





## Sustainable Option for Hydrogen Production: Mechanistic Study of the Interaction between Cobalt Pincer Complexes and Ammonia Borane

Yan Li <sup>1</sup>, Chi-Wing Tsang <sup>2,\*</sup>, Eve Man Hin Chan <sup>3</sup>, Eugene Yin Cheung Wong <sup>4</sup>, Danny Chi Kuen Ho <sup>4</sup>, Xiao-Ying Lu <sup>2</sup> and Changhai Liang <sup>5,\*</sup>

- <sup>1</sup> School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; yanli@ustl.edu.cn
- <sup>2</sup> Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong (THEi), Hong Kong 999077, China; xylu@vtc.edu.hk
- <sup>3</sup> Faculty of Design and Environment, Technological and Higher Education Institute of Hong Kong (THEi), Hong Kong 999077, China; evechan@vtc.edu.hk
- <sup>4</sup> Department of Supply Chain and Information Management, The Hang Seng University of Hong Kong, Hong Kong 999077, China; eugenewong@hsu.edu.hk (E.Y.C.W.); dannyho@hsu.edu.hk (D.C.K.H.)
- <sup>5</sup> Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- \* Correspondence: ctsang@vtc.edu.hk (C.-W.T.); changhai@dlut.edu.cn (C.L.)

To prove that the method and basis sets were chosen appropriately, apart from using the method B3LYP/6-31G(d,p)//LanL2DZ (L1), we have also compared the result with other methods, such as M06/6-31G(d,p)//LanL2DZ (L2), SMD(THF)B3LYP/6-31G(d,p)//LanL2DZ (L3), SMD(THF)M06/6-31G(d,p)//LanL2DZ (L4) and SMD(THF)M06/TZVP//LanL2DZ (L5) to optimize the structure of the Pre-catalyst (Figure 1). The results were shown in Table S1 below. It was shown that the bond lengths are very close at different level of calculation, and also they are in close agreement with the experimental determined bond lengths. This proved that the chosen method and basis sets are appropriate.



Figure S1. Optimized structures for the Pre-Cat.

|        | L1    | L2    | L3    | L4    | L5    | exp   |  |
|--------|-------|-------|-------|-------|-------|-------|--|
| N-Ir   | 2.139 | 2.136 | 2.128 | 2.126 | 2.122 | 2.094 |  |
| Ir-H   | 1.558 | 1.564 | 1.551 | 1.559 | 1.555 | 1.53  |  |
| Ir-Cl1 | 2.679 | 2.639 | 2.667 | 2.665 | 2.682 | 2.54  |  |
| Ir-Cl2 | 2.434 | 2.419 | 2.465 | 2.447 | 2.448 | 2.387 |  |

**Table S1.** Major bond lengths calculated at different calculation levels, and the last column is the experimental values.

The choice of calculation and basis sets are based on the consistency of the experimental values and theoretical values. Our choice of B3LYP/6-31G(d,p)-Lanl2dz(metal) is motivated by its good performance for geometry optimization and prediction of vibrational frequencies for intermediates and transition states based on previous literatures, which deal with the transition state metal (Ir, Ni, Rh, Ru) catalyzed reactions [1-6]. Moreover, for the reaction studied, this method is a balance choice in consideration of computational efficiency and accuracy.

[1] Lu, G.; Fang, C.; Xu, T.; Dong, G.; Liu, P. Computational study of Rh-catalyzed carboacylation of olefins: Ligand-promoted rhodacycle isomerization enables regioselective C–C Bond functionalization of benzocyclobutenones. *J. Am. Chem. Soc.* **2015**, *137*, 8274–8283. DOI: 10.1021/jacs.5b04691.

[2] Huang, G.; Kalek, M.; Liao, R.-Z.; Himo, F. Mechanism, reactivity, and selectivity of the iridiumcatalyzed C(sp<sup>3</sup>)–H borylation of chlorosilanes. *Chem. Sci* **2015**, *6*, 1735–1746. DOI: 10.1039/c4sc01592d.

[3] Patel, C.; Abraham, V.; Sunoj, R.B. Mechanistic insights and the origin of regioselective borylation in an iridium-catalyzed alkyl C(sp<sup>3</sup>)–H bond functionalization. *Organometallics* **2017**, *36*, 151–158. DOI: 10.1021/acs.organomet.6b00513.

[4] Zhang, S.Q.; Taylor, B.L.H.; Ji, C.L.; Gao, Y.; Harris, M.R.; Hanna, L.E.; Jarvo, E.R.; Houk, K. N.; Hong, X. Mechanism and origins of ligand-controlled stereoselectivity of Ni-catalyzed Suzuki-Miyaura coupling with benzylic esters: A computational study. *J. Am. Chem. Soc.* **2017**, *139*(37), 12994– 13005. DOI:10.1021/jacs.7b04973.

[5] Wang, X.; Li, Y.; Knecht, T.; Daniliuc, C.G. Houk, K. N. Glorius, F. Unprecedented dearomatized spirocyclopropane in a sequential rhodium(III)-catalyzed C–H activation and rearrangement reaction. *Angew. Chem. Int. Ed.* **2018**, *57*, 5520–5524. DOI:10.1002/anie.201800803.

[6] Chen, S.; Zheng, Y.; Cui, T.; Meggers, E.; Houk, N.K. Arylketone  $\pi$ -conjugation controls enantioselectivity in asymmetric alkynylations catalyzed by centrochiral ruthenium complexes. *J. Am. Chem. Soc.* **2018**, *140*, 5146–5152. DOI: 10.1021/jacs.8b00485.



**Figure S2.** Reaction potential energy surface of Pathway I-B with different metal centers involved in the H<sub>2</sub> release reaction.

## Solvent effects and effects of different PNP ligands

After optimizing the structure, M06 calculation method was then used to determine the rate of the H<sub>2</sub> release reaction when THF and water were used as solvents respectively. The energies calculated at the M06 level are a bit different from the experimental results. While for THF being the solvent media, as shown in Figure S3, the reactivity are  $P(^{t}Bu) > P(^{t}Pr) > P(Ph)$  when all structures in the optimal pathway I-B at the M06 level was optimized. This is consistent to our experimental observed values under dehydrogenation condition (without water). When the phosphine ligand substituent is <sup>t</sup>Bu group, the energy barrier of the first step/second step is 13.0/20.8 kcal/mol; when the ligand substituent is <sup>i</sup>Pr, the reaction energy barrier of the first step/second step is 5.4/28.5 kcal/mol; when the ligand substituent is Ph, the energy barrier of the first step/second step is 11.9/33.8 kcal/mol In all cases, the rate determining step is from the complexes I-B2 to I-Cat-B, therefore, the order of the energy barrier is as follows:  $P(^{t}Bu) < P(^{t}Pr) < P(Ph)$ , so the reaction rate is  $P(^{t}Bu)$  faster than  $P(^{t}Pr)$  and P(Ph), which are consistent with the experimental results.

