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Abstract: The catalytic activity of a series of vanadium aluminophosphates catalysts prepared by
sol-gel method followed by combustion of the obtained gel was evaluated in glycerol conversion
towards methanol. The materials were characterized by several techniques such as X-ray
diffraction (XRD), UV-vis, Fourier-transform infrared (FTIR), Raman and X-ray photoelectron (XPS)
spectroscopies. The amount of vanadium incorporated in aluminophosphates framework played an
important role in the catalytic activity, while in the products distribution the key role is played by the
vanadium oxidation state on the surface. The sample that contains a large amount of V4+ has the
highest selectivity towards methanol. On the sample with the lowest vanadium loading the oxidation
path to dihydroxyacetone is predominant. The catalyst with higher content of tetrahedral isolated
vanadium species, such V5APO, is less active in breaking the C–C bonds in the glycerol molecule
than the one containing polymeric species.

Keywords: vanadium aluminophosphates; glycerol oxidation; glycerol dehydration; methanol
synthesis; dihydroxyacetone; acetaldehyde

1. Introduction

The conversion of glycerol in added value products has been the subject of extensive research
due to its excess in the world market, whereas approximately 100 kg of glycerol is produced for each
ton of biodiesel [1]. Glycerol is very cheap and could be harnessed by dehydration, esterification,
oxidation, hydrogenolysis, reforming and polymerization, and, therefore, glycerol is expected to
become a renewable building block chemical to be efficiently converted into various more added value
products. The selective oxidation of glycerol to high-value chemicals with molecular oxygen has been
extensively studied [2–5].

The catalytic glycerol oxidation occurs by a complex mechanism and conducts to many products
such as formic acid [6], acrolein [7], acrylic acid [8,9], glycolic acid [10], glyoxylic acid, glyceric acid [11],
glyceraldehyde and dihydroxyacetone [12,13] (see Scheme 1) [6]. These products have many uses
in the chemical industry, e.g., dihydroxyacetone can be used in cosmetics industry; glyceric acid for
detergents [14]; formic acid is used as a hydrogen carrier [15]; and acrylic acid is used mainly in the
production of acrylic esters and resins used in coatings and adhesives [16].
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Scheme 1. Parallel and series reaction network in glycerol transformation. 

Therefore, the glycerol oxidation has been extensively studied over numerous catalysts yielding 
various byproducts [3,17,18]. Wang et al. [19] obtained, mainly, acrolein and acetaldehyde over 
vanadium phosphate oxides, Ning et al. [20] reported the selective oxidation of glycerol to 1,3-
dihydroxyacetone over Pt catalysts promoted with bismuth and antimony, Hamid et al. [21] observed 
a superior selectivity to glyceric acid using nanosized Pd-based catalysts supported on activated 
carbon (Ac), hydrotalcite (HTc) and activated carbon–hydrotalcite composite (Ac–HTc). Glyceric acid 
was also obtained over CuNiAl hydrotalcites (HTs) [22], while acrylic acid was mainly a product 
obtained by gas-phase oxidation of glycerol over W–V–Nb–O complex metal oxides having a 
structure like that of orthorhombic Mo3VOx [23]. The successful employment of different ceria 
nanocatalysts for glycerol oxidation reaction has been also demonstrated [4]. The authors concluded 
that the presence of reduced Ce3+ species and, also, the interactions of the reactants with different 
crystallographic surfaces play a major role in the catalytic activity of these materials [4]. 

However, there are several identified limitations such as: the catalysts suffer deactivations, make 
use of alkaline conditions and sometimes lead to poor selectivities [2,24,25]. Therefore, the 
development of highly active and selective heterogeneous catalysts for base-free glycerol oxidation 
remains a big challenge for the scientific community. 

A much more interesting, but more challenging, alternative is to convert glycerol to methanol, 
due to the fact that methanol is a major raw material for the production of various added value 
chemicals, therefore its production from glycerol attracted the researcher’s interest. Commercially, 
glycerol can be converted to methanol by a two-step process: catalytic transformation of crude 
glycerol to syngas (H2/CO), followed by the methanol synthesis process. However, there are studies 
demonstrating that the direct glycerol transformation to methanol is possible. For instance, glycerol 
can be directly converted to methanol in hydrogen with high selectivity over a Pd/Fe2O3 co-
precipitated catalyst [26]. Furthermore, Hutchings et al. [27] showed that crude glycerol can be 
reacted with water over very simple basic or redox oxide catalysts, such as MgO or CeO2, to produce 
methanol in high yields in a one-step low-pressure process. 

Heterogeneous catalysts based on vanadium oxides are well known as active catalysts for the 
oxidation process due to their multiple oxidation states. Selective oxidation reactions over these 
catalysts are influenced by many factors such as (i) lattice oxygen, (ii) the strength of vanadium-
oxygen bonds, (iii) environment of oxygen atoms, (iv) redox properties of vanadium and (v) multi-
functionality of the active sites [28]. 

