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Abstract: Electrocatalysis plays a prominent role in the development of carbon dioxide utilisation
technologies. Many new and improved CO2 conversion catalysts have been developed in recent years,
progressively achieving better performance. However, within this flourishing field, a disconnect
in catalyst performance evaluation has emerged as the Achilles heel of CO2 electrolysis. Too often,
catalysts are assessed in electrochemical settings that are far removed from industrially relevant
operational conditions, where CO2 mass transport limitations should be minimised. To overcome this
issue, gas diffusion electrodes and gas-fed electrolysers need to be developed and applied, presenting
new challenges and opportunities to the CO2 electrolysis community. In this review, we introduce
the reader to the fundamentals of gas diffusion electrodes and gas-fed electrolysers, highlighting their
advantages and disadvantages. We discuss in detail the design of gas diffusion electrodes and their
operation within gas-fed electrolysers in both flow-through and flow-by configurations. Then, we
correlate the structure and composition of gas diffusion electrodes to the operational performance of
electrolysers, indicating options and prospects for improvement. Overall, this study will equip the
reader with the fundamental understanding required to enhance and optimise CO2 catalysis beyond
the laboratory scale.
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1. Introduction

There are strong evidence and consensus on the leading role of anthropogenic greenhouse
gas emissions in global warming and climate change [1]. Immediately reducing carbon dioxide
emissions will unlikely prevent the detrimental effects of increasing temperatures. Then, it is
essential not only to halt CO2 emissions but also to remove and dispose of the excess carbon dioxide
already present in the environment. To achieve these critical goals, scientists and engineers have
turned their attention towards the development of carbon capture, utilisation, and storage (CCUS)
technologies [2,3]. Carbon utilisation aims to profit from the conversion of CO2 to valuable products
and drive investments in carbon capture and storage [4,5]. The electrochemical conversion of CO2

using renewably generated electricity is an appealing approach for the production of sustainable
hydrocarbons, alcohols, and carbonyl products widely used in numerous industrial sectors [6–8].

In recent years, many papers have reported promising results in electrochemical CO2 reduction
(CO2R). Most of this research has been performed in the aqueous phase, where CO2 dissolved in
electrolytes is electrochemically reduced on a catalyst surface. These experiments have provided
essential knowledge of the impact of parameters such as electrolyte concentration, pH, ion and
mass transport, temperature, and pressure on the activity and selectivity of CO2R [9–12]. However,
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aqueous-phase CO2R suffers from practical limitations, making it commercially unviable. Among
these limitations, low CO2 solubility and diffusivity in aqueous electrolytes hinder high conversion
rates and energy efficiency [13].

Gas-fed CO2 electrolysers are a leading remedy to the solubility problem, where the CO2 is
introduced to the cell in gas phase. Such an approach can be implemented using gas diffusion
electrodes (GDEs). GDEs are porous electrodes with a catalyst layer in contact with the electrolyte.
Due to high CO2 mass transport and reduced diffusion lengths within the catalyst layer, GDEs can
achieve current densities higher than those of traditional electrodes [14]. GDEs are already used in
electrochemical energy-conversion devices such as fuel cells, delivering excellent performance [15–17].
Recent research papers on GDE CO2R show promising results for the scale-up and commercialisation
of CO2 electrolysis. However, most of the gas-fed electrolysers suffer from limited durability, leading to
a detrimental decay of performance after several, yet insufficient, operational hours [18]. For industrial
applications, long-term stability, of up to 30,000 h, and selectivity with current densities higher than
250 mA/cm2 are required [19–21].

The objective of this review is to highlight the pitfalls of performing CO2 catalysis in standard
(non-gas-fed) electrochemical cells and equip the reader with the fundamental knowledge and
understanding to further investigate and implement two technologies crucial to overcome the key
issue of mass transfer in CO2 electrolysis: gas diffusion electrodes and gas-fed electrolysers.

2. Gas Diffusion Electrodes

A gas diffusion electrode (GDE) consists of a gas diffusion layer (GDL) bearing a catalyst layer
(CL) on its surface (Figure 1). In principle, GDEs can hold many types of catalysts, including metal,
metal-free, and molecular catalysts, but also enzymes and microbes [22–24]. The GDL is a porous
structured sandwiched between the catalyst layer and the gas flow channel or field. The GDL serves
two primary purposes: it allows gas transport towards the catalyst layer and provides physical
support to the catalyst. The GDL is hydrophobic, preventing the electrolyte from blocking its pores
and facilitating gas transport to the CL. GDLs can be grouped into two main categories: single-layer
and dual-layer GDLs. A single-layer GDL consists of just a macroporous layer or substrate (MPS),
while in a dual-layer GDL an MPS is combined with a microporous layer (MPL). Dual-layer GDLs are
most frequently used, especially in CO2 electrolysers to suppress the electrolyte flooding of the GDE.
Figure 1 shows the typical structure of a dual-layer GDE. The gas flow field is in direct contact with the
macroporous layer, acting as a gas diffuser and current collector. The microporous layer is located on
top of the MPS and often consists of carbon and hydrophobic agents to regulate catholyte flooding.
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Figure 1. Simplified schematics of a gas diffusion electrode (GDE). (a) Stacked structure of a GDE
installed between gas flow field and liquid electrolyte as normally found in the cathodic compartment
of a CO2 electrolyser. The GDE comprises a gas diffusion layer (GDL) with on top a catalyst layer
(CL) in contact with the electrolyte. The dual-layer GDL is made of a microporous substrate (MPS)
and a microporous layer (MPL). (b) A GDE composed of carbon fibre MPS, carbon powder MPL,
and nanoparticle CL. CO2 penetrates the porous layers diffusing to the catalyst nanoparticles in contact
with the electrolyte. The MPS and MPL carry electrons from the gas flow field current collector to the
CL. Typical thickness ranges for MPS and MPL are also shown.
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2.1. Macroporous Layer or Support (MPS)

The MPS is usually made of carbon typically in the form of carbon-fibre paper, carbon cloth,
carbon felt, or carbon foam [25]. Carbon is commonly used as a macroporous material due to its high
stability in acidic environments, high gas permeability, good electronic conductivity, elasticity under
compression, and tunable porosity [26,27]. The thickness of the macroporous layer is typically between
100 and 500 µm, with thinner layers better suited for gas transport.

Carbon-fibre paper is widely used as a substrate in CO2R GDEs. The manufacturing of carbon
fibres is tailored to the application, whereby producers use different production methods to deliver
required specifications. In general, carbon-fibre paper is graphitised at high temperatures (>2000 ◦C)
enhancing electronic conductivity and mechanical strength, to be then impregnated with thermoset
resin [28]. Hydrophobic treatments of the carbon paper surface control the wettability of the MPS.
Various hydrophobic additives can be used, such as polytetrafluoroethylene (PTFE), polyvinylidene
fluoride (PVDF), and fluorinated ethylene propylene (FEP) [29–31]. The addition of the hydrophobic
agents is performed in multiple ways: dipping, spraying, or brushing, with dipping the more employed
method. The resulting hydrophobicity is dependent on the concentration of agent present in the
dipping solution and the dipping time. The effect of PTFE on performance has been studied in detail.
High loadings of PTFE in the MPS makes the GDL less prone to electrolyte saturation but also leads to
reduced gas transport and high electrical resistance [32,33]. The fabrication of custom-made MPS can
improve the CO2 electrolyser performance; it is good practice to prepare and test MPS with various
amounts of PTFE to find the optimum loading. This is a common approach in the optimisation of PEM
hydrogen fuel cells, showing satisfactory results [25].

Apart from carbon-based MPS, metal-based GDLs also exist, such as metal mesh, metal foam,
and micromachined metal. These have been extensively investigated in PEM fuel cells due to their
excellent mechanical strength and good stability [34,35]. Inspired by a similar concept, Züttel and
co-workers proposed a self-supported metal-based gas diffusion electrode for CO2 electrochemical
reduction [36]. The innovative GDE was based on the porous structure of a catalyst made of zinc metal
electrodeposited onto Cu mesh. The porous structure was immersed in PTFE, providing a hydrophobic
coating. Afterwards, a layer of carbon black and PTFE mixture was sprayed onto the gas side of the
GDE to prevent electrode flooding. Finally, the PTFE was soft-annealed to improve the hydrophobicity
of the GDE.