While for water being the solvent media, as shown in Figure 8, the reactivity are P(Bu) > P(Ph) > P(Pr) which is a bit different from the observed values. When the ligand substituent is P<sup>t</sup>Bu, the energy barrier of the first step/second step of the reaction is 17.9/14.0 kcal/mol; when the ligand substituent is P<sup>i</sup>Pr, the energy barrier of the first step/the reaction is 15.7/32.3 kcal/mol; when the ligand substituent is PPh, the energy barrier of the first step/second step of the reaction is 10.9/27.2 kcal/mol For Bu group, the rate determining step is from I-Cat-B to I-TSB1 while for Pr and Ph, the rate determining step is from I-Cat-B. Thus, the order of the energy barrier is as follows: P(tBu) < P(Ph) < P(iPr), so the reaction rate is P(Bu) > P(Ph) > P(iPr).

Nevertheless, the catalyst with P(tBu) substituent group on the phosphine still has the highest reaction rate in both cases. The results after optimizing each intermediates in Pathway I-B using the M06 method and calculated single point energy based on M06 geometry were shown in Figure S3 and S4 respectively.

In brief, when the solvent is THF and the method used is M06, the calculation results correlated with the experimental results, i.e. observed P(<sup>t</sup>Bu) is more reactive than P(iPr) and then P(Ph). However, when the solvent is water, the calculation results are inconsistent with the experimental results. However, considering the experimental use of a mixed solvent (THF/H<sub>2</sub>O), the specific effect of which solvent is dominant may require further testing.



**Figure S3 (a).** When the solvent is THF, the potential energy surface of Pathway I-B of using phosphine ligands with various substituents optimized at the M06 level.



**Figure S3 (b).** The potential energy surface of Pathway I-B with different PNP ligands when the reaction was carried out in pure H<sub>2</sub>O optimized at the M06 level.



Figure S4. The other three pathway for the Stepwise Mechanism.



Figure S5. Potential energy transfer surface of proton transfer reaction starting from intermediate 8.



**Figure S6 (a).** <sup>t</sup>Bu being the substituent, the potential energy surface corresponding to the intermediates  $8 \rightarrow 12$ .



**Figure S6 (b).** 'Bu being the substituent, the potential energy surface corresponding to the intermediates  $8 \rightarrow 12'$ .



Figure S7. Difference in the energy profile between intermediate complex 12 and complex 12'.



Figure S8 (a). The potential energy surface corresponding to the intermediates  $8 \rightarrow 12(12')$  with 'Bubeing the phosphine substituent.



Figure S8 (b). The potential energy surface corresponding to the intermediates  $8 \rightarrow 12(12')$  with Mebeing the phosphine substituent.



Figure S8 (c). The potential energy surface corresponding to the intermediates  $8 \rightarrow 12(12')$  with Phbeing the phosphine substituent.



Figure S8 (d). The potential energy surface corresponding to the intermediates  $8 \rightarrow 12(12')$  with <sup>i</sup>Prbeing the phosphine substituent.



**Figure S9.** Potential energy profile for reaction between iridium PNP complex with (adamantly)<sub>2</sub>P-substituents and ammonia borane.

| NH <sub>3</sub> chelation | Species  | Relative energies (kcal/mol) |
|---------------------------|----------|------------------------------|
| without NH <sub>3</sub>   |          |                              |
| chelation                 | I-8      | 0.0                          |
| one NH3                   | 8-1nh3-1 | -1.7                         |
| chelation                 | 8-1nh3-2 | -1.0                         |
|                           | 8-2nh3-1 | 5.2                          |
|                           | 8-2nh3-2 | 6.4                          |
| two NU                    | 8-2nh3-3 | 6.6                          |
| chelation                 | 8-2nh3-4 | 6.9                          |
| chelution                 | 8-2nh3-5 | 7.0                          |
|                           | 8-2nh3-6 | 10.9                         |
|                           | 8-2nh3-7 | 11.2                         |
|                           | 8-3nh3-1 | 14.1                         |
|                           | 8-3nh3-2 | 16.5                         |
| three NH <sub>3</sub>     | 8-3nh3-3 | 17.1                         |
| chelation                 | 8-3nh3-4 | 20.3                         |
|                           | 8-3nh3-5 | 20.5                         |
|                           | 8-3nh3-6 | 24.3                         |

**Table S2.** Preliminary test on the chelation of NH<sub>3</sub> to intermediate **I-8** (simplified PH<sub>2</sub>P– model). For 8-Xnh3-Y, X denotes the number of NH<sub>3</sub> molecules; Y denotes the chelation of NH<sub>3</sub> at different orientation to the metal.

|                  | Ir).       |                 |
|------------------|------------|-----------------|
| Chelation        | Species    | Relative energy |
|                  |            | (kcal/mol)      |
| No chelation     | I-8-bu     | 0.0             |
|                  | Ir-8-h2o-1 | 16.8            |
|                  | Ir-8-h2o-2 | 2.8             |
| H <sub>2</sub> O | Ir-8-h2o-3 | 6.8             |
|                  | Ir-8-h2o-4 | 3.8             |
|                  | Ir-8-h2o-5 | 16.4            |
|                  | Ir-8-h2o-6 | 16.6            |
|                  |            |                 |
|                  | Ir-8-nh3-1 | 7.5             |
|                  | Ir-8-nh3-2 | 8.1             |
| NH <sub>3</sub>  | Ir-8-nh3-3 | 8.3             |
|                  | Ir-8-nh3-4 | 9.0             |
|                  | Ir-8-nh3-5 | 10.6            |
|                  | Ir-8-nh3-6 | 10.0            |
|                  |            |                 |
|                  | Ir-8-thf-1 | 20.1            |
|                  | Ir-8-thf-2 | 20.1            |
| THF              | Ir-8-thf-3 | 19.7            |
|                  | Ir-8-thf-4 | 14.0            |
|                  | Ir-8-thf-5 | 20.6            |
|                  | Ir-8-thf-6 | 20.6            |

Table S3 (a). The effect of H<sub>2</sub>O, NH<sub>3</sub> and THF chelation to the stabilization of complex I-8 (<sup>t</sup>Bu-PNP-

| Table S3 (l | <b>b).</b> The effe | ect of H2O, NF | I <sub>3</sub> and THF to | the stabilization | of comp | olex <b>I-8</b> ( | <sup>t</sup> Bu-PNP-F | e). |
|-------------|---------------------|----------------|---------------------------|-------------------|---------|-------------------|-----------------------|-----|
|-------------|---------------------|----------------|---------------------------|-------------------|---------|-------------------|-----------------------|-----|