Meanwhile, microporous materials, aluminophosphate frameworks (AlPO), have acquired 
attention lately due to their structural and compositional diversity being analogous with zeolites and 
following their catalytic applicability trend, a multitude of metals have been placed in neutral AlPO 
framework. VAlPO-5 and VAlPO-11 were the most studied aluminophosphates molecular sieves 
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Therefore, the glycerol oxidation has been extensively studied over numerous catalysts yielding
various byproducts [3,17,18]. Wang et al. [19] obtained, mainly, acrolein and acetaldehyde over
vanadium phosphate oxides, Ning et al. [20] reported the selective oxidation of glycerol to
1,3-dihydroxyacetone over Pt catalysts promoted with bismuth and antimony, Hamid et al. [21]
observed a superior selectivity to glyceric acid using nanosized Pd-based catalysts supported on
activated carbon (Ac), hydrotalcite (HTc) and activated carbon–hydrotalcite composite (Ac–HTc).
Glyceric acid was also obtained over CuNiAl hydrotalcites (HTs) [22], while acrylic acid was mainly a
product obtained by gas-phase oxidation of glycerol over W–V–Nb–O complex metal oxides having
a structure like that of orthorhombic Mo3VOx [23]. The successful employment of different ceria
nanocatalysts for glycerol oxidation reaction has been also demonstrated [4]. The authors concluded
that the presence of reduced Ce3+ species and, also, the interactions of the reactants with different
crystallographic surfaces play a major role in the catalytic activity of these materials [4].

However, there are several identified limitations such as: the catalysts suffer deactivations, make
use of alkaline conditions and sometimes lead to poor selectivities [2,24,25]. Therefore, the development
of highly active and selective heterogeneous catalysts for base-free glycerol oxidation remains a big
challenge for the scientific community.

A much more interesting, but more challenging, alternative is to convert glycerol to methanol, due
to the fact that methanol is a major raw material for the production of various added value chemicals,
therefore its production from glycerol attracted the researcher’s interest. Commercially, glycerol can
be converted to methanol by a two-step process: catalytic transformation of crude glycerol to syngas
(H2/CO), followed by the methanol synthesis process. However, there are studies demonstrating
that the direct glycerol transformation to methanol is possible. For instance, glycerol can be directly
converted to methanol in hydrogen with high selectivity over a Pd/Fe2O3 co-precipitated catalyst [26].
Furthermore, Hutchings et al. [27] showed that crude glycerol can be reacted with water over very
simple basic or redox oxide catalysts, such as MgO or CeO2, to produce methanol in high yields in a
one-step low-pressure process.

Heterogeneous catalysts based on vanadium oxides are well known as active catalysts for the
oxidation process due to their multiple oxidation states. Selective oxidation reactions over these
catalysts are influenced by many factors such as (i) lattice oxygen, (ii) the strength of vanadium-oxygen
bonds, (iii) environment of oxygen atoms, (iv) redox properties of vanadium and (v) multi-functionality
of the active sites [28].

Meanwhile, microporous materials, aluminophosphate frameworks (AlPO), have acquired
attention lately due to their structural and compositional diversity being analogous with zeolites and
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following their catalytic applicability trend, a multitude of metals have been placed in neutral AlPO
framework. VAlPO-5 and VAlPO-11 were the most studied aluminophosphates molecular sieves
with vanadium, and they were found to be active in numerous selective oxidation reactions, among
which alkanes, alkenes aromatic compounds oxidation with oxygen or hydrogen peroxide [29]. On the
catalyst surface the presence of monomeric or polymeric vanadium species were evidenced depending
on the vanadium loading.

Recently, by modification of aluminophosphates with small amounts of a transition metal, such as
V (~3 wt.%) [30], as well as Fe and Co (1, 10 and 20 wt.%) [31,32], more active and selective catalysts
for glycerol conversion to acrolein were developed.

In this paper, we examined the one-step glycerol conversion to methanol and other useful
chemicals, without the addition of hydrogen gas, over V substituted AlPO4 catalysts in order to
emphasize the role of vanadium content on the catalytic activity and selectivity.

2. Results and Discussion

2.1. Characterization of Catalysts

X-ray diffraction patterns of all samples are illustrated in Figure 1. A highly crystalline structure
for all studied samples was observed, but with a low surface area, as evidenced by nitrogen adsorption
isotherms (Table 1). The four main diffraction lines at 2θ of 20.32◦, 21.48◦, 23.00◦ and 35.54◦ correspond
to (020), (211), (212) and (107) planes of orthorhombic AlPO4 phases (Joint Committee on Powder
Diffraction Standards (JCPDS) Card No. 00-048-0652), respectively. As it can be observed in Table 1
for all samples, the three lattice parameters (a, b and c) have increased values reported to AlPO4,
which means that during vanadium insertion, a lattice expansion occurred. This can take place
when pentavalent vanadium ion (0.68 Å) replaced the pentavalent phosphorus ion with a smaller
dimension (0.305 Å). This also indicates that vanadium was successfully incorporated into the
framework. Moreover, additional lines located at 2θ of 15.4◦, 26.2◦ and 31.1◦ correspond to a polymeric
orthorhombic AlV6PO19 phase (Powder Diffraction File (PDF) card 00-045-0057) as highlighted in the
XRD patterns. However, the vanadium insertion does not influence the AlPO4 crystallinity. It was
also observed that increasing the V loading in AlPO, slightly increases the crystallite size, from 35 nm
to 37 nm, for V5APO to V10APO, respectively (Table 1), probably due to the increase of polymeric
vanadium phase, as evidenced further by Raman data for higher vanadium loadings.

