	50
Ag/LSCF_com-SC	75	50
Ag/LSCF_syn-SC	80	46

Figure S5 SEM images of the surface of Ag-infiltrated LSCF films after reduction at 300 $^{\circ}$ C for 2 h in 5% H₂/Ar. Images were taken at the center of each film. a) Ag/LSCF_{com}-SP, b) Ag/LSCF_{com}-SC and c) Ag/LSCF_{syn}-SC. Ag particles can be identified as brighter spots on the images.

Figure S6 Impact of positive currents on the catalytic rate at 300 $^{\circ}$ Of Ag/LSCF_{com}-SP.

Figure S7 TEM analysis of Ag/LSCF $_{com}$ -SP film after catalytic testing, taken at the centre of the LSCF layers.