| Chelation Species |            | Relative energy<br>(kcal/mol) |
|-------------------|------------|-------------------------------|
| No chelation      | Fe-8       | 0.0                           |
|                   | Fe-8-h2o-1 | 11.2                          |
|                   | Fe-8-h2o-2 | 26.1                          |
| H <sub>2</sub> O  | Fe-8-h2o-3 | 34.6                          |
|                   | Fe-8-h2o-4 | 9.5                           |
|                   | Fe-8-h2o-5 | 42.4                          |
|                   | Fe-8-h2o-6 | 42.4                          |
|                   |            |                               |
|                   | Fe-8-nh3-1 | 32.2                          |
|                   | Fe-8-nh3-2 | 31.9                          |
| NH3               | Fe-8-nh3-3 | 32.1                          |
|                   | Fe-8-nh3-4 | 10.3                          |
|                   | Fe-8-nh3-5 | 36.9                          |
|                   | Fe-8-nh3-6 | 36.9                          |
|                   |            |                               |
|                   | Fe-8-thf-1 | 47.0                          |
|                   | Fe-8-thf-2 | 10.5                          |
| THF               | Fe-8-thf-3 | 10.5                          |
|                   | Fe-8-thf-4 | 11.7                          |
|                   | Fe-8-thf-5 | 47.5                          |
|                   | Fe-8-thf-6 | 46.2                          |

| Chelation        | Species    | Relative energy<br>(kcal/mol) |
|------------------|------------|-------------------------------|
| No chelation     | Ru-8       | 0.0                           |
|                  | Ru-8-h2o-1 | 19.4                          |
|                  | Ru-8-h2o-2 | 9.1                           |
| H <sub>2</sub> O | Ru-8-h2o-3 | 11.1                          |
|                  | Ru-8-h2o-4 | 21.8                          |
|                  | Ru-8-h2o-5 | 42.9                          |
|                  | Ru-8-h2o-6 | 42.1                          |
|                  |            |                               |
|                  | Ru-8-nh3-1 | 13.1                          |
|                  | Ru-8-nh3-2 | 29.5                          |
| NH3              | Ru-8-nh3-3 | 29.5                          |
|                  | Ru-8-nh3-4 | 25.3                          |
|                  | Ru-8-nh3-5 | 37.8                          |
|                  | Ru-8-nh3-6 | 37.9                          |
|                  |            |                               |
|                  | Ru-8-thf-1 | 44.6                          |
|                  | Ru-8-thf-2 | 10.9                          |
| THF              | Ru-8-thf-3 | 12.2                          |
|                  | Ru-8-thf-4 | 45.5                          |
|                  | Ru-8-thf-5 | 45.5                          |

Table S3 (c). The effect of H<sub>2</sub>O, NH<sub>3</sub> and THF to the stabilization of complex I-8 (<sup>t</sup>Bu-PNP-Ru).



**Figure S10.** The energy profile (kcal/mol) of the NH<sub>3</sub>BH<sub>3</sub> activation reaction with and without the chelation of H<sub>2</sub>O to the Ir metal center.

| Chelation        | Species        | Relative energy (kcal/mol) |
|------------------|----------------|----------------------------|
|                  | 9-2a-H2O       | 20.4                       |
|                  | 9-2a-H2O-1     | 21.0                       |
|                  | 9-2a-H2O-2     | 20.9                       |
| H <sub>2</sub> O | 9-2a-H2O-3     | 21.7                       |
|                  | TS9-2a-H2O     | 25.8                       |
|                  | TS9-9-2a-H2O-1 | 27.3                       |
|                  | TS9-9-2a-H2O-2 | 25.9                       |

Table S4. Testing the stability of H<sub>2</sub>O chelation to the Ir complexes.

**Table S5 (a).** Energies of each compounds for the simplified model (H<sub>2</sub>P-) with NH<sub>3</sub> chelation for Ir complexes. G\_corr = Thermal correction to Gibbs Free Energy; E = Absolute single-point energies; G = Gibbs free energies.

| species  | G_corr   | Ε            | G            |
|----------|----------|--------------|--------------|
| 8-1nh3-1 | 0.171311 | -1059.751451 | -1059.580140 |
| 8-1nh3-2 | 0.17045  | -1059.751742 | -1059.581292 |
| 8-2nh3-1 | 0.205193 | -1116.340042 | -1116.134849 |
| 8-2nh3-2 | 0.203345 | -1116.345025 | -1116.141680 |
| 8-2nh3-3 | 0.205627 | -1116.339968 | -1116.134341 |
| 8-2nh3-4 | 0.201212 | -1116.345075 | -1116.143863 |
| 8-2nh3-5 | 0.203903 | -1116.345007 | -1116.141104 |
| 8-2nh3-6 | 0.203924 | -1116.345196 | -1116.141272 |
| 8-2nh3-7 | 0.203111 | -1116.345030 | -1116.141919 |
| 8-3nh3-1 | 0.23667  | -1172.940103 | -1172.703433 |
| 8-3nh3-2 | 0.237663 | -1172.931097 | -1172.693434 |
| 8-3nh3-3 | 0.238028 | -1172.931182 | -1172.693154 |
| 8-3nh3-4 | 0.234922 | -1172.933571 | -1172.698649 |
| 8-3nh3-5 | 0.234133 | -1172.933652 | -1172.699519 |
| 8-3nh3-6 | 0.238949 | -1172.926072 | -1172.687123 |

**Table S5 (b).** Energies of each compounds for the complete model ( $^{1}Bu_{2}P_{-}$ ) with H<sub>2</sub>O, NH<sub>3</sub> and THF chelation. G\_corr = Thermal correction to Gibbs Free Energy; E = Absolute single-point energies; G = Gibbs free energies.

| species    | G_corr   | Е            | G            |
|------------|----------|--------------|--------------|
| Ir-8-h2o-1 | 0.589065 | -1708.780295 | -1708.191230 |
| Ir-8-h2o-2 | 0.586351 | -1708.799866 | -1708.213515 |
| Ir-8-h2o-3 | 0.588042 | -1708.795181 | -1708.207139 |
| Ir-8-h2o-4 | 0.587122 | -1708.799071 | -1708.211949 |
| Ir-8-h2o-5 | 0.58874  | -1708.780593 | -1708.191853 |
| Ir-8-h2o-6 | 0.590482 | -1708.781990 | -1708.191508 |
| Ir-8-nh3-1 | 0.600848 | -1688.916959 | -1688.316111 |
| Ir-8-nh3-2 | 0.601766 | -1688.916795 | -1688.315029 |
| Ir-8-nh3-3 | 0.601917 | -1688.916739 | -1688.314822 |
| Ir-8-nh3-4 | 0.599167 | -1688.912898 | -1688.313731 |
| Ir-8-nh3-5 | 0.60728  | -1688.918407 | -1688.311127 |
| Ir-8-nh3-6 | 0.605957 | -1688.918004 | -1688.312047 |
| Ir-8-thf-1 | 0.678843 | -1864.838313 | -1864.159470 |
| Ir-8-thf-2 | 0.678566 | -1864.837948 | -1864.159382 |
| Ir-8-thf-3 | 0.677897 | -1864.837902 | -1864.160005 |
| Ir-8-thf-4 | 0.672992 | -1864.842139 | -1864.169147 |
| Ir-8-thf-5 | 0.67932  | -1864.837995 | -1864.158675 |
| Ir-8-thf-6 | 0.679421 | -1864.838009 | -1864.158588 |
| Co-8-h2o-1 | 0.590048 | -1749.089156 | -1748.499108 |
| Co-8-h2o-2 | 0.589841 | -1749.088912 | -1748.499071 |
| Co-8-h2o-3 | 0.590007 | -1749.089121 | -1748.499114 |
| Co-8-h2o-4 | 0.590398 | -1749.139143 | -1748.548745 |
| Co-8-h2o-5 | 0.588704 | -1749.089376 | -1748.500672 |
| Co-8-h2o-6 | 0.59093  | -1749.090657 | -1748.499727 |
| Co-8-nh3-1 | 0.604243 | -1729.223385 | -1728.619142 |
| Co-8-nh3-2 | 0.604313 | -1729.223414 | -1728.619101 |
| Co-8-nh3-3 | 0.604325 | -1729.223415 | -1728.619090 |
| Co-8-nh3-4 | 0.60086  | -1729.259149 | -1728.658289 |
| Co-8-nh3-5 | 0.60494  | -1729.224435 | -1728.619495 |
| Co-8-nh3-6 | 0.604888 | -1729.224436 | -1728.619548 |
| Co-8-thf-1 | 0.680181 | -1905.144879 | -1904.464698 |
| Co-8-thf-2 | 0.676345 | -1905.142732 | -1904.466387 |
| Co-8-thf-3 | 0.678972 | -1905.142902 | -1904.463930 |
| Co-8-thf-4 | 0.672656 | -1905.153694 | -1904.481038 |
| Co-8-thf-5 | 0.680279 | -1905.145247 | -1904.464968 |
| Co-8-thf-6 | 0.679826 | -1905.144883 | -1904.465057 |
| Fe-8-h2o-1 | 0.590269 | -1727.488394 | -1726.898125 |
| Fe-8-h2o-2 | 0.587855 | -1727.462258 | -1726.874403 |
| Fe-8-h2o-3 | 0.588807 | -1727.449565 | -1726.860758 |
| Fe-8-h2o-4 | 0.587752 | -1727.488615 | -1726.900863 |