Table 1. Brunauer–Emmett–Teller (BET) specific surface area and crystallite size together with lattice
parameters (calculated from XRD data) for VAPO catalysts.

Catalyst BET (m2 g−1) Crystallite Size (nm)
Lattice Parameter

a b c

V5APO 0.04 35.1 9.6930 8.7359 18.8351
V7.5APO 2.12 36.6 9.6930 8.7359 18.8351
V10APO 0.45 37.5 9.6930 8.7359 18.8351
AlPO4 * - - 9.6380 8.6640 18.2800

* from Powder Diffraction File (PDF) card 00-045-0057.

Figure 2 shows the FTIR spectra of VAPO catalysts. The band located at 1110 cm−1 is characteristic
of aluminophosphates and is due to asymmetric stretching vibration of the P–O–Al bonds [33], the band
located at 715 cm−1 is due to P–O–P bridges, while the band that appear at 460 cm−1 is attributed of PO4

units corresponding to primarily crystalline phase of orthophosphate composition. The low absorption
band at 625 cm−1 is assigned to deformation vibrations of O–V–O, while that located at 1020 cm−1 is
assigned to the vibrations of the isolated V=O vanadyl groups in VO5 trigonal bipyramids [34].
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The type of vanadium species in the VAPO catalysts were further studied by UV-vis spectroscopy
(see Figure 3). In general, the absorbance spectra of V5APO and V7.5APO samples present a band
at 230 nm that can be assigned to tetrahedral isolated V species, attributed to oxygen–tetrahedral
V5+ charge transfer from vanadyls (V5+=O) [29,35], and also to V4+ charge transfer band of VO2+

species [36]. The V7.5APO and V10APO samples present a new band located at 365 nm that is attributed
to tetrahedral vanadium species in a polymeric state [37]. The shift of absorption band to higher
wavelengths, with increasing of vanadium loading, highlights the formation of vanadium species
with higher coordination, five or six [38]. Likewise, the bands presented in this interval are typical
d–d transitions of V4+ species. It seems that for higher loadings, the V5+=O ions were transformed to
V4+=O species, and, in agreement with other studies, they could also change their coordination (to
octahedral geometry) in the presence of water molecules [29]. This is also supported by the decrease of
the band from 230 nm when the vanadium loading is increasing.
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High resolution XP spectra of O 1s, V 2p, Al 2p and P 2p for VAPO samples are presented in
Figure 4, while the surface composition and the binding energies values are shown in Table 2. The O
1s core level taken at 531.3 eV for phosphate (PO4)2− and 530.0 eV for VOx was used as an internal
binding energy reference according to Silversmit’s recommendations [39].

The XPS core-level of V 2p region (515–525 eV) is fitted with three components with the maximum
intensity at 514.6 eV, 516.1 eV and 517.1 eV corresponding to V3+, V4+ and V5+, respectively [39,40].
For the sample containing the lowest amount of vanadium (V5APO), only two components were
identified, corresponding to V5+ and V4+. UV–vis data also indicates the presence of both +4 and +5
oxidation states of vanadium. By increasing the amount of vanadium (samples V7.5APO and V10APO)
a third component arises, which correspond to V3+ oxidation state. Moreover, the sample V7.5APO
presents the highest amount of V4+ species (~81%) at the surface and the lowest amount of V5+ (~10%)
compared to the total amount of V present (see Table 2). This will have an important impact over the
catalytic selectivity of the materials, as it is detailed in the section below.

The O 1s core level revealed the presence of multiple components. The main component found at
531.3 eV corresponds to phosphate oxygen [41,42], while the component at 530.0 eV corresponds to
the oxygen bonded to vanadium [39]. The small component found at 532.6 eV is associated to OH−

species found on the surface [43].
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The XPS region for Al 2p was fitted with only one component, corresponding to Al3+, situated at
a lower binding energy, 73.8 eV, than expected ~75.1 eV, specific for AlPO4. This behavior, was also
observed for other Al co-doped oxides, and confirms the fact that P was replaced by V and bonds Al [44].
The P 2p core level is associated to P5+ from phosphates [42], irrespective to the vanadium loading.

The atomic ratios Vtot/Al and Vtot/P found at the surface confirm the composition for the samples
with higher V loadings (V7.5APO and V10APO), while for the sample V5APO, higher amounts of
V species were found at the surface, which means that V migrated to the surface, demonstrating
heterogeneity of the material (see Table 2).

Raman spectroscopy has been employed to gain insights on the vanadium surface species, since
Raman stretching frequency of vanadium–oxygen bonds provides information on local environment of
the vanadium ion such as bond strength, nuclearity and chemical environment. For instance, Raman
analysis can distinguish among three possible active oxygen sites: terminal V=O, binding surface
V–O–V polymeric species and binding V–O– to support species [45]. Figure 5 depicts the Raman
spectra of VAPO samples thermally treated at 200 and 600 ◦C with different V loadings.