2.2. Microporous Layer (MPL)

The MPL contains a thin layer of carbon black powder combined with a hydrophobic agent,
typically PTFE. The MPL improves both electrical conductivity and water management [37–39]. It
can also reduce the electrical contact resistance between CL and MPS, forming a flat and uniform
layer impermeable to catalyst nanoparticles. The catalyst is applied to the MPL via drop-casting,
airbrushing, electrodeposition, compression, or incorporation into the porous layer itself [40]. The MPL
is capable of suppressing electrolyte flooding, lowering water saturation at the interface between the
MPL and MPS and between CL and MPL. Unlike the MPS, hydrophobic agents are not applied on the
MPL surface; instead, they are blended with the carbon powder [41]. Carbon powder is mixed with
PTFE dispersed in water, organic solvent, and additives, creating a carbon ink [42]. The carbon ink
is deposited onto one side of the MPS and heated to remove any residual solvents and surfactants
and to induce PTFE flowing in the MPL. Extensive optimisation work has been carried out for MPLs
applied in PEM fuel cells, looking at the effect of carbon type, carbon thickness, porous structure,
and wettability, leading to important observations [43–46]. For example, the type of carbon affects the
pore structure and wettability, impacting on the mass transport efficiency and electrical conductivity of
the resulting GDE [47]. Moreover, high concentrations of PTFE in the MPL translate into lower pore
volumes and therefore, worse performance [48]. It was also found that the thickness of the MPL has a
significant influence on cell operation. A very thin MPL does not provide a smooth surface on the
carbon cloth, resulting in higher ohmic resistance, but a thicker MPL leads to mass transfer limitations
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due to lengthened diffusion paths [49–51]. MPL optimisation not only plays a key role in hydrogen
fuel cells but also in the improvement of CO2 electrolysers [52,53]. However, the factors affecting
MPLs have investigated mainly for hydrogen PEMs and should be studied for CO2R. Although little
work has been done in this regard, the influence of PTFE loading in the MPL of CO2 GDEs has been
investigated, where a loading of 20 wt % was found to be optimum. This matter is discussed in further
detail later in Section 5.1 of this review.

3. Aqueous-Fed and Gas-Fed Electrolysers

The ideal CO2 electrolyser will deliver high faradaic efficiency (FE, selectivity towards a specific
CO2-derived product) and high current density (fast CO2-to-product conversion)—which is something
not just desirable but essential to make the process industrially viable. Carbon dioxide electrolysers can
be classified into two main groups: aqueous-fed electrolysers and gas-fed electrolysers. Aqueous-fed
electrolysers are also called liquid-phase reactors; they convert CO2 solubilised and transported to the
catalyst via the electrolytic solution (Figure 2a). Instead, in gas-fed electrolysers, the CO2 is introduced
and brought in gas form as close as possible to the catalyst layer (Figure 2b). Aqueous-fed electrolysers
are vastly used in research laboratories, leading to many published scientific papers [9,24,54–57].
This extensive use is a result of their ease of operation and adaptability to multiple types of electrode
materials and configurations, making them ideal for the rapid and cost-effective study of CO2R
catalysts. Although aqueous-fed electrolysers can provide critical information on key factors affecting
CO2R—such as catalyst composition, structure, surface tailoring, and electrolysis environment—their
commercialisation is inconceivable since industrial application is only viable at high conversion rates,
i.e., current densities above 250 mA/cm2. Aqueous-fed electrolysers cannot fulfil this requirement due
to limited CO2 mass transport restricting current densities to values up to 35 mA/cm2, for two-electron
reduction processes in bulk liquid phase [58,59]. In particular, CO2R kinetics in batch-type electrolysis
is limited by the slow diffusion and low solubility of CO2 in the aqueous media. In batch-type
electrolysis (H-cell), even nanostructured catalysts act as planar electrodes, relying on the diffusion of
CO2 molecules across multiple micrometre lengths to reach the catalyst [58]. Therefore, CO2R research
is often carried out under various degrees of mass transport limitation, also leading to concentration
polarisation. Consequently, true catalytic activities are difficult to estimate.

Although the diffusion limitations found in the batch-type aqueous-fed electrolysers can be
overcome using flow cells to a certain extent, the poor solubility of the CO2 in aqueous electrolyte
compromises the mass transfer and thus the current density [60]. The solubility of CO2 in aqueous
electrolyte is 33 mM at 298 K and 1 atm [61]. The amount of dissolved CO2 can be increased using
higher pressures and lower temperatures [62], which are options that are not commercially desirable
and do not necessarily translate into higher current densities. Moreover, in the case of electrodes with
porosity depths of several microns, only the outermost part of the catalyst reacts with CO2 under a
diffusion-limited regime. On the contrary, gas-fed electrolysers do not present such mass transfer
limitations being able to sustain current densities often higher than 200 mA/cm2 [58]. In gas-fed
systems, CO2 is introduced in the reactor using gas diffusion electrodes. The purpose of the GDE is to
facilitate the transport of CO2 to the catalyst layer. CO2 is fed from the gas side of the GDE through the
GDL (Figure 1), establishing a gas/liquid (CO2/electrolyte) interface at the catalyst layer (Figure 2b).
In principle, the interface can be positioned as close as possible or even beyond the CL. This allows
establishing a high CO2 concentration gradient at the CO2/electrolyte interface, driving the rapid
transport of CO2 to the catalyst. Thus, notoriously higher electrochemically active surface areas are
obtained in gas-fed systems, where most of the catalyst is in active contact with CO2 thanks to shorter
diffusion pathways (50 nm). The larger catalytic surface area for CO2R may result in higher geometric
current densities and at lower overpotentials in comparison to aqueous-fed electrolysers [24]. Moreover,
the gaseous products formed can easily diffuse towards the gas flow chamber before suffering any
nucleation at the catalyst surface, avoiding blockages on active sites.



Catalysts 2020, 10, 713 5 of 34

Catalysts 2020, 10, x FOR PEER REVIEW 4 of 33 

 

factors affecting MPLs have investigated mainly for hydrogen PEMs and should be studied for CO2R. 

Although little work has been done in this regard, the influence of PTFE loading in the MPL of CO2 

GDEs has been investigated, where a loading of 20 wt % was found to be optimum. This matter is 

discussed in further detail later in Section 5.1 of this review. 

3. Aqueous-Fed and Gas-Fed Electrolysers 

The ideal CO2 electrolyser will deliver high faradaic efficiency (FE, selectivity towards a specific 

CO2-derived product) and high current density (fast CO2-to-product conversion)—which is 

something not just desirable but essential to make the process industrially viable. Carbon dioxide 

electrolysers can be classified into two main groups: aqueous-fed electrolysers and gas-fed 

electrolysers. Aqueous-fed electrolysers are also called liquid-phase reactors; they convert CO2 

solubilised and transported to the catalyst via the electrolytic solution (Figure 2a). Instead, in gas-fed 

electrolysers, the CO2 is introduced and brought in gas form as close as possible to the catalyst layer 

(Figure 2b). Aqueous-fed electrolysers are vastly used in research laboratories, leading to many 

published scientific papers [9,24,54–57]. This extensive use is a result of their ease of operation and 

adaptability to multiple types of electrode materials and configurations, making them ideal for the 

rapid and cost-effective study of CO2R catalysts. Although aqueous-fed electrolysers can provide 

critical information on key factors affecting CO2R—such as catalyst composition, structure, surface 

tailoring, and electrolysis environment—their commercialisation is inconceivable since industrial 

application is only viable at high conversion rates, i.e., current densities above 250 mA/cm2. Aqueous-

fed electrolysers cannot fulfil this requirement due to limited CO2 mass transport restricting current 

densities to values up to 35 mA/cm2, for two-electron reduction processes in bulk liquid phase [58,59]. 

In particular, CO2R kinetics in batch-type electrolysis is limited by the slow diffusion and low 

solubility of CO2 in the aqueous media. In batch-type electrolysis (H-cell), even nanostructured 

catalysts act as planar electrodes, relying on the diffusion of CO2 molecules across multiple 

micrometre lengths to reach the catalyst [58]. Therefore, CO2R research is often carried out under 

various degrees of mass transport limitation, also leading to concentration polarisation. 