| Fe-8-h2o-5 | 0.588076 | -1727.436518 | -1726.848442 |
|------------|----------|--------------|--------------|
| Fe-8-h2o-6 | 0.588599 | -1727.437063 | -1726.848464 |
| Fe-8-nh3-1 | 0.603839 | -1707.578463 | -1706.974624 |
| Fe-8-nh3-2 | 0.603325 | -1707.578476 | -1706.975151 |
| Fe-8-nh3-3 | 0.603686 | -1707.578463 | -1706.974777 |
| Fe-8-nh3-4 | 0.598244 | -1707.607721 | -1707.009477 |
| Fe-8-nh3-5 | 0.603368 | -1707.570496 | -1706.967128 |
| Fe-8-nh3-6 | 0.603359 | -1707.570496 | -1706.967137 |
| Fe-8-thf-1 | 0.677967 | 1883.492395  | -1882.814428 |
| Fe-8-thf-2 | 0.669764 | -1883.542448 | -1882.872684 |
| Fe-8-thf-3 | 0.670335 | -1883.543040 | -1882.872705 |
| Fe-8-thf-4 | 0.670092 | -1883.540918 | -1882.870826 |
| Fe-8-thf-5 | 0.678168 | -1883.491831 | -1882.813663 |
| Fe-8-thf-6 | 0.676542 | -1883.492322 | -1882.815780 |
| Ru-8-h2o-1 | 0.59073  | -1697.965560 | -1697.374830 |
| Ru-8-h2o-2 | 0.588659 | -1697.979910 | -1697.391251 |
| Ru-8-h2o-3 | 0.587331 | -1697.975428 | -1697.388097 |
| Ru-8-h2o-4 | 0.587623 | -1697.958658 | -1697.371035 |
| Ru-8-h2o-5 | 0.587188 | -1697.924552 | -1697.337364 |
| Ru-8-h2o-6 | 0.586224 | -1697.924848 | -1697.338624 |
| Ru-8-nh3-1 | 0.601459 | -1678.096242 | -1677.494783 |
| Ru-8-nh3-2 | 0.605483 | -1678.074231 | -1677.468748 |
| Ru-8-nh3-3 | 0.605571 | -1678.074248 | -1677.468677 |
| Ru-8-nh3-4 | 0.598606 | -1678.074010 | -1677.475404 |
| Ru-8-nh3-5 | 0.602093 | -1678.057499 | -1677.455406 |
| Ru-8-nh3-6 | 0.602174 | -1678.057495 | -1677.455321 |
| Ru-8-thf-1 | 0.674534 | -1853.982585 | -1853.308051 |
| Ru-8-thf-2 | 0.671485 | -1854.033256 | -1853.361771 |
| Ru-8-thf-3 | 0.672414 | -1854.032192 | -1853.359778 |
| Ru-8-thf-4 | 0.676058 | -1853.982642 | -1853.306584 |
| Ru-8-thf-5 | 0.676027 | -1853.982638 | -1853.306611 |

15 of 22

**Table S5 (c).** Energies of each compounds for the complete model (Ada<sub>2</sub>P-) with H<sub>2</sub>O, NH<sub>3</sub> and THF chelation. G\_corr = Thermal correction to Gibbs Free Energy; E = Absolute single-point energies; G = Gibbs free energies.

| species    | G_corr   | Е            | G            |
|------------|----------|--------------|--------------|
| Ir-8-h2o-1 | 1.023496 | -2638.069623 | -2637.046127 |
| Ir-8-h2o-2 | 1.021922 | -2638.084185 | -2637.062263 |
| Ir-8-h2o-3 | 1.020554 | -2638.084919 | -2637.064365 |
| Ir-8-h2o-4 | 1.01834  | -2638.088362 | -2637.070022 |
| Ir-8-h2o-5 | 1.020851 | -2638.084174 | -2637.063323 |
| Ir-8-h20-6 | 1.022499 | -2638.069227 | -2637.046728 |
| Ir-8-nh3-1 | 1.039089 | -2618.204452 | -2617.165363 |
| Ir-8-nh3-2 | 1.040021 | -2618.205379 | -2617.165358 |
| Ir-8-nh3-3 | 1.037204 | -2618.204595 | -2617.167391 |
| Ir-8-nh3-4 | 1.03247  | -2618.203925 | -2617.171455 |
| Ir-8-nh3-5 | 1.040013 | -2618.207049 | -2617.167036 |
| Ir-8-nh3-6 | 1.039999 | -2618.206294 | -2617.166295 |
| Ir-8-thf-1 | 1.111952 | -2794.124934 | -2793.012982 |
| Ir-8-thf-2 | 1.113933 | -2794.126029 | -2793.012096 |
| Ir-8-thf-3 | 1.104493 | -2794.133369 | -2793.028876 |
| Ir-8-thf-4 | 1.112085 | -2794.125762 | -2793.013677 |
| Ir-8-thf-5 | 1.111066 | -2794.125614 | -2793.014548 |
| Co-8-h2o-1 | 1.025592 | -2678.378690 | -2677.353098 |
| Co-8-h2o-2 | 1.023393 | -2678.378506 | -2677.355113 |
| Co-8-h2o-3 | 1.023816 | -2678.379631 | -2677.355815 |
| Co-8-h2o-4 | 1.023978 | -2678.428265 | -2677.404287 |
| Co-8-h2o-5 | 1.024273 | -2678.374516 | -2677.350243 |
| Co-8-h2o-6 | 1.02355  | -2678.375193 | -2677.351643 |
| Co-8-nh3-1 | 1.03861  | -2658.512678 | -2657.474068 |
| Co-8-nh3-2 | 1.037657 | -2658.512080 | -2657.474423 |
| Co-8-nh3-3 | 1.034658 | -2658.548820 | -2657.514162 |
| Co-8-nh3-4 | 1.035512 | -2658.493837 | -2657.458325 |
| Co-8-nh3-5 | 1.037823 | -2658.511366 | -2657.473543 |
| Co-8-thf-1 | 1.110804 | -2834.431381 | -2833.320577 |
| Co-8-thf-2 | 1.11081  | -2834.431380 | -2833.320570 |
| Co-8-thf-3 | 1.105272 | -2834.438950 | -2833.333678 |
| Co-8-thf-4 | 1.105656 | -2834.438281 | -2833.332625 |
| Co-8-thf-5 | 1.112483 | -2834.432078 | -2833.319595 |