The broad band at around 1120 cm−1 clearly evidenced for V5APO, and weaker for V7.5VAPO
and V10APO samples, is typical of the AlPO4 framework, due to the asymmetric stretching modes
of framework tetrahedral PO4 and AlO4 units [29,46]. Raman bands, in the 50–1020 cm−1 region,
are related to the presence of surface vanadium oxide species from AlPO framework, and were also
observed in the orthorhombic structure of V2O5 [47–49].

Table 2. Binding energies and surface composition as revealed by XPS analysis.

Samples V 2p Al 2p P 2p

BE (eV) Atomic Ratio (%) (Vx+/Vtot) BE (eV) Atomic Ratio (%) (Vtot/Al) BE (eV) Atomic Ratio (%) (Vtot/P)

XPS Calc. XPS Calc.

V10AlPO
V3+ 514.6 4.1

73.8 0.29 0.11 133.1 0.23 0.1V4+ 516.1 60.1
V5+ 517.1 35.8

V7.5AlPO
V3+ 514.6 9.2

73.8 0.13 0.17 133.2 0.15 0.15V4+ 516.1 81.3
V5+ 517.7 9.5

V5AlPO
V3+ - -

73.8 0.28 0.25 133.1 0.22 0.2V4+ 516.1 71.0
V5+ 517.1 29.0
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Within the Figure 5a, the presence of the Raman band(s) at: (i) 144 cm−1 is related to a –V–O–V–O–V–
skeleton bent vibration and denotes a layer like structure as observed in V2O5 orthorhombic
structure [48,49], (ii) 284 and 402 cm−1 can be assigned to V=O bend vibrations modes, (iii) 471
and 699 cm−1 correspond to the internal V–O–V bending and stretching modes, respectively, while,
(iv) 310 and 522 cm−1 are associated to V–O bending and stretching modes along the c-axis, respectively.
All of the Raman bands were slightly shifted from that of the V2O5 orthorhombic structure, probably
due to the new configuration of V within the AlPO4 structure. For all three samples thermally treated
at 200 ◦C, but more intensively in the case of V7.5APO and V10APO the characteristic Raman modes
for V4+=O and V5+=O found in amorphous phase at 879 and 1018 cm−1, respectively were observed.
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After calcination at 600 ◦C, the spectrum of sample containing 5% vanadium was different from
samples with 7.5% and 10% vanadium, which were very similar and contain well defined Raman
bands. For the samples V7.5APO and V10APO a decrease of the band located at 1120 cm−1 associated
with the AlPO4 framework can be observed along with the sharpening of Raman bands associated
to a layered structure: 144 cm−1 (bending) and 993 cm−1 (stretching), when vanadium oxide is
present in the material. Similarly, it can be observed that in the case of V5APO the layer structure is
damaged, since its Raman characteristic bands faded after calcination at 600 ◦C, together with the V=O
bending and stretching modes from the internal structure. For all samples, after calcination at 600
◦C, the disappearance of modes associated with the amorphous phase (879 and 1018 cm−1) can be
observed and the appearance of other vibration modes, which are described further.

This agrees with UV-vis data. The vibration at 197 cm−1, according to recent calculations,
corresponds to the motion of vanadium atoms along the c axis of the VO2 crystal (stretching motion of
V–V dimers) [47].

To determine the density and strength of the acid sites of the VAPO samples, NH3-TPD analysis
was performed. The quantitative data is presented in Table 3, while the NH3 desorption profiles are
depicted in Figure 6.

Table 3. Temperature programmed desorption of NH3 for VAPO catalysts.

NH3 Desorbed (µmol g−1)
Catalyst

Tdes range (◦C)
200–250 350–450 500–700

V5APO 34.30 44.38
V7.5APO 38.18 3.53 21.8
V10APO 62.44 19.19 18.36
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Figure 6. NH3-TPD profiles for VAlPO catalysts.

Temperature Programmed Desorption (TPD) profiles showed three distinct regions: One between
200–250 ◦C that correspond to weak acid sites from surface hydroxyl groups, one with peaks between
350–450 ◦C and correspond possibly to Brønsted acid sites of moderate acidity, while the one from
500–700 ◦C corresponds to strong acid sites. The sample containing the highest content of V possess
also the highest number of acid sites (see Table 3). This behavior is in agreement with other reports, [50],
that found also an increase of the acidity strength with vanadium loading.