Consequently, true catalytic activities are difficult to estimate.  

 

Figure 2. Principles of operation of aqueous-fed and gas-fed CO2 electrolysers. (a) In aqueous-fed 

electrolysers, CO2 diffuses from the bulk of the electrolyte to the surface of a traditional catalytic 

electrode, e.g. nanoparticles supported on a solid non-porous substrate. During operation, the 

diffusion layer can be 50 μm thick. As a result, the conversion of CO2 to gas and liquid products is 

diffusion-limited. Both product types are released in the electrolyte. (b) In gas-fed electrolysers, CO2 

gas is transported to the CL from the back of the GDE; then, a diffusion layer as thin as 50 nm can be 

established near the catalyst. This results in a high CO2 concentration gradient across the diffusion 

layer, delivering CO2 reactant much faster to the catalysts. Gas products are dispatched to the gas side 

of the GDE, whilst liquid products remain in the electrolyte solution. 

Figure 2. Principles of operation of aqueous-fed and gas-fed CO2 electrolysers. (a) In aqueous-fed
electrolysers, CO2 diffuses from the bulk of the electrolyte to the surface of a traditional catalytic
electrode, e.g., nanoparticles supported on a solid non-porous substrate. During operation, the diffusion
layer can be 50µm thick. As a result, the conversion of CO2 to gas and liquid products is diffusion-limited.
Both product types are released in the electrolyte. (b) In gas-fed electrolysers, CO2 gas is transported to
the CL from the back of the GDE; then, a diffusion layer as thin as 50 nm can be established near the
catalyst. This results in a high CO2 concentration gradient across the diffusion layer, delivering CO2

reactant much faster to the catalysts. Gas products are dispatched to the gas side of the GDE, whilst
liquid products remain in the electrolyte solution.

Evidence of high performance is apparent in the literature, where higher CO2 reduction rates have
been consistently reported for GDEs. Since the early work by Cook et al. in 1990 [63] to the more recent
one by Dinh et al.—delivering current densities of 1 A/cm2 and CO2-to-ethylene faradaic conversion
efficiencies over 70% [64]—GDEs have systematically achieved industrially relevant CO2 conversion
performance. Figure 3 shows this trend, where faradaic efficiencies versus partial current densities for
different CO2R products in aqueous-fed and gas-fed electrolysers are compared. The performance
of gas-fed electrolysers (full symbols) is consistently higher than that of aqueous-fed electrolysers
(empty symbols). Although these data refer to different cell designs and catalyst configurations,
the comparison shows the advantage of using gas-fed instead of aqueous-fed electrolysers, boosting
higher current densities while retaining similar selectivity.
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Figure 3. Summary of CO2R performance using aqueous-fed [65–84] (empty symbols) and
gas-fed [64,85–99] (full symbols) electrolysers. Faradaic efficiencies and their corresponding partial
current densities are presented for various catalytic systems converting CO2 to carbon monoxide,
ethylene, ethanol, or formate. The data have been collected from papers published during the last three
years (2017–2020).
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It is worth mentioning that high CO2R current densities often require high cell potentials, which is
economically undesirable [19,100]. However, when very high current densities are obtained, e.g., in the
range of A/cm2, considerable CO2 conversion is also achievable is diluted CO2 streams. This is essential
for electrolyser scale-up where catalyst areas can be as large as 100 cm2. In this case, the need to obtain
enough high single-pass conversion efficiencies will require the partial pressure of CO2 to decrease
significantly through the electrolyser. Consequently, the catalysts should be active in diluted streams,
especially at the outlet of the gas compartment where ideally the amount of unreacted CO2 left in
the outflow should be as low as possible. Then, a catalytic system should achieve very high current
densities in 100% CO2, in order to deliver useful current densities in real industrial settings [58].

4. Carbon Dioxide Electrolysers

Remarkable progress has been made in the study of CO2 electroconversion with thousands of
scientific papers published to date [101,102]. However, there is still much to understand and do to
make CO2 electrolysis industrially viable [103]. CO2R suffers from high over-potential, low current
density, low product selectivity, and limited stability. To address these issues, research has primarily
focused on the development of new and improved electrocatalytic materials, looking at composition,
morphology, structure, surface state, nanoparticle size, etc. However, materials design is only one of
the factors that influence CO2R. Operating conditions ought to be considered too, especially reactor
design [104,105]. To date, comparably limited research has been carried out on the optimisation of
CO2 electrochemical reactors, and even less work has attempted to integrate the many new catalysts
developed by the materials research community. The impact of operating conditions is extremely
important, and catalysts should be tested at least in industrial relevant conditions when access to
industrial environments is not possible. From the reviews recently published on electrochemical reactor
or cell design, it is clear that reactors determine current density, faradaic efficiency, and operational
stability [60,106–108]. Reactor optimisation leads to higher conversion rates and energy efficiency, as a
result of enhanced mass transport, lower ohmic resistance, and lower cell potential. In this section, we
summarise the most common electrolytic reactors focusing in particular on gas-fed electrolysers where
gas diffusion electrodes are employed. Since the foundational work of Hori et al. in the 1980s [109],
different CO2 reactor designs have been proposed. In general terms, reactors can be classified into two
main groups: H-cell and flow cell. In this review, lab-scale and pilot-scale reactors will be discussed,
providing a broad overview.

4.1. H-Cell Reactors

The H-type cell is the most known and used lab-scale CO2R reactor. Figure 4 shows a simplified
schematic diagram of a conventional H-type electrochemical cell. The working electrode (WE) and
reference electrode (RE) are located in the cathodic compartment, while the counter electrode (CE)
is placed in the anodic one. The two compartments, also called sections or chambers, are typically
connected through a channel separated by an ion-exchange membrane. This set-up provides the
characteristic “H” shape, hence the name of the cell. The working electrode can be a bulk catalyst, such
as copper foil, or a nanostructured catalyst; copper is particularly amenable to nanostructuring and
integration in composites [110–112]. Carbon dioxide is typically introduced in the cathodic chamber
via a capillary tube or a glass frit, the latter sparging smaller bubbles on the working electrode. Larger
bubbles are detrimental to CO2R, since they limit the amount of electrolyte in contact with the WE.
The depletion of electrolyte, and thus of dissolved CO2 available for electroreduction, translates into a
decrease in CO2-derived gaseous products at the advantage of hydrogen evolution reaction (HER) [108].
Therefore, the use of a glass frit is frequently preferred, although it does not necessarily solve the
possible build-up of stagnant bubbles. A mass flow controller is typically employed to regulate the
CO2 flow in the catholyte.
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Figure 4. Schematic diagram of a conventional H-type electrochemical cell. CO2 gas is bubbled
in the catholyte using a glass frit. CO2 is reduced on the working electrode (WE). A reference
electrode (RE) is placed in the cathodic compartment, while the counter electrode (CE), usually a
platinum mesh, is located in the anodic compartment. The two compartments are separated by an
ion-exchange membrane.

The electrochemical cell should be gastight to allow the accurate collection of gas samples at the
outlet. The composition of the gas samples is commonly determined with a gas chromatographer
(GC), from which to calculate the faradic efficiencies of gas products. Liquid products in the
electrolyte can instead be identified and quantified using proton nuclear magnetic resonance (NMR)
or high-performance liquid chromatography (HPLC). The H-cell is a batch reactor for lab-scale CO2

electrolysis studies. It suffers from mass transport limitations and high cell electrical resistance,
both compromising the evaluation of true catalyst performance, considering “true” the performance
observed on a larger scale. Another major issue of H-cell reactors is the low CO2 conversion efficiency.
Only a minuscule amount of the CO2 fed in the reactor is converted to products; consequently, the gas
products are diluted in a stream of unreacted CO2.

4.2. Flow Cell Reactors

In flow cell reactors, the electrolyte is in a continuous flow. Often both catholyte and anolyte
are pumped and refreshed, although sometimes the anolyte might be static [106]. Flow reactors have
several advantages compared to batch reactors: they increase mass transfer and improve mixing,
provide better temperature and heat management, and exhibit a precise control of the electrolyte
residence time in the reaction chamber [60]. It is worth noting that the performance of CO2 catalysts
in batch experiments do not apply to flow regimes given the impact of mass transport on product
selectivity. Therefore catalysts, whose CO2 conversion performance has already been tested in batch
cells, should be retested in flow cells.