Table S6. Cartesian coordinates for the molecules involved in Pathway I-B and Pathway 2a.

|       | -   |
|-------|-----|
| D     | Cat |
| r re- | чаг |

| rie-Cat       |             |                           |                          |
|---------------|-------------|---------------------------|--------------------------|
| Ir            | -0.26482700 | 0.07975300                | 7.23029500               |
| Н             | 0.51133500  | -0.80939400               | 6.18350000               |
| Cl            | -1.61784800 | 1.33456200                | 9.06177900               |
| Cl            | 0.56776200  | 1.99514100                | 6.02542800               |
| Р             | -2.19764600 | -0.14232200               | 6.00306500               |
| P             | 1.51518900  | -0.06919600               | 8 67990200               |
| N             | -1.05135900 | -1 56536300               | 8 36723800               |
| н             | -1 56833900 | 1.000000000               | 9.07613400               |
| C II          | 0.0507/100  | 1 44167700                | 9.87196900               |
| с<br>н        | 1 70503200  | -1.4410//00               | 10 22604200              |
| 11<br>U       | 1.79302800  | -2.01223100               | 10.2004000               |
| п             | 0.43214000  | -0.96091800               | 10.65220600              |
| C             | 0.00322900  | -2.36379000               | 9.05351000               |
| H             | 0.53961100  | -2.92443800               | 8.28165600               |
| Н             | -0.46379700 | -3.08438400               | 9.73800300               |
| С             | -2.02372500 | -2.39809000               | 7.60392000               |
| Н             | -2.50868100 | -3.11461900               | 8.28011600               |
| Н             | -1.45336100 | -2.96314500               | 6.86032900               |
| С             | -3.07563700 | -1.50983400               | 6.92592300               |
| Н             | -3.69964200 | -1.02312500               | 7.68257700               |
| Н             | -3.72650000 | -2.10651700               | 6.28162900               |
| Н             | 1.86050700  | 0.98196200                | 9.55202800               |
| H             | 2,79702700  | -0.46779500               | 8.24266900               |
| Н             | -3 15607700 | 0.88724700                | 5 92455900               |
| Ч             | -3.13007700 | 0.00724700                | 1 65025400               |
| II<br>I Cat P | -2.17919400 | -0.57551700               | 4.00700400               |
| 1-Cal-D       |             |                           |                          |
| Ir            | -0.21974900 | 0.13061800                | 7.17510200               |
| H             | 0.32592600  | 1 37985100                | 6.38541600               |
| Cl            | -1 33586800 | 1 51956500                | 8 68700400               |
| D             | -1.33380800 | 0.14701900                | 5.00700400<br>5.06404700 |
| r<br>D        | -2.2030/900 | -0.14/21000               | 0.70404/00<br>0.7000000  |
| ľ<br>N        | 1.36204700  | -0.0809/900               | 0.0/090900               |
| IN<br>LL      | -1.0/14/600 | -1.60599700               | 8.39978200               |
| Н             | -1.59694700 | -1.09455800               | 9.11451500               |
| С             | 0.95662400  | -1.42659100               | 9.82714200               |
| Н             | 1.79013200  | -1.98166200               | 10.26542500              |
| Н             | 0.43123700  | -0.92437100               | 10.64704500              |
| С             | 0.00287000  | -2.37755800               | 9.08478000               |
| Н             | 0.53883300  | -2.95282800               | 8.32228200               |
| Н             | -0.42627000 | -3.09403400               | 9,79637100               |
| C             | -2 03987600 | -2 41433900               | 7 60788200               |
| н             | -2 56168500 | -3 13507600               | 8 24980400               |
| ц<br>П        | 1 46021600  | -0.10007000<br>0 08505000 | 6 86771 500              |
| п             | -1.40921000 | -2.78525900               | 0.00//1500               |
| C II          | -3.06877100 | -1.49966800               | 6.92210600               |
| Н             | -3.69424900 | -1.00195700               | 7.67156900               |
| Н             | -3.73311400 | -2.08202000               | 6.27829600               |
| Н             | -3.14497500 | 0.88986500                | 5.83774800               |
| Н             | -2.12090900 | -0.62357600               | 4.63893000               |
| Н             | 2.80216900  | -0.54020900               | 8.18776100               |
| H             | 1.95879000  | 0.97960100                | 9,51254500               |
| I-B1          | 1.75077000  | 0.77700100                | 7.01204000               |
| 1.01          |             |                           |                          |
| Ir            | -0.23957600 | 0.35951300                | 7.48300600               |
| Н             | 0.34634300  | 1.59375900                | 6.68377000               |
| Cl            | -1.48643400 | 1.87094700                | 8,90818300               |
| P.            | -2 20122200 | 0 10132400                | 6 25236800               |
| г<br>Р        | 1 28778000  | 0.10102400                | 9 15512200               |
| L.<br>M       | 1.30//07000 | 0.20400100                | 9.1001000                |
| IN            | -1.19472000 | -1.24952800               | 8.76513700               |