2.2. Catalytic Activity

The catalytic performance of VAPO catalysts in the glycerol transformation was examined, and the
glycerol conversion and the products distribution as function of reaction temperature, in the temperature
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range 200–350 ◦C, are presented in Figure 7. The major products were methanol, acetaldehyde and
dihydroxyacetone. Glyceraldehyde, glycol aldehyde and ethylene glycol have been found as minor
products; however, their selectivity does not exceed 5%. These liquid products covered 98% of the total
mass of product mixture. The reaction products obtained on VAPO catalysts indicate two possible
ways for glycerol transformation on VAPO catalysts: through oxidation and through dehydration
followed by hydrogenolysis.
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Figure 7. The influence of the reaction temperature on glycerol conversion (a), methanol (b),
acetaldehyde (c) and dihydroxyacetone (d) selectivity; (0.2 g catalyst, air flow 1200 mL h−1, feed flow
rate 3.6 mL h−1, 10% glycerol in water and O2: Glycerol ratio = 1.33).

Scheme 2 depicts the reaction products and a simplified reaction pathway for glycerol
transformation on VAPO catalysts.Catalysts 2020, 10, x FOR PEER REVIEW 12 of 23 
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Dihydroxyacetone is produced by oxidation of the secondary OH group from glycerol [51],
while the oxidation of the primary OH group led to the formation of very small amounts of
glyceraldehyde [52]. In agreement with literature data [53], acetaldehyde can be produced from
3-hydroxypropanal formed by dehydration of glycerol, although 3-hydroxypropanal was not confirmed
in our reaction conditions due, most probably, to a very fast reaction rate. Along with acetaldehyde,
formaldehyde is usually produced [54] (see Scheme 3), but this was not identified in our case. This is
possible by a retro aldol condensation as demonstrated by Suprun et al. on SAPO catalysts starting [55].
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Another possible route for the formation of acetaldehyde is from hydroxyacetone, as evidenced
also on SAPO catalysts [55], even this compound was not evidenced among the reaction products.
To prove this, a reaction using hydroxyacetone as reactant was performed on V7.5APO catalyst.
The reaction products were acetic acid, propionic acid, 3-methylfuran, methylglyoxal and pyruvic
acid (see Figure 8). Moreover, the hydroxyacetone transformation was not complete when using our
best catalytic system and reaction conditions indicating that indeed hydroxyacetone is not formed on
VAPO catalysts.
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Figure 8. Hydroxyacetone conversion over V7.5APO catalyst; 0.2 g catalyst, air flow 1200 mL h-1 and
hydroxyacetone concentration 2.4 mg L−1.

The presence of methanol among the reaction products is unexpected, since its formation requires
carbon–carbon bond scission and a source of hydrogen. According to literature data [27], the water
present in the stream can act as a source of H2 to perform the hydrogenolysis. However, we cannot
exclude the formation of formaldehyde (see Scheme 3) which also acts as an excellent hydrogen donor
in liquid phase [56]. Moreover, it was proposed that by a follow up hydrogenation of formaldehyde
would result in formation of methanol [54].



Catalysts 2020, 10, 728 12 of 20

Glycerol conversion increased with the increase in temperature of reaction, as expected, from 200 to
350 ◦C, and the amount of V incorporated in AlPO played an important role in the activity of the catalyst,
thus, V10APO showed the best glycerol conversion followed by V7.5APO and V5APO, respectively.

The methanol selectivity increased with reaction temperature and the best values were observed
for V7.5APO sample. A key role is played by the V oxidation state on the product distribution and
V7.5APO is the sample containing the highest amount of V4+ among all samples, according to XPS,
and seems to be the most reactive in methanol formation. A similar behavior was observed for VOPO4

species deposited on graphene oxide, which presented a higher amount of reducible V4+ species, with
enhanced reactivity toward hydroxylation of benzene to phenol [57]. An important difference was
observed for V5APO compared with both, V7.5APO and V10APO in terms of methanol selectivity
(10% vs. 60%). The presence of V3+ in both, V7.5APO and V10APO, probably plays an important role
along with V4+ in the formation of methanol, which is missing from V5APO as stated by XPS.

The selectivity to acetaldehyde has the opposite trend to methanol formation and at higher
temperatures the selectivity to acetaldehyde is compromised by an increased production of methanol.
The catalyst with 10% V shows the highest selectivity to acetaldehyde, which decreased with increasing
of the temperature. On the sample with the lowest V loading, V5APO, the principal reaction product is
dihydroxyacetone, indicating that for this catalyst the oxidation path is more important. A selectivity
of 64% of dihydroxyacetone was observed for V5APO sample at a relatively low temperature (200 ◦C),
that drops to 30% at a temperature of 350 ◦C, while for the other catalysts the selectivity is four
times lower.

The catalyst with higher content of tetrahedral isolated vanadium species, such V5AlPO, is
less active in breaking the C–C bonds in the glycerol molecule than the one containing polymeric
species. On this catalyst, in particular, the oxidation of the most reactive alcohol group, namely,
secondary hydroxyl group of glycerol occurs, leading to formation of dihydroxyacetone, especially at
low temperature. This is in accordance with the results obtained by Sebastian et al. [37] in the catalytic
conversion of glucose in inferior polyols, indicating that the polymeric vanadium species are more
active than monomeric species.

The glycerol conversion is almost complete for V7.5APO and V10APO and the increase of
conversion is in line with the increase of the V4+ species and with the increase in acidity strength.
The results are similar with those obtained by Lopez [30] over binary Al-V phosphate where the
conversion was practically 100%, but the difference consists in products selectivity, their main product
being acrolein. Nevertheless, the surface properties of the catalyst predominantly dictate the reaction
selectivity, for example, Brønsted acidic surface sites typically favor dehydration routes to form
hydroxyacetone and acrolein [58,59].