Unlike batch reactors, where most of electrolysis have been carried out using a three-electrode
configuration, in flow reactors, other configurations are also common. Some flow reactors use a
two-electrode configuration with WE and CE—cathode and anode, respectively—but no RE; thus, no
control or monitoring of the WE potential is possible. Other flow electrolysers use a three-electrode
configuration with a RE placed in the cathodic compartment; in such a configuration, the WE potential
can be monitored. Rarely, a four-electrode configuration, with two reference electrodes, is used.
This system is beneficial when anodic reactions additional or alternative to water oxidation are present
at the CE, and the electrode potential of both half-cells needs to be monitored [113].

CO2 electrochemical flow reactors can be grouped into four categories: (1) basic flow, (2) polymer
electrolyte membrane, (3) microfluidic, and (4) solid-oxide electrolysers. Solid-oxide electrolysers are
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important but outside the remit of this review, since they follow different operational conditions and
principles. Readers interested in CO2 solid-oxide electrolysers are directed to these reviews [114,115].

4.2.1. Basic Gas-Fed Flow Electrolysers

We introduce here the terminology “basic” electrolyser to denote a basic design from which other
electrolyser configurations can be derived. It is essential to mention that terminology varies among
published work. Sometimes, CO2 gas-fed electrolysers have been named “liquid-phase” electrolysers,
since the catalyst was in contact with aqueous electrolyte. To avoid confusion, in this work, liquid-phase
or aqueous-phase electrolysers are those in which CO2 is primarily delivered to the catalyst as carbon
dioxide dissolved in the electrolyte. Thus, some of the previously named “liquid-phase” electrolysers
are considered here “gas-fed” electrolysers, since CO2 was delivered to the catalyst in gaseous form.
Figure 5 shows the schematic and operating principle of a basic gas-fed flow electrolyser. The cell
consists of three different compartments. The first compartment, from left to right, is filled with CO2

gas, the second is filled with catholyte, and the third is filled with anolyte. The anodic and cathodic
compartments are separated by an ion-exchange membrane. The membrane serves multiple purposes.
First, CO2R products should not cross the membrane to be oxidised at the anode. Second, O2 evolving
from the anode should not enter the cathode compartment to be reduced back to water. These are
typically cation-exchange or anion-exchange membranes, depending on the product of interest and
working conditions. In particular, membranes transporting ions of opposite charge to the ionic product
of CO2 conversion should avoid product crossover and loss [116,117]. For example, cation-exchange
membranes would, in principle, be a better option for anionic species such as formate, although not
all experimental evidence support this approach [118]. Usually, anolyte and catholyte are circulated
using two separate pumps, ensuring a constant flow of electrolyte in both compartments. The CO2 and
cathodic compartments are separated by a GDE. The catalyst present on the GDE is in contact with the
catholyte on the cathodic side, while CO2 gas is fed from the back of the GDE. Conductors such as
carbon nanotubes (CNTs) can be incorporated into the catalyst layer as a support for the additive to
provide or improve electrical transport, as shown in some entries of Table 1.
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Figure 5. Schematic diagram of a basic gas-fed flow electrolyser. A gas diffusion electrode is used as a
cathode, a traditional solid non-porous electrode is used as an anode, with an ion-exchange membrane
separating the cathodic and anodic compartments. The catalyst layer on the gas diffusion electrode is
in contact with the catholyte. A reference electrode is also present in the cathodic side.
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Table 1. A list of CO2 conversion performance using basic gas-fed flow electrolysers. AEM: anion-exchange membrane, CEM: cation-exchange membrane,
CNT: carbon nanotubes, ~: approximately.

Main Product Catalyst Membrane Type GDL Type FE (%) Current Density (mA/cm2) Stability Reference

CO Ni-N-C AEM (Selemion AMV) Freudenberg C2 ~85 700 20 h [119]
CO Ag AEM (FAA-3PK-130) Sigracet 39BC >42 300 10 h [120]
CO Ag CEM (Nafion 117) Covestro ~60 150 600 h [121]
CO Ag-S-C3N4/CNT CEM (Nafion) Hesen HCP120 >80 ~300 24 h [122]
CO CoPc-CN/CNT AEM (Selemion DSV) Toray, TGPH-120 94 33 10 h [123]
CO CoOx/CNT AEM (Selemion DSV) Toray, TGPH-120 ~76 27.3 18 h [124]

Formate Sn CEM (Nafion 117) Sigracet GDL 35BC ~90 200 5 h [116]
Formate Sn CEM (Nafion 117) Toray TGP-H-60 71 8.13 6 h [125]
Formate Sn CEM (Nafion 117) Toray, TGPH-90 ~70 200 n.a. [98]
Formate Bi CEM (Nafion 112) Toray, TGPH-120 >93 10 70 h [126]
Formate SnO2/CNT AEM (Selemion DSV) Toray, TGPH-120 83 236 10 h [123]
Ethylene CuDAT-wire AEM (FAP-375-PP) Sigracet 35 BC 40 ~90 8 h [127]
Ethylene Cu AEM Freudenberg ~60 400 n.a. [99]
Ethylene Cu-MOF AEM Sigracet 45 262 140 min [128]
Ethylene Cu (ERD) AEM Freudenberg 38 450 1 h [129]
Ethylene Cu AEM (FAB-PK-130) Sigracet BC39 ~60 300 6 h [130]
Methanol Cu2O/ZnO CEM (Nafion 117) Toray, TGP-H-60 27.5 10 20 h [131]
Ethanol Cu2S/Cu-V AEM n.a. ~25 400 150 min [86]
Ethanol CuZn AEM (FKS-50) Sigracet 38 BC ~40 200 10 h [132]
Ethanol CuDAT-wire AEM (Fumatech FAP-375-PP) Sigracet 35 BC ~20 ~80 8 h [127]
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The basic gas-fed flow reactor is broadly used in CO2 electrolysis, achieving high current densities
for CO, formate, hydrocarbons, and oxygenates. The cell allows the precise control and optimisation of
the reaction environment [117]. Table 1 lists some examples of basic gas-fed flow electrolysers applied
to CO2R using various catalysts. High faradaic efficiencies and current densities demonstrate the
potential of this cell design for industry application, overcoming the mass-transport limitations seen
for H-cell reactors. However, cell design is not the only factor that affects CO2R performance; the way
CO2 gas is supplied to the catalyst is also crucial.

Two main configurations are possible for CO2 gas to reach the catalyst layer: flow-by and
flow-through [133]. As shown in Figure 6, in the flow-by configuration, CO2 flows alongside the GDE
and eventually reaches the catalyst layer by diffusion. In the beginning, CO2 gas enters the pores of the
GDL. Once the entire depth of the GDL is filled, the CO2 comes into contact with the catalyst surface,
where it is adsorbed and reduced to products. The products desorb and diffuse back through the
GDL into the CO2 stream (gas products) or as they move in the opposite direction into the electrolyte
(liquid products). A thin CO2 diffusion layer is established, resulting in high CO2 mass transport as
the concentration difference between the inside and outside the GDE is large.
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Figure 6. Schematics of the principle of operation of flow-by and flow-through configurations. (a) In
flow-by mode, CO2 gas enters the GDE without crossing it entirely. CO2 and gas products concentration
gradients are established along the depth of the GDE. Gas products (CO, H2, CH4, C2H4, etc.) join the
CO2 gas stream at the back of the GDE. Catholyte perspiration is also shown. (b) In flow-through mode,
CO2 gas enters and cross the GDE to emerge as bubbles in the catholyte. No concentration gradients of
CO2 and gas products are present in the GDE. Electrolyte crystallisation in the GDE is also shown.