| Н      | -1.74533200 | -0.65925800 | 9.39714300  |
|--------|-------------|-------------|-------------|
| С      | 0.70034400  | -0.99080600 | 10.33654300 |
| Η      | 1.49817700  | -1.51183800 | 10.87156600 |
| Η      | 0.10969600  | -0.44098200 | 11.07700500 |
| С      | -0.19145800 | -1.98564400 | 9.57849900  |
| Η      | 0.39970400  | -2.60493700 | 8.89685300  |
| Н      | -0.68848400 | -2.65293000 | 10.29418300 |
| С      | -2.13599100 | -2.09725400 | 7.98667100  |
| Н      | -2.68971800 | -2.77130000 | 8.65284500  |
| Н      | -1.54281200 | -2.71249900 | 7.30339800  |
| С      | -3.12413200 | -1.20991600 | 7.21543300  |
| Н      | -3.78267500 | -0.68141800 | 7.91271000  |
| Н      | -3.75641600 | -1.81314100 | 6.55914000  |
| Н      | -3.10812500 | 1.17173800  | 6.15563400  |
| Н      | -2.18282800 | -0.37123200 | 4.92468300  |
| Н      | 2.69938200  | -0.15849800 | 8.87977400  |
| Н      | 1.64518800  | 1.41510700  | 9.95076500  |
| В      | 1.01335900  | -0.98312900 | 5.42911400  |
| Н      | 1.79887000  | -1.86622900 | 5.63304200  |
| Н      | 0.73950900  | -0.77936500 | 6.70597700  |
| Ν      | 1.78817100  | 0.27274500  | 4.80538100  |
| Н      | 2.57563800  | 0.57176200  | 5.38202300  |
| Н      | 2.15659900  | 0.02886900  | 3.88304800  |
| Н      | 1.17172800  | 1.08122700  | 4.70657400  |
| Н      | 0.06861900  | -1.25402700 | 4.75620200  |
| I-TSB1 |             |             |             |
| Ŧ      | 0.100.11000 | 0.050(0000  |             |
| lr     | -0.19841800 | 0.05860900  | 7.46467100  |
| H      | 0.50186200  | 1.13852000  | 6.46494600  |
| CI     | -1.19258000 | 2.03127700  | 8.66214600  |
| P      | -2.18103900 | -0.16030100 | 6.26921300  |
| P      | 1.48945300  | 0.02090400  | 9.06779200  |
| N      | -1.30888900 | -1.04392500 | 8.99257100  |
| H      | -1.73006100 | -0.24730700 | 9.48854700  |
| C      | 0.65077500  | -0.83293000 | 10.49671400 |
| H      | 1.36343200  | -1.37655400 | 11.12151500 |
| Н      | 0.19860300  | -0.04522700 | 11.10806000 |
| C      | -0.42933500 | -1.77390600 | 9.95168900  |
| H      | 0.01493200  | -2.61631100 | 9.41403100  |
| Н      | -1.03143000 | -2.17336800 | 10.77669100 |
| C      | -2.41182300 | -1.87841500 | 8.43219100  |
| H      | -3.02313300 | -2.28208500 | 9.24835300  |
| Н      | -1.95135100 | -2.71767500 | 7.90299600  |
| C      | -3.28173600 | -1.03983400 | 7.48898100  |
| H      | -3.81367600 | -0.26283300 | 8.04751200  |
| H      | -4.02664200 | -1.66318600 | 6.98858000  |
| H      | -2.91258500 | 0.97560700  | 5.87593500  |
| H      | -2.24302000 | -0.93910100 | 5.09475600  |
| Н      | 2.68232000  | -0.70304400 | 8.86055600  |
| Н      | 1.99336000  | 1.21826100  | 9.60859800  |
| В      | 2.05797000  | -1.21362800 | 4.74988400  |
| H      | 2.93049400  | -1.68164100 | 5.40206600  |
| Η      | 0.36173400  | -1.28818500 | 6.80184900  |
| Ν      | 1.88693200  | 0.24580100  | 4.77936500  |
| Н      | 2.70786100  | 0.80037300  | 5.01881100  |
| Н      | 1.39935000  | 0.66783600  | 3.99015100  |
| Н      | 1.06842400  | 0.45103400  | 5.79982800  |
| Н      | 1.29461200  | -1.84877000 | 4.10258500  |
| I-B2   |             |             |             |

18 of 22

| Ir       | 0.10609200    | 0.11350500  | -0.18508600               |
|----------|---------------|-------------|---------------------------|
| Н        | 0.78285500    | 1.32445900  | -1.15119400               |
| Cl       | -0.81031800   | 2.09809900  | 1.04777200                |
| Р        | -1.91153600   | -0.05347900 | -1.37273200               |
| P        | 1.86926900    | 0.01209100  | 1.36270700                |
| N        | -0.96747000   | -0.94138300 | 1 32414300                |
| н        | -1 35699900   | -0 14070300 | 1 84293000                |
| II<br>C  | 1.02100600    | -0.14070500 | 2 70074100                |
|          | 1.03190000    | -0.01943700 | 2.79974100                |
| H        | 1./3644300    | -1.39840200 | 3.40161400                |
| Н        | 0.62355500    | -0.02271000 | 3.42991100                |
| C        | -0.09021400   | -1.71372500 | 2.26394500                |
| Н        | 0.31011300    | -2.56720000 | 1.71039700                |
| Н        | -0.70047200   | -2.09420100 | 3.09048000                |
| С        | -2.11573200   | -1.75046500 | 0.79743600                |
| Н        | -2.70174200   | -2.13020600 | 1.64168400                |
| Н        | -1.69397900   | -2.60400800 | 0.25978600                |
| С        | -2.99580200   | -0.89380200 | -0.11792000               |
| Н        | -3.49138000   | -0.10142600 | 0.45224500                |
| Н        | -3.76956500   | -1.50236100 | -0.59209300               |
| Н        | -2 60119700   | 1 10757400  | -1 76283600               |
| н        | -1 97367000   | -0.84132500 | -2 53750600               |
| П<br>Ц   | 2 01246700    | 0.75680200  | 1.07425000                |
| 11       | 3.01240700    | -0.73060200 | 1.07455000                |
| п        | 2.42673600    | 1.19373200  | 1.07452000                |
| H        | 0.58315900    | -1.27012400 | -0.82103900               |
| Н        | 1.05809900    | 0.53825100  | -1.50920500               |
| 8        |               |             |                           |
| Ir       | -0.98562200 - | -0.69889900 | 8.92973700                |
| Р        | -2.90833700   | -1.46031100 | 8.03237200                |
| Р        | 0.72941600    | -1.17893000 | 10.31223800               |
| Ν        | -1.98429400   | -3.20719000 | 10.82677300               |
| Н        | -2.51725900   | -3.21127700 | 11.68901900               |
| С        | 0.25961400    | -2.46397100 | 11.59815500               |
| Н        | 1.17879900    | -2.85886100 | 12.04613300               |
| Н        | -0.28880900   | -1.94017500 | 12.38872300               |
| C        | -0 60635700   | -3 61593100 | 11 04562300               |
| н        | -0 19497600   | -3 95131800 | 10.08777400               |
| Ч        | -0.51746000   | -4 47302800 | 11 73766700               |
| C        | 2 7/19/700    | 2 77920500  | 9 72480800                |
|          | -2.74194700   | -3.77930300 | 9.72400000<br>10.0200(E00 |
| п        | -3.31712400   | -4.67340300 | 10.02006500               |
| H        | -2.03345600   | -4.11036200 | 8.95804400                |
| C        | -3.72644300   | -2.76334300 | 9.10880900                |
| H        | -4.25141400   | -2.23131100 | 9.90967700                |
| Н        | -4.48434300   | -3.28093600 | 8.50946700                |
| Н        | -1.80170400   | -0.28825200 | 10.17714600               |
| Н        | -4.07656800   | -0.70892700 | 7.70035900                |
| Н        | -2.85007600   | -2.17246600 | 6.80020000                |
| Н        | 1.44390500    | -0.28710000 | 11.16885500               |
| Н        | 1.88887000    | -1.80283300 | 9.76880200                |
| 9-2a     |               |             |                           |
| Ir       | 0.53574300    | 0.00292900  | -0.35178300               |
| Р        | -0.04494800   | -2 18018900 | -0 27167000               |
| P        | -0.01311900   | 2 19314400  | -0 23351000               |
| ı<br>N   | -0.01011700   | 0.017/7500  | 0.16052400                |
| 1N<br>LI | -2.00041700   | 0.01/4/300  | 0.10703400                |
|          | -3.200/3000   | 0.03414000  | -0.34193600               |
|          | -1.86512900   | 2.38537600  | 0.03995600                |
| Н        | -2.05688500   | 3.36/56300  | 0.486/2300                |
| Н        | -2.33393000   | 2.38303300  | -0.95043500               |
| С        | -2.48942900   | 1.26834400  | 0.90250800                |
| Н        | -1.87414800   | 1.10415700  | 1.79341900                |