The influence of glycerol concentration on the glycerol conversion and the products distribution
are shown in Figure 9a–c. A slightly decrease in the conversion, with the increase of the glycerol
concentration in water from 10% to 20%, was noted for all catalysts. In the same time, the selectivity to
methanol decreases with increasing glycerol concentration, with the highest values observed again over
the V7.5APO catalyst. Conversely, the acetaldehyde production increase with glycerol concentration.
In this moment we do not have experimental details to give a plausible explanation. However,
this result is in line with data from the literature that also revealed that higher glycerol concentrations
in the feed resulted in a significant increase in the quantity of side products [27].

The production of dihydroxyacetone, at 350 ◦C, was evidenced only on the V5APO catalyst,
while for the other two catalysts its selectivity was below 1%, while the selectivity to acetaldehyde
increased with glycerol concentration and reached a maximum value over V10APO catalyst at a
glycerol concentration of 20%. This catalyst provides the highest amount of V5+ species on the surface
and the highest degree of polymerization according with Raman data.

The effect of water on the glycerol conversion and methanol selectivity over V7.5APO is depicted
in Figure 9d. Two concentrations of glycerol (10% and 20%, respectively) with two different flow rates
(1.8 mL h−1 and 3.6 mL h−1), with a constant ratio of O2 to glycerol of 1.33 are employed. The glycerol
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conversion remained almost unchanged while the selectivity towards methanol was slightly higher
when the water concentration was increased. This underlines the role of water for methanol production
and opens new directions for glycerol transformation towards methanol.
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Figure 9. Glycerol conversion, and the selectivity of methanol, acetaldehyde and dihydroxyacetone 
as function of glycerol concentration in water (temperature 350 °C, 0.2 g catalyst, air flow 1200 mL h−1 
and feed flow rate 3.6 mL h−1); (a) V5APO, (b) V7.5APO, (c) V10APO and (d) V7.5APO water influence 
(O2 to glycerol = 1.33). 
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To check the contribution of selective oxidation, different O2 to glycerol ratio were studied.
The influence of oxygen to glycerol ratio, at 20% glycerol concentration and 350 ◦C, over conversion and
selectivity is depicted in Figure 10. The glycerol conversion was increasing with O2 to glycerol ratio for
all studied samples, V7.5APO and V10APO presenting the highest and similar conversions. This agrees
with other studies [60,61], which revealed the importance of O2 to increase the conversion. The total
conversion was reached when O2 to glycerol ratio was four. Conversely, increasing the O2 to glycerol
ratio determined a decrease in the selectivity to dehydration products. Therefore, the selectivity
to acetaldehyde was diminishing with the increase of O2 to glycerol ratio, while the selectivity to
methanol followed a volcano curve, irrespective to the V loading, with a maximum selectivity of 70%
for V7.5APO and O2 to glycerol ratio of 2.7. Further increase of O2 to glycerol ratio is detrimental to
methanol production, while the formation of dihydroxyacetone increased. This indicates that for O2 to
glycerol ratio higher than 2.7 the contribution of selective oxidation was in a larger extent as compared
with dehydration/hydrogenolysis reaction.

Summarizing, Table 4 gathers the catalytic data obtained on VAPO catalysts and other catalytic
data from literature. It can be observed that our results are comparable in terms of conversion and
present higher selectivity to methanol, even the one reported in the study performed in the presence
of H2 [62]. For a better evaluation of the productivity of V7.5APO catalyst in methanol production,
space-time yield (STY) was calculated and it was found to be 10-fold higher compared with the
literature data (see Table 4). Moreover, turn-over frequency (TOF) of V7.5APO catalytic system is triple
compared with the values from the literature, for the cases when TOF was calculated using the total
number of moles of glycerol transformed per mole of catalyst per hour or either considering the total
amount of catalytic acid sites as determined from NH3-TPD analysis. It is clear that extended studies
on VAPO are necessary to better understand the methanol formation from glycerol solution in the
presence of oxygen.
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Table 4. Selected results from the literature data reported for glycerol transformation to methanol.

Catalyst (Mass(g)) O2 Flow
(mL h−1)

Carrier gas Flow (mL
h−1)

Glycerol in Water
(%)

Feed Flow Rate
(mL h−1)

P (bar) T (◦C) Time (h) C. (%) S (%)
MeOH TOF (h−1)

STY (g MeOH
kg−1 catalyst h−1) Ref.