With the progress of the electrolysis, far from the CO2 inlet, the concentration of CO2 will start
decreasing as the product concentrations increases. It is essential to highlight that for this process
to work, the electrolyte must be in continuous contact with the GDE. Then, flooding the GDE with
electrolyte is a major issue of the flow-by configuration. Often due to electrowetting, i.e., change
of wetting properties with applied potential, the catholyte enters and fills the porosity of the GDL
flattening the concentration gradient and slowing the diffusion of CO2 to the catalyst [134]. However,
flooding can at times be advantageous when the crystallisation of electrolyte in the GDL is an issue.
Furthermore, since in flow-by mode CO2R is substantially governed by diffusion, competitive H2

evolution (i.e., proton reduction instead of carbon dioxide reduction) can also affect the performance of
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the electrolyser. Alternatively, in the flow-through configuration, the CO2 gas is forced to flow through
the entire depth of the GDE. Therefore, no concentration gradients are formed. Nevertheless, this
configuration causes the formation of gas bubbles in the catholyte, resulting in a high ohmic drop.
Furthermore, electrolyte salt precipitation inside the GDE is a possible problem, blocking the GDE over
time. Running an electrolyser in either of the configurations is mainly a matter of differential pressure
across the GDE. The challenge of balancing this pressure differential and operating both flow-by and
flow-through modes are explained further in Section 5.4 of this review.

4.2.2. Polymer Electrolyte Membrane Electrolysers

Polymer electrolyte membrane (PEM) electrolysers, sometimes called membrane electrode
assembly (MEA) electrolysers, are also used in CO2R. This design is similar to that of a proton
exchange membrane fuel cell (PEMFC), where both cathodic and anodic compartments include a GDE,
current collector, and flow plate. The catalyst layer of each GDE is in contact with an ion-exchange
membrane sandwiched between the two electrodes (Figure 7). Given that there is no separation
between electrodes and membrane, this type of configuration is also called zero-gap. This type of
electrolyser can be seen as an evolution of the basic gas-fed configuration, where in this case, a GDE is
used in each compartment, and the cell operates without liquid electrolyte. PEM electrolysers overcome
issues of limited CO2 solubility since there is no liquid electrolyte present. Instead, the membrane
works as a solid-state electrolyte supporting ion transport between the electrodes. Gaseous reactants
and products flow in and out of the reactor with the electrodes located in close proximity to each other,
decreasing the cell resistance. The reactants are typically humidified, since no aqueous electrolyte
is present [135]. In its simplest form, H2O required for CO2 reduction is provided by bubbling CO2

through a water column.
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Figure 7. Schematic diagram of a CO2 polymer electrolyte membrane (PEM) electrolyser. Cathode
and anode are both gas diffusion electrodes. The two compartments are separated by an ion-exchange
membrane, i.e., a solid-state electrolyte. The catalyst layers shown in yellow are part of the GDEs and
are in direct contact with the membrane. The stack GDE/membrane/GDE is also called a membrane
electrode assembly.

In contrast with other reactors, no reference electrode is employed in PEM electrolysers, using
only working and counter electrodes [108]. Consequently, CO2R is carried out by controlling cell
voltage (or current) rather than the independent control of the working electrode potential. This can
make the study of the CO2R cathodic process difficult to disentangle from the corresponding anodic
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process. The proximity of the electrodes is arguably one of the main advantages of membrane-separated
zero-gap reactors, but ironically, it is also one of the main disadvantages. Finite ion transport rates
across the membrane can induce significant pH imbalance between catholyte and anolyte. For
example, this is an issue when catholyte acidification increases H2 evolution at the expense of CO2

reduction [106]. Another major issue of PEM electrolysers is the drying of the ion exchange membrane
with a detrimental effect on the ion transport capabilities [135].

Table 2 is a summary of various studies completed with CO2 PEM electrolysers. Experiments were
conducted using different cell conditions and ion exchange membranes. The ion-exchange membrane
is a critical component in the overall performance of a PEM electrolyser. Each type of membrane leads
to specific ion transport pathways between anode and cathode. In principle, the membrane should
prevent cross-contamination and the mixing of products while allowing current flow. The transport of
ions has been thoroughly analysed in various membranes for water electrolysis, but less information
is available for CO2 electrolysis [136]. Polymer electrolyte membranes are classified into three types:
cation-exchange membranes (CEMs), anion-exchange membranes (AEMs), and bipolar membranes
(BPMs) [60]. Understanding the properties of membranes and their effect on CO2 reduction is vital to the
improvement of CO2 PEM electrolysers [137]. For example, the effect of the type and concentration of
functional groups, and the thickness and ionic conductivity are important parameters to be considered
in developing or selecting a membrane. Most CO2R studies with PEM electrolysers have been
performed using CEMs. In this configuration, protons or other cations move across the membrane from
anode to cathode. Then, the CO2R product selectivity depends on the efficiency of proton transport
across the membrane; products that require fewer protons to form are favoured when underperforming
proton transport membranes are used [138]. AEMs operate by mediating the flow of anions, such
as OH−, from cathode to anode, regulating proton transfer and promoting CO2 reduction [108,139].
Unlike CEMs, in AEMs, water dissociation, from a humidified gas stream, provides the protons for
CO2R. Due to the lower proton availability, usually less HER is observed in AEM systems. However,
under basic conditions (high hydroxide concentration), bicarbonate and carbonate anions are formed
and transported to the anode. These anions inhibit membrane ion transport because of their lower
mobilities and hinder the CO2R, since CO2 is transported away from the cathode [60].

Table 2. A list of CO2 conversion performance using PEM electrolysers. AEM: anion-exchange
membrane, CEM: cation-exchange membrane, BPM: bipolar membrane, ~: approximately.

Main
Product Catalyst Membrane Type FE (%) Current Density

(mA/cm2) Stability Reference

CO Ag BPM (Fumatech) 50 200 24 h [140]
CO Ag AEM (Sustanion) >90 200 4380 h [141]
CO CoPc AEM (Sustanion) >95 175 8 h [142]
CO Ag AEM (Sustanion) ~95 >250 8 h [143]
CO NCNTs CEM (Nafion 117) >94.5 22 40 h [144]
CO Pb AEM (Sustanion) 96.7 202 10 h [145]
CO Ni GNS AEM (PSMIM) 97 50 20 h [146]

Formate Sn AEM (Sustanion) 94 140 550 h [91]
Formate Sn CEM (Nafion 117) ~50 45 n.a. [147]
Formate Sn CEM (Nafion 115) 93.3 41.5 48 h [94]
Formate Sn CEM (Nafion 117) 18 2 1 h [148]
Formate Sn CEM (Nafion 115) >5 5 10 h [149]
Formate In CEM (Nafion 117) 45 6.2 ~8 h [150]
Formate Pb CEM (Nafion 117) 65 46 1 h [151]
Ethylene Cu CEM (Nafion 117) 92.8 7.5 45 min [152]
Ethane Cu2O AEM (QPEI/PVA/KOH) 17 4.81 25 min [137]

In the absence of electrolyte, and in particular, of catholyte to provide the local environment
necessary for the CO2R reactions to occur, the type of membrane impacts massively on the CO2

conversion process. For example, Masel and co-workers used an N-methylimidazolium-substituted
styrenic copolymer membrane (commercially available as Sustainion®) to improve carbonate ion
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transport, enhancing the CO2R and resulting in outstanding cell stability (4380 h) [141]. Aeshala et al.
have also reported improved CO2R efficiency using solid polymer electrolytes based on quaternary
ammonium groups [137]. Moreover, it has been recently proposed that encapsulation of the catalyst
in different types of polymers may influence on the CO2R selectivity and stability, relying upon the
polymer nature [153].

4.2.3. Microfluidic Electrolysers

A microfluidic cell for the conversion of CO2 to formic acid was first proposed by Kenis and
co-workers [154]. Since then, microfluidic reactors have been applied to CO2R using several catalysts
under different operating conditions. A simplified schematic of a microfluidic reactor is given in
Figure 8. In this design, two GDEs, cathode and anode, are separated by a very thin layer (<1 mm) of
flowing liquid electrolyte [108]. CO2 gas is supplied from the rear of the cathode reaching the catalyst
layer through GDE, while oxygen is released directly into the air on the anodic side. Unlike the other
reactors, this design works without a membrane, relying on the diffusion of the gaseous products to
divide reduction and oxidation products [60]. Nonetheless, CO2 reduction products might be oxidised
at the anode, and accordingly, products should be driven out of the electrolyser with a rapid flow
stream. The electrolyte flow can be adjusted to modify the operation conditions, including pH and
water management issues, such as flooding or dry-out [108]. A reference electrode can be placed in
the electrolyte, letting the measurement of individual electrode potentials. There are also examples of
microfluidic cell using membranes, in particular one for the electrosynthesis of ethylene and ethanol
from CO2 [155].
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Figure 8. Schematic diagram of a CO2 microfluidic electrolyser. The cathode and anode are both
gas diffusion electrodes with their corresponding catalyst layers are shown in yellow. In this picture,
the reactor operates without a membrane. A micro reference electrode can be used to monitor the
working electrode potential.