| Н        | -3.47508500 | 1.62132800                | 1.26008400  |
|----------|-------------|---------------------------|-------------|
| С        | -2.51538000 | -1.25354100               | 0.86993600  |
| Н        | -3.50994900 | -1.59912200               | 1.20906800  |
| Н        | -1.90657800 | -1.12325800               | 1.77087300  |
| С        | -1.90000000 | -2.35719000               | -0.01592700 |
| Н        | -2.36329000 | -2.32506900               | -1.00842400 |
| Н        | -2.10688600 | -3.34725800               | 0.40615100  |
| Н        | 0.15297600  | 3.14624300                | -1.27659300 |
| Н        | 0.46800900  | 3.03477700                | 0.81007100  |
| Н        | 0.11914600  | -3.11829700               | -1.32802600 |
| Н        | 0.43128800  | -3.02712000               | 0.76646200  |
| Н        | 0.05608100  | 0.02108800                | -1.86906600 |
| В        | 2.30360800  | -0.23827100               | 1.83648700  |
| Н        | 2.37541500  | -1.41127600               | 2.09641600  |
| Н        | 2.50553500  | 0.50070500                | 2.76846200  |
| Ν        | 3.37360400  | 0.08577500                | 0.65446500  |
| Н        | 2.80290200  | -0.04701300               | -0.22278800 |
| Н        | 3.69562400  | 1.05145400                | 0.66731300  |
| Н        | 4.18511100  | -0.53072600               | 0.66913000  |
| Н        | 1.12946200  | 0.05544700                | 1.42883400  |
| TS9-2a   |             |                           |             |
| Ir       | -0.99801800 | -1.00707700               | 8.98167400  |
| P        | -3.00887600 | -1.49096900               | 8.04298100  |
| P        | 0.76478000  | -1.20735000               | 10.40178900 |
| N        | -1.83159300 | -3.03277000               | 10.56132400 |
| Н        | -2.34611100 | -2.61406100               | 11.33065000 |
| C        | 0.33901900  | -2.56999000               | 11.62919600 |
| H        | 1.25155400  | -3.03268900               | 12.01855500 |
| Н        | -0.16186300 | -2.08589600               | 12.47624200 |
| C        | -0.59049200 | -3.63978000               | 11.02576200 |
| H        | -0.10755700 | -4.11055300               | 10.16220100 |
| Н        | -0.74916300 | -4.43262800               | 11.77889600 |
| C        | -2.71498900 | -3.79949100               | 9.69169000  |
| H        | -3.23204500 | -4.62444700               | 10.21431700 |
| Н        | -2 09711400 | -4 25194900               | 8 90815800  |
| C        | -3.77505200 | -2.87966500               | 9.05725200  |
| H        | -4.36656600 | -2.40300300               | 9.84827700  |
| Н        | -4 46983400 | -3 46261700               | 8 44430700  |
| Н        | 1 23075400  | -0 21178200               | 11 29847800 |
| Н        | 2 03688800  | -1 63680300               | 9 94262000  |
| Н        | -4 11996900 | -0.61338900               | 7 95545500  |
| Н        | -3 10401900 | -2 02323000               | 6 73101800  |
| Н        | -1 70927700 | 0.01378800                | 9 99258700  |
| B        | 0 49332200  | -1 58117600               | 6 67187200  |
| Н        | -0 10375600 | -2 09779600               | 5 75781700  |
| н        | 1 62382000  | -1 97493700               | 6 83391500  |
| N        | 0.40584300  | -0.00644400               | 6 63100600  |
| н        | -0 31444300 | 0.08562300                | 7 76130100  |
| н        | 1 29937100  | 0.00002000                | 6 71201500  |
| н        | -0.09387800 | 0.36957400                | 5 83044000  |
| н        | -0.0207000  | -2 06656500               | 7 74766800  |
| 11       | -0.15770000 | -2.000000000              | 1.1 1 00000 |
| 11<br>Tm | 0.0000000   | 0 60260800                | 0.00241200  |
| п<br>Р   | -2 25101700 | -0.09300000               | 0.00341300  |
| r<br>D   | -2.23191700 | -0.42701200<br>0.42701000 | 0.03973300  |
| r<br>N   | 2.23191/00  | -0.42/01000<br>1 59429000 | 0.037/3000  |
|          |             | 1.38438000                | -0.27004900 |
| п        |             | 1./0246300                | -1.28820600 |
| U        | 2.47627500  | 1.41823500                | -0.24388000 |
| п        | 3.38485800  | 1.80198700                | 0.22931400  |