V7.5APO(0.2) 240 1200 10 3.6 - 350 0.5 98.3 84.6 2.9
379 h 531 This study

CeO2
(0.5) - 6000 a 10 1.0 - 340 3 97.0 60.0 0.5 51 [27]

NiSiO2
(8.5) - 5300 b 60 15.0 60 320 ns 99.9 68.5 c 0.9

114 h 25 [62]
d - - 10 - 300 e 450 0.5 94.0 f 45.0 g - - [63]

V-ZSM-5
(0.2) 360 1440 a 10 3.0 - 320 1 100 - 0.1

42.0 h 0 [64]

a N2; b H2; c selectivity for total alcohols (propanol, ethanol and methanol); d catalytic reaction in supercritical water in the presence of 10% by mole of ethylsulfide (ES), glycerol:ES molar
ratio is 1:1; e the high pressure (300 bar) is a consequence of the reaction conditions, where the reactor (24 mL volume) was pressurized with 20 bar of He and heated at 450 ◦C; f molar
conversion; and g selectivity calculated considering the yield of the products, as reported in the article. h calculated considering the total amount of acid sited determined by NH3-TPD;
MeOH—methanol; ns—not specified; TOF (turn-over frequency) represents the total number of moles of glycerol transformed per mole of catalyst per hour; and STY (space-time yield)
defined as grams of MeOH produced per kilogram of catalyst per hour.
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(b), acetaldehyde (c) and dihydroxyacetone (d) selectivity; (0.2 g catalyst, 350 °C, 20% glycerol in 
water, total flow 1200 mL h−1, feed flow rate 3.6 mL h−1 and O2:N2:glycerol 1.33:5.24:1; 2.7:3.39:1; 4:2:1). 
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Figure 10. The influence of oxygen to glycerol molar ratio on the glycerol conversion (a) and methanol
(b), acetaldehyde (c) and dihydroxyacetone (d) selectivity; (0.2 g catalyst, 350 ◦C, 20% glycerol in water,
total flow 1200 mL h−1, feed flow rate 3.6 mL h−1 and O2:N2:glycerol 1.33:5.24:1; 2.7:3.39:1; 4:2:1).

3. Materials and Methods

3.1. Synthesis

Aluminophosphates modified with vanadium were prepared by sol–gel method followed by the
combustion of the obtained gel, using Al(NO3)3·9H2O as aluminum source, citric acid, H3PO4 and
NH4VO3 as vanadium source, with the following gel composition: 1Al2O3:1-xP2O5:xV2O5: 0.5 citric
acid (x = 0.05; 0.075; 0.1). Aqueous solutions of aluminum nitrate and ammonium vanadate were
mixed; and then a solution of citric acid was added with stirring as a complexation agent. Finally,
phosphoric acid was added dropwise with stirring. The solution was then heated under stirring at
≈80 ◦C for slow evaporation of water. The resulting gel was heated at 200 ◦C under air for 24 h in
order to realize the gel combustion. Finally, all the prepared materials were calcined in flowing air in
two steps: Firstly, at 400 ◦C for 2 h and then at 600 ◦C for 2 h. The catalytic materials were denoted as a
function of the vanadium content, as following: V5APO, V7.5APO and V10APO.

3.2. Materials Characterization

The X-ray diffraction measurements were performed using a Bruker-AXS D8 Advance
diffractometer (Bruker Corporation, Billerica, MA, USA) equipped with a LynxEye 1D detector
and Cu-Kα (0.1541 nm) radiation source and a scintillation counter detector. The diffraction patterns
were recorded over a 2θ range of 5–70◦ with a 0.01◦ step size and using a counting time of 1 s per point.
For the identification of the XRD phases present in the samples, the PDF from the International Centre
for Diffraction Data (PDF-ICDD) was used. Scherer–Debye formula was employed for the crystallite
size evaluation.

N2 adsorption-desorption at liquid N2 temperature (77 K) isotherms were recorded on a
Micromeritics ASAP 2020 analyzer (Micromeritics Instrument Corporation, Norcross, GA, USA).
Specific surface area was calculated using Brunauer–Emmett–Teller (BET) formalism [65]. In order to
efficiently remove the surface adsorbed residues, a degassing step at 150 ◦C for 4 h was employed.

The UV–vis–NIR spectra were obtained using a UV3600 UV–vis spectrophotometer (Shimadzu
Corporation, Kyoto, Japan) with Shimadzu ISR-3100 integrating sphere attachment having an angle of
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incident light 0–8◦, wavelength range of 200–2600 nm and two light sources: D2 (deuterium) lamp for
the ultraviolet range and WI (halogen) lamp for the visible and near-infrared range.

FTIR spectra were collected with a Perkin Elmer Spectrum Two spectrometer (PerkinElmer,
Waltham, MA, USA), in the range of 400–4000 cm−1, 20 scans with a resolution of 4 cm−1.

XPS measurements were performed on Kratos Ultra DLD Setup (Kratos Analytical Ltd., Manchester,
UK) using Al Kα radiation (1486.74 eV) produced by a monochromatized X-ray source operating on a
total power of 300 W (15 kV × 15 mA), on a routine base pressure of 1 × 10−7 Pa. The parameters were
optimized in order to obtain the C 1s peak of the adventitious carbon contamination of the sample at
284.60 ± 0.05 eV.

Raman spectra were collected in the range between 50 and 2500 cm−1 on a LabRAM HR Evolution
spectrometer (Horiba Jobin Yvon, Kyoto, Japan) equipped with an air-cooled CCD and a He-Ne laser
(633 nm). The Raman spectra were recorded at room temperature in the extended scan mode with an
acquisition time of five times 50 s and a delay time of 10 s.