Table 3 is a summary of different studies carried out using microfluidic electrolysers with and
without a membrane. The same type of GDL was employed in most of these studies, highlighting the
opportunity to test other GDLs. The porosity of the GDL affects the selectivity and activity of CO2R
by only 1%; whereas, channel length and gas flow rate appear to play a central role in determining
the performance of microfluidic cells [108]. Microfluidic reactors are well suited to work with strong
alkaline electrolytes known to facilitate the conversion of CO2 to multi-carbon products. However,
the scale-up is challenging due to the pressure sensitivity of the microfluidic architecture, limiting their
potential industrialisation [156].
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Table 3. A list of CO2 conversion performance using microfluidic electrolysers. AEM: anion-exchange
membrane, ~: approximately.

Main
Product Catalyst Membrane

Type GDL Type FE (%) Current Density
(mA/cm2) Stability Reference

CO Ag n.a. Sigracet 35 BC >97 ~340 n.a. [157]
CO Au/PyPBI/MWNT n.a. Sigracet 35 BC ~90 ~60 26 h [96]
CO Ag/Carbon Foam n.a. Sigracet 35 BC 84 ~50 n.a. [97]

CO CN/MWNT n.a. Sigracet 35 BC 98 ~90 Several
hours [158]

CO Ag/MWNT n.a. Sigracet 35 BC 95 350 7 min [159]

CO Au/PyPBI/MWNT AEM
(FAA-3-PK-75) Sigracet 35 BC ~98 158 8 h [88]

Formate Sn2O AEM
(Fumatech) Sigracet 35 BC 64 145 n.a. [160]

Formate BiOBr n.a. Freudenberg 90 200 65 h [92]

Formate Pb n.a. Hesen,
HCP120 95.6 143 n.a. [161]

Ethylene NGQD n.a. Sigracet 35 BC 31 ~100 n.a. [162]

Ethylene CuAg wire AEM
(FAP-375-PP) Sigracet 35 BC ~60 ~300 n.a. [85]

Ethylene Cu AEM Sigracet 35 BC ~46 ~200 4 h [155]

4.2.4. Comparison of Reactor Configurations

PEM electrolysers present certain intrinsic advantages in comparison to other flow reactors where
a liquid-phase electrolyte is employed. Reactor design is more straightforward in PEM cells, involving
fewer auxiliary components for electrolyte circulation. Moreover, no other mobile counterions are
substantially present in PEM systems apart from proton and hydroxide ions, improving CO2 utilisation.
From a safety point of view, PEM electrolysers do not require corrosive liquids, avoiding the risk of
leaks or heat-induced pressure build-up [24]. They also allow operating at higher pressures with
differential pressures between the electrodes, as reactant crossover is suppressed [163]. Finally, PEM
electrolysers enable the separation of volatile liquid products, avoiding the formation of product/water
mixtures [164]. Considering these multiple advantages and the low cell resistance of PEM reactors, it is
foreseeable that these type of electrolysers will lead the way towards the best CO2R performance [107].
However, similar CO2R efficiencies, if not better, were also achieved with basic flow-cell reactors,
especially in the formation of C2+ products, where fewer experimental studies with PEM reactors have
been published. Moreover, it still is a challenge to operate a PEM electrolyser for C2+ products at high
current densities and high selectivities. These obstacles may be related with having enough water
molecules in the cell for C2+ products to form.

The ideal design of CO2 electrolysers is yet unclear, as each cell reactor presents advantages and
disadvantages. It is essential to optimise reactors that have already been proposed while proposing
new designs. In principle, the optimisation of PEM electrolysers seems feasible, but limited knowledge
of membrane resistance, stability, and cost (adding to the aforementioned water issue) is delaying
their scale-up. Improving membrane performance and better control of catalyst wetting are critical
steps towards the application of CO2 PEM electrolysers. Basic flow-cell reactors are affected by
limitations, too. Remarkable CO2R performance has been obtained with basic flow-electrolysers in
past experiments, but catholyte carbonation, flooding of GDE, and limited stability still hinder their
scale-up and industrialisation.

4.2.5. The Role of Phases in Reactor Operation

The underlining design principle of all flow cell reactors discussed to this point (basic gas-fed
flow electrolysers, polymer electrolyte membrane electrolysers, and microfluidic electrolysers) is the
efficient transport of CO2 to the catalyst layer. A key factor affecting the availability of CO2 in all
designs is the role of phases and related phase boundaries (solid/liquid/gas, catalyst/electrolyte/CO2)
established at the catalytic active sites and what phases must coexist for CO2R to proceed.
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Originally, CO2 reduction at gas diffusion electrodes was considered a three-phase interface
process, considering that CO2 conversion took place at the gas–liquid–solid interface of CO2, electrolyte,
and catalyst, respectively [63]. No explicit evidence was provided in support of this theory, but since
then, it has been referenced in various research papers [135,165–167]. Burdyny et al. have recently
proposed a different perspective in support of a two-phase reaction interface involving dissolved CO2

as the reagent [58]. They proposed that a thin film of water always surrounds the catalyst, even near
the gas–liquid interface, considering the hydrophilic inclination of metals under applied reductive
potential (Figure 9). Furthermore, stable CO2 reduction can be maintained even in flooded GDEs,
which is something that would be inconceivable if the process required a three-phase interface.
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Figure 9. Illustration of the impact of phases and carbonation on CO2 availability at a catalyst particle.
(a) In the three-phase process, CO2 conversion takes place only in the locus of reaction where CO2,
electrolyte, and catalysts come into contact at the same time (full red circles). (b) In the two-phase
process, the electrolyte wets the particle, forming a thin layer on the catalyst (yellow ring). In this case,
the locus of CO2 reduction is the entirety of the catalyst surface (red ring). (c) CO2 and hydroxide ions
generate bicarbonate and carbonate ions as CO2 diffuses in a thin layer of alkaline electrolyte. Only a
few CO2 molecules are available for conversion on the catalyst surface.

Weng et al. also supported the hypothesis of a two-phase reaction interface, stating that the
catalyst needs to be covered with electrolyte in order to be active [168]. They backed this idea since
previous experimental and theoretical studies demonstrated the role of water and hydrated cations in
the basic process of CO2R [169,170]. Therefore, they proposed that a porous catalyst layer can be either
dry, partially wet, or flooded, and the performance of the GDE depends upon the environment within
the CL. Dry pores are inactive due to the absence of water and lack of ionic pathways. Flooded pores
block the gas channels within the CL, leading to high mass-transport resistance for the CO2 reactant. A
wet layer delivers the best performance, but it should be thin enough to enhance CO2 mass transport
yet sufficiently thick to provide ionic conductivity within the CL.

The fraction of pores flooded during operation can be linked to the capillary forces acting on the
electrolyte. Low capillary forces result in the flooding of small hydrophilic pores only, whereas large
capillary forces cause the flooding of most of the pores. However, Burdyny et al. consider that the
catalyst pores lead to high capillary forces causing the wetting of surfaces, rather than a partially wet
situation [58]. Notwithstanding, there is evidence that CO2R reactions occur at a two-phase interface,
where CO2 must be dissolved in the electrolyte in order to be reduced, even when CO2 is supplied in
gas phase to the CL. More research is needed to clarify the two-phase mechanism, since its impact



Catalysts 2020, 10, 713 16 of 34

on the cell performance is evident. This is particularly important in PEM electrolysers where the
wetting of the CL is dependent on the condensation of the water carried by the humidified CO2 stream.
Besides, the lack of water could promote H2 evolution over CO2R through the direct reduction of the
protons dispatched by the ion-exchange membrane. Hence, it is essential to increase the amount of
water available in PEM electrolysers, either through adding water, increasing the humidification of the
CO2 stream, or enhancing water transport through the polymer membrane.