| Η      | 2.58137500  | 1.56689400   | -1.32487100              |
|--------|-------------|--------------|--------------------------|
| С      | 1.24346000  | 2.17016500   | 0.27553600               |
| Н      | 1.17794500  | 2.07799100   | 1.36382300               |
| Н      | 1.32087500  | 3.23931500   | 0.02476600               |
| С      | -1.24346400 | 2.17016600   | 0.27553100               |
| Η      | -1.32087900 | 3.23931400   | 0.02475400               |
| Н      | -1.17795100 | 2.07799800   | 1.36381800               |
| С      | -2.47627700 | 1.41823200   | -0.24388300              |
| Н      | -2.58137700 | 1.56688600   | -1.32487600              |
| Н      | -3.38486100 | 1.80198400   | 0.22930800               |
| Н      | 3.16550000  | -0.96046500  | -0.90182400              |
| Н      | 3.03103200  | -0.65685800  | 1.19957100               |
| Н      | -3.16549900 | -0.96047100  | -0.90181800              |
| Н      | -3.03102900 | -0.65685600  | 1.19957600               |
| Н      | -0.00000200 | -0.96283100  | -1.65354500              |
| Н      | 0.00000100  | -2.26096800  | 0.18067400               |
| Н      | 0.00000300  | -0.54970800  | 1.67667100               |
| TS11   |             | 010 177 0000 | 1107 007 100             |
| Ir     | -0.27904200 | 0.04300400   | 7.25736400               |
| H      | 0.53367400  | -0.95046000  | 6 15206900               |
| Р      | -2 40324300 | 0.02106900   | 6 41009500               |
| P      | 1 19762200  | 0.08664900   | 9 00138300               |
| N      | -1 07146100 | -1 74283600  | 8.39999900               |
| н      | -1 60742100 | -1 27362900  | 9 12943100               |
| C      | 0.83131300  | -1 51584800  | 9 93904000               |
| н      | 1 74901100  | -1 99505900  | 10 29029100              |
| H      | 0.24716900  | -1 24906700  | 10.22022100              |
| C II   | 0.24710500  | 2 48284200   | 9.05589600               |
| с<br>u | 0.65568100  | 2.40204500   | 8 26381800               |
| и<br>П | 0.00000000  | 2 2111000    | 9.66326000               |
| C II   | 2 02101800  | 2 52150200   | 7 57705200               |
| С<br>U | -2.02191600 | -2.52150500  | 2.37703300<br>8.1E066100 |
| П      | -2.45167600 | -3.33093300  | 6.13900100               |
| п      | -1.45925300 | -2.93997200  | 6.73832700               |
|        | -3.13741900 | -1.38930400  | 7.08102800               |
| н      | -3.80048600 | -1.32557700  | 7.91338100               |
| Н      | -3.75055300 | -2.09559100  | 6.33066100               |
| H      | 1.30953200  | 0.97271100   | 10.11175300              |
| H      | 2.600/2400  | -0.02395200  | 8.79623700               |
| H      | -3.51312100 | 0.88384000   | 6.64377600               |
| H      | -2.65203200 | -0.11750800  | 5.01664700               |
| Н      | -0.13200800 | 1.61399200   | 7.01567200               |
| Н      | 0.67934200  | 0.16936800   | 5.92197500               |
| 12     |             |              |                          |
| lr     | -0.09113500 | 0.73155800   | 0.10601900               |
| Р      | -1.87846800 | 0.37068800   | -1.20965000              |
| Р      | 1.72916000  | 0.44242500   | 1.39389700               |
| Ν      | -0.69410700 | -1.29060800  | 0.99663600               |
| Η      | -1.27455600 | -1.02778600  | 1.79447400               |
| С      | 1.39293900  | -1.14612800  | 2.34677700               |
| Н      | 2.30918100  | -1.68036900  | 2.61605500               |
| Н      | 0.89084500  | -0.86597100  | 3.28037500               |
| С      | 0.48250200  | -2.04308200  | 1.50199100               |
| Н      | 1.02651600  | -2.40393700  | 0.62359400               |
| Н      | 0.16336700  | -2.92177000  | 2.08349700               |
| С      | -1.52458000 | -2.08312900  | 0.05470900               |
| Н      | -1.95382400 | -2.96321100  | 0.55802500               |
| Н      | -0.85312000 | -2.44268200  | -0.73108500              |
| С      | -2.63581200 | -1.22641500  | -0.56148100              |
| Н      | -3.37283400 | -0.95122000  | 0.20228000               |

| Η     | -3.16417400 | -1.78940600 | -1.33698600 |
|-------|-------------|-------------|-------------|
| Н     | 2.20461100  | 1.27190400  | 2.44776800  |
| Н     | 3.00276100  | 0.17647700  | 0.82116800  |
| Н     | -3.04938300 | 1.16804200  | -1.34350400 |
| Н     | -1.72873100 | 0.08323300  | -2.59370300 |
| Н     | 0.31044100  | 2.15402700  | -0.48995400 |
| TS11′ |             |             |             |
| Ir    | -0.20227200 | 0.06393100  | 7.14310500  |
| Η     | 0.68543900  | -0.43834900 | 5.92478500  |
| Р     | -2.05856100 | -0.32247400 | 5.85914900  |
| Р     | 1.61433700  | -0.25186900 | 8.50516600  |
| Ν     | -0.98741200 | -1.74078500 | 8.28334800  |
| Η     | -1.29016000 | -0.32614900 | 8.66548400  |
| С     | 1.05150100  | -1.60169800 | 9.67024600  |
| Η     | 1.89228900  | -2.17004000 | 10.07791900 |
| Η     | 0.55023400  | -1.09342400 | 10.50148900 |
| С     | 0.05434400  | -2.51257000 | 8.93450500  |
| Η     | 0.61024700  | -3.13027000 | 8.20189400  |
| Η     | -0.37276300 | -3.21564200 | 9.67278300  |
| С     | -1.92204100 | -2.54668100 | 7.51965000  |
| Η     | -2.47082900 | -3.24807500 | 8.17433000  |
| Η     | -1.39319200 | -3.16886600 | 6.77097300  |
| С     | -2.95591500 | -1.67023300 | 6.79221000  |
| Η     | -3.59245500 | -1.15942700 | 7.52336300  |
| Η     | -3.60058400 | -2.26476300 | 6.13864900  |
| Η     | 2.16987100  | 0.70983100  | 9.38183400  |
| Н     | 2.81305600  | -0.74127600 | 7.94220400  |
| Η     | -3.08662200 | 0.61077900  | 5.58668000  |
| Η     | -1.89222400 | -0.83947500 | 4.55594800  |
| Η     | -1.25515100 | 0.63398600  | 8.58920700  |
| Η     | 0.19859800  | 1.48910600  | 6.54815800  |
| 12′   |             |             |             |
| Ir    | -0.21071900 | -0.00476900 | 7.15834200  |
| Н     | 0.65046600  | 0.53681200  | 5.94615900  |
| Р     | -2.11239700 | -0.29882600 | 5.93121300  |
| Р     | 1.56225000  | -0.22879700 | 8.57761900  |
| Ν     | -0.86629800 | -1.67633900 | 8.11173800  |
| С     | 0.94490800  | -1.49490800 | 9.79535400  |
| Н     | 1.75572200  | -2.05264400 | 10.27288700 |
| Н     | 0.41363400  | -0.92712200 | 10.56612100 |
| С     | -0.04158100 | -2.41930600 | 9.06382200  |
| Η     | 0.51882200  | -3.23100400 | 8.56505600  |
| Н     | -0.67964100 | -2.91123600 | 9.81757800  |
| С     | -2.01673800 | -2.45247000 | 7.65025700  |
| Н     | -2.51664500 | -2.93762200 | 8.50581800  |
| Н     | -1.70649300 | -3.27186600 | 6.97638000  |
| С     | -3.04365700 | -1.56268200 | 6.93122900  |
| Η     | -3.61412000 | -0.99041800 | 7.67002700  |
| Η     | -3.74480800 | -2.14681300 | 6.32816700  |
| Η     | -0.18588700 | 1.59010600  | 7.08320000  |
| Н     | -3.07904200 | 0.69585600  | 5.65686500  |
| Н     | -2.02899200 | -0.86556200 | 4.63641800  |
| Η     | 2.09696600  | 0.79422000  | 9.39398700  |
| Η     | 2.78147300  | -0.76537400 | 8.09771500  |