NH3-TPD analysis, to determine the nature and strength of the acidity, was performed on a
Porotec (Porotec, Frankfurt, Germany) apparatus equipped with a TCD detector and a programmable
temperature furnace. Typical procedure is the following: the sample (~0.1 g) was treated for 1 h
in helium (20 mL min−1) at 200 ◦C in order to clean the catalyst surface. Next, a gaseous mixture
containing 10% NH3 in He (20 mL min−1) has been passed for 10 min at 100 ◦C and purged with
He (20 mL min−1) for 2 h. The temperature was upraised to 800 ◦C with 10 ◦C min−1 under He
(20 mL min−1), and the desorbed ammonia has been analyzed with a TCD detector.

3.3. Catalytic Reactions

The glycerol oxidation was carried out in a vertical fixed bed reactor with an internal diameter
of 9 mm, and a temperature range of 250–350 ◦C. A solution of 10%, 15% and 20% glycerol in water
was fed into reactor with a pump at a feed flow rate of 3.6 mL h−1 and the catalyst mass was 0.2 g.
Air flow rate was 1200 mL h−1. Reaction products in both liquid and gas phase were collected after half
hour of reaction and were analyzed by a GC equipped with FID detector and confirmed by NMR (see
Section 3.4.). The carbon oxides analysis was not performed. Before changing any reaction parameter,
the catalyst was reactivated in air for one hour.

Glycerol conversion and product selectivities were calculated by equations:

Glycerol conversion (%) =
Moles o f glycerol reacted

Moles o f glycerol introduced
·100

Product “i” selectivity (%) =
Moles o f carbon in a product “i”

Moles o f carbon in glycerol reacted
·100

Several blank tests were also performed in order to demonstrate the absence of any homogeneous
reactions in our reaction conditions.

3.4. Product Analysis

Glycerol. 1H-NMR (500 MHz, DMSO-d6): δ = 3.344–3.386 (dd, 2H, CH2, J = 12.25 Hz), 3.444–3.477
(dd, 2H, CH2, J = 12.25 Hz), 3.569–3.613 (m, 1H), 4.2 (m, 3H, OH) ppm. 13C-NMR (125 MHz, DMSO-d6):
δ = 62.468; 72.045 ppm.

Dihydroxyacetone. 1H-NMR (500 MHz, DMSO-d6): δ = 4.15–4.16 (d, 2H, CH, J = 5 Hz), 5.022 (t,
2H, OH, J = 5 Hz) ppm. 13C-NMR (125 MHz, DMSO-d6): δ = 66.71; 214.03 ppm.

Acetaldehyde. 1H-NMR (500 MHz, DMSO-d6): δ = 2.125–2.131 (d, 3H, CH3, J = 3 Hz), 9.646–9.663
(q, 1H, CHO, J = 3 Hz) ppm. 13C-NMR (125 MHz, DMSO-d6): δ = 31.06; 199.70 ppm.

Methanol. 1H-NMR (500 MHz, DMSO-d6): δ = 3.16 (s, 3H, CH3,), 4.01 (s, 1H, OH,) ppm.
13C-NMR (125 MHz, DMSO-d6): δ = 48.85 ppm.
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Glyceraldehyde. 1H-NMR (500 MHz, DMSO-d6): δ = 3.545–3.642 (m, 2H, CH2, J = 12.25 Hz),
3.719–3.773 (dd, 1H, CH, J = 14.5 Hz) 4.402 (s, 2H, OH), 9.621–9.624 (d, 1H, CHO, J = 1.5 Hz) ppm. 13C
-NMR (125 MHz, DMSO-d6): δ = 63.85; 76.05; 91.52 ppm.

Glycolaldehyde. 1H-NMR (500 MHz, DMSO-d6): δ = 4.09–4.12 (d, 2H, CH2, J = 5 Hz), 5.294 (t,
1H, OH, J = 5 Hz), 9.619 (s, 1H, CHO) ppm. 13C-NMR (125 MHz, DMSO-d6): δ = 66.33; 91.56 ppm.

Ethylene glycol. 1H-NMR (500 MHz, DMSO-d6): δ = 3.340 (s, 4H, CH2), 4.96 (s, 2H, OH,) ppm.
13C-NMR (125 MHz, DMSO-d6): δ = 62.76 ppm.

4. Conclusions

The incorporation of vanadium (V4+/V5+) in the framework of aluminum phosphate materials has
been achieved through sol-gel combustion method. This study showed that VAlPOs with different V
loading are capable of converting glycerol towards methanol in one-step synthesis without H2. This was
possible, most probably, due to water present in the system. The vanadium loading, the oxidation state
and the degree of polymerization are important for the product distribution and the sample with an
optimum of 7.5% loading of vanadium possesses the highest selectivity to methanol. Higher O2 to
glycerol ratio promotes the formation of dihydroxyacetone, indicating that the reaction selectivity can
be oriented as a function of the reaction conditions.
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