5. Failures and Challenges in CO2 Flow Electrolysers

The importance of adopting gas-fed electrolysers to achieve the selectivities and high current
densities critical for the scale-up of CO2 electrolysis has been repeatedly emphasised in this review.
Along with gas-fed electrolysers, gas diffusion electrodes must be developed, too. In particular,
the physical and chemical phenomena underpinning the operation of both need to be investigated and
better understood. The intimate and intricate link between the stable operation of electrolysers and
the effect of electrode structure, components, and stability for different flow configurations has to be
unravelled to deliver the best CO2R performance. In order to succeed in this endeavour, it is crucial
to identify failures or deficiencies and point out opportunities for improvement for all key factors
affecting CO2 electrolysis.

5.1. Components of Gas Diffusion Electrodes

A critical point in the advancement of CO2 gas-fed flow electrolysis lies in the development of
GDEs tailored for CO2 reduction. Currently, GDEs are repurposed from PEMFC systems engineered for
H2 instead of CO2 electrochemistry [171]. GDEs from PEM fuel cells might not be adequate for CO2R
cells, especially considering that product selectivity is not an issue in water electrolysis. In PEMFC,
GDLs provide gas, liquid, electron, and heat transport in the presence of water; thus, their material
composition and microstructures are adapted to it [172]. In particular, MPLs are designed for the
removal of water from hydrogen fuel cells, mostly at high current densities when copious water can
hinder oxygen influx [173,174]. This is in contrast with having to provide (not remove) water to CO2

reduction, as previously discussed. GDLs used in hydrogen fuel cell have certain properties suitable for
CO2 reduction, such as geometry, permeability, and electrical conductivity, but they do not fulfill other
requirements, such as stability at high cathodic potentials specially avoiding flooding (electrowetting).
Gas-fed systems for CO2 utilisation are intrinsically more complex, being dependent on interrelated
and contrasting processes coexisting in the three-dimensional structure of the GDE. Exemplary is the
delivery of enough water for CO2 conversion without swamping the electrode. The study of this and
other factors is imperative not only for a better understanding of CO2R in GDEs but also to improve
the operational stability of CO2 electrolysers.

Numerous studies have endeavoured to identify the subtle links between different GDE
design parameters. The CO2R reaction rate is dependent on the thickness and hydrophobicity
of the macroporous layer, predetermining the CO2 mass transport resistance in the GDE [175].
Kim et al. considered the impact of the thickness of an Ag-based GDE macroporous layer on CO2R
performance [52]. They observed worse CO2 permeability in thick MPS (370 µm), and thus lower CO
partial current densities compared to those recorded with thinner carbon–fibre substrates (190 µm).
Nevertheless, very thin MPS (110 µm) lead to electrode flooding. So, optimal MPS thickness is essential
to facilitate gas permeability while limiting flooding. The concentration of hydrophobic agent in the
MPS has also a major impact on CO2 electrolysis. Ikeda et al. recorded similar CO2R reaction rates
for MPS containing 10 to 30 wt % PTFE, but worsened performance using quantities above 30 wt %
PTFE due to a decrease in the electrical conductivity [176]. Besides the MPS, the MPL play a significant
role in CO2 electrochemical conversion as reported by Kenis and co-workers [52]. The MPL provides
catalyst support while preventing flooding and protects the MPS from the electrolyte, suppressing
HER and consequently improving the current density of CO2R.
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The amount of PTFE present in the MPL is also important. PTFE content in the range of 4.5–10 wt
% does not prevent flooding nor provides a binding between carbon and catalyst layer, resulting in
higher HER and lower cathode stability [52]. PTFE concentrations higher than 20 wt % reduce the
porosity of the MPL and affect the electrical conductivity of the GDE. Similar research was conducted
by Li et al., showing that the highest current densities for CO production were obtained using a PTFE
loading of 20 wt % [177]. A different approach was taken by Wang et al., where the performance of
gas diffusion electrode for CO2R to formate was enhanced by adding PTFE directly into the catalyst
layer [53]. There remain many options to be explored, providing a plethora of opportunities to the
CO2 reduction research community.

5.2. Stability and Degradation of Electrolyser Components

CO2R systems need to match the lifetime of PEM water-splitting electrolysers (beyond 20,000 h), as
highlighted in a recent techno-economic analysis by Jouny et al. [100]. The current best performance tops
to less than 5000 h (Table 2). The same study also noted the importance of long-term durability in cutting
maintenance and replacement costs. Although durability is critical to the industrialisation of the CO2

electrolyser, the majority of experiments published in 2013–2019 are limited to stability studies of 30 h or
less [135]. The limited stability of CO2R cells stems from multiple degradation mechanisms occurring
during operation. There are several mechanisms from catalyst poisoning, caused by contaminants
present in the electrolyte, to the oxidation of cell and electrode components. Certain catalyst materials
and anode compartments can suffer electrochemical oxidation when exposed to potentials above their
standard oxidation potential. The rate of oxidation depends on the materials employed, the electrolyte
concentration, and the pH. Pourbaix diagrams may be useful to researchers to find information about the
stability of their catalyst particles at defined pH and applied potentials [178,179]. Detectable oxidation
is observed during long electrolysis, typically after several hours depending on the materials employed.
An example of such oxidation has been reported by Yang et al., where during CO2 conversion to
formate, clear evidence of oxidative degradation of the carbon anodic flow field was found [91].
Physical degradation is also visible during the CO2R process, inducing structural changes in the
catalyst particles and consequently in the GDEs. This type of degradation includes the agglomeration or
pulverisation of the catalyst particles impacting on the uniform distribution of particles in the electrode.
Chemical degradation involves the adsorption of undesired species onto the catalyst surface. Poisoning
can occur on the electrode during testing, where metal impurities present in the electrolyte adsorb on
the catalyst, hindering CO2R [84]. Typically, poisoning can be reverted by desorbing the impurities.
For example, Ikemiya et al. desorbed impurities by applying a positive current to the GDE in acidic
electrolyte [180]. Apart from poisoning, the catalyst binder can also suffer from chemical degradation.
Often, the catalyst is bonded to the electrode with a polymer binder; under alkaline conditions
over extended operation times, fluorinated binders can degrade, leading to polymer degradation
or side-chain modification [181]. Consequently, the catalyst can detach from the electrode during
electrolysis. More degradation methods have been extensively explained in a recent review written by
Kenis and co-workers, presenting durability testing performed by various research groups [135]. Here,
we focus on the degradation mechanisms affecting gas diffusion electrodes. Understanding how a
GDE responds and fails during long-term operation is essential to bolster CO2R electrolytic systems.

Five mechanisms of degradation have been reported for GDEs in PEM water electrolysers and
hydrogen fuel cells: (1) mechanical compression during manufacturing, assembly, and operation, (2)
freezing and thawing during operation, (3) dissolution in water, (4) erosion by gas flow, and (5) carbon
corrosion [182,183]. Not all these mechanisms necessarily apply to CO2 electrolysers. For example,
typically, CO2R systems operate at ambient temperature, such that wearing through freeze/thaw does
not necessarily apply. The oxidative carbon corrosion of anodes is relevant for both water and CO2

electrolysers. Carbon present in the porous layers of GDEs could be oxidised and converted to CO2,
resulting in a loss of material. The mechanical stress, erosion, and dissolution of electrode materials
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can instead affect the long-term operability of CO2 GDEs, so they should be taken into consideration.
The erosion of GDEs by a continuous gas flow can affect hydrophobicity, leading to electrode flooding.

Besides these failure modes, CO2R systems face two specific intertwined issues: (1) electrolyte
carbonation and (2) flow configuration, which are to be addressed in the following two sections.

5.3. Electrolyte Carbonation

Electrolyte carbonation occurs when dissolved CO2 reacts with hydroxide ions (OH−) in alkaline
electrolytes. This is a very well-known chemisorption reaction widely applied in the direct air capture
of CO2 from the atmosphere [184]. Dissolved CO2 reacts with OH− to form a bicarbonate ion (HCO3

−)
(Equation (1)), which afterwards reacts with another OH− to give a carbonate ion (CO3

2−) and water
(Equation (2)).

CO2(aq) + OH−(aq)↔ HCO3
−(aq) (1)

HCO3
−(aq) + OH−(aq)↔ CO3

2−(aq) + H2O(aq) (2)

Kinetic studies show that the deprotonation of bicarbonate to carbonate (Equation (2)) is faster
than the formation of bicarbonate from CO2 (Equation (1)). Therefore, CO2 that reacts with OH− is
rapidly converted to CO3

2− [185].
The presence of OH− in CO2R electrolyte is inevitable, as it is a by-product of the electrochemical

reduction of CO2. Therefore, even though a neutral pH solution is used, a basification of local
cathodic pH (around 12 at high current densities) will occur during the reduction process [133].
Consequently, the carbonation of dissolved CO2 in the electrolyte-wetted regions of the GDE is
unavoidable. Carbonated CO2 is not available for electroreduction since CO2R requires dissolved
CO2 as a reactant; neither bicarbonate nor carbonate ions are considered viable reactants for CO2R
(Figure 9). On the other hand, alkaline catholytes have some beneficial effects on CO2R. A highly
alkaline environment, such as concentrate potassium hydroxide, minimises the electrical resistance
across the cell in comparison to neutral or slightly alkaline carbonate/bicarbonate solutions [186].
Moreover, the electrolyte pH has a key effect on the catalyst activity and selectivity towards certain
products. Dinh et al. and Gabardo et al. have reported that higher pH results in lower overpotentials
for CO2 conversion to CO and hydrocarbons [120,187]. Todorova et al. have summarised results from
various experimental studies portraying facilitated C2 product (C2H4 and C2H5OH) formation in
electrolytes with weak buffering capabilities, such as KCl, KClO4, and K2SO4, that allow an increase
of local pH at the electrode/electrolyte interface during CO2R. Instead, buffers such as KHCO3 and
K2H2PO4 promote the formation of CH4 and H2, as the electrolyte pH tends to be close to neutral [188].

At the start of the CO2R process, the loss of dissolved CO2 via carbonation is overcome as
CO2 is gas-fed in stoichiometric excess to the reactor. Yet, the production of unwanted bicarbonate
and carbonate induces a buffer neutralisation effect, decreasing the pH of the catholyte to neutral
values [189]. Moreover, the galvanostatic (constant electric current) operation ensures that HER, also
generating OH−, will substitute for any lost CO2R within the CL. When the rate of CO2 electrolysis
decreases, the high local pH owing to HER will further increase the carbonation rate, inducing a
detrimental positive feedback loop [171]. This causes a cathodic drift when operating galvanostatically,
which translates in an increase of the kinetic overpotential as a result of electrolyte neutralisation.

Although the complete elimination of the carbonation effect is not possible, its effect can be
minimised. While the carbonation effect is notorious in batch reactors such as the H-cell where
carbonate builds up in the catholyte, flow cell reactors reduce this effect as the electrolyte is circulated
and refreshed. Consequently, with flow reactors, it is recommended to replenish the catholyte solution
to reduce the impact of carbonation on the CO2R process.

5.4. Flow Configurations

As previously mentioned, CO2 gas flowing through a GDE can reach the catalyst layer in two
ways or flow configurations: flow-by and flow-through. The differential pressure, ∆P, across the
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GDE determines the type of flow configuration governing the electrolyser. ∆P can be expressed as
the difference between the catholyte pressure and gas pressure (∆P = Pcat − Pgas) acting at the front
and back of the GDE, respectively. The value of ∆P controls the position of the plane of penetration
of the electrolyte into the GDE (i.e., the gas–liquid interface), swinging the operation between two
mutually excluding situations: one where the plane does not penetrate the GDE resulting in a dry
electrode, and the other with the plane entirely pushed through the electrode in the gas compartment,
resulting in a flooded electrode. Both situations present multiple challenges, since CO2 availability
at the catalyst and gas transport in the electrode are very much dependent on the positioning of the
gas–liquid interface in the GDE. In particular, when the plane of penetration is closer to the electrolyte
side, electrolyte salt precipitation is observed in the pores of the electrode hindering gas transport;
whereas, when the plane is pushed near to the gas side, the pores are blocked with liquid electrolyte,
resulting again in hindered gas transport. These and other related phenomena are discussed in detail
in the next two sections.

5.4.1. Challenges in Flow-Through Configuration

At negative differential pressures, ∆P < 0, gas will cross the GDE and CO2 bubbles will emerge in
the catholyte, leading to the flow-through configuration [190]. The presence of gas bubbles increases
the ohmic drop through the catholyte, lowering the energy efficiency of the electrolyser. Duarte et
al. reported that bubbles in the electrolyte lead to an increase of 1.0 V in cell potential and an energy
efficiency drop of 6.5% in comparison to the flow-by configuration [133]. Furthermore, bubbling
through the GDE causes fluctuations of electric current and may be involved in the mechanical
degradation of the catalyst layer over time [135]. Additionally, higher amounts of CO2 gas in the
electrolyte solution might result in higher carbonation and thus catholyte neutralisation, affecting
product selectivity.

Another challenge of the flow-through configuration is the formation of physical blockages within
the GDE that hinder CO2 flow and promote HER. Crystal salt blockages have been reported upon
the drying of electrolyte in the GDE. Electrolyte penetrates the GDE because of electrowetting effects.
Electrowetting is the modification of the wetting property of a solid surface with an applied electric
field [191]. GDEs are hydrophobic when immersed in the catholyte at open circuit potential, but
increasing hydrophilicity is observed after passing a faradaic current, leading to GDE flooding [171].
As the electrolyser operates in flow-through mode, the electrolyte left inside the GDE is pushed towards
the cathodic chamber. Some water evaporates in the process, forming salt crystals that obstruct gas flow
to the catalyst [192]. Carbonation exacerbates the problem. As CO2 reacts with OH− ions in the GDL,
the precipitation of carbonate salts is also observed. KHCO3 and K2CO3 have lower solubilities, 3.62
mol/kg H2O and 8.03 mol/kg H2O, respectively, than KOH (21.57 mol/kg H2O) on a molar basis [186].
Therefore, under these circumstances, both bicarbonate and carbonate salts precipitate, generating
crystals inside the pores of the GDL. Such crystals are visible on the back of the GDE, and they have
been reported in many studies [88,133,135,143,171,190,193,194]. Moreover, carbonate salts can react
with additional CO2 to create more bicarbonates, as shown in Equations (3) and (4) [171,195]:

K2CO3·1.5H2O(s) + CO2(g)↔ 2 KHCO3(s) + 0.5 H2O(g) (3)

K2CO3(s) + H2O(g) + CO2(g)↔ 2 KHCO3(s). (4)

The accumulation of salt inside the GDL is damaging, since CO2 mass transport to the catalyst
layer is compromised, consequently decreasing productivity and selectivity. Leonard et al. have
recently reported that the carbonation rate at the cathode increases with current density [171]. They
found salt crystals deposited on the back of the GDE when high current densities were applied.
This translated in lower water breakthrough pressures that decreased with increasing current densities,
justifying the hygroscopic effect of the salts and leading to a loss of GDE hydrophobicity. Carbonate
salts are hygroscopic, so any crystallites formed can promote water pumping through the MPL via
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capillary action [196], triggering a reinforcing loop process where dry electrolyte salt drives in more
liquid electrolyte. This process impacts directly on CO2R selectivity. For a silver catalyst layer at high
current densities (150 and 196 mA/cm2), it was found that the molar fraction of CO in the product
mixture decreased dramatically in the first 30 min, shifting towards the H2 production [171]. Moreover,
at higher current density, the capacitive current rapidly increased over time, implying changes at the
electrode–electrolyte interface. Interestingly, the same study reported that the GDE was non-uniformly
wetted, and flooding was augmented where the concentration of CO2 was higher, next to the gas inlet,
corroborating the carbonation hypothesis [171].

Completely recovering the GDE performance after carbonation is not possible, or at least no such
system has been reported yet. The poor recovery of GDEs used in flow-through configurations has
been documented by a number of research groups [88,143,194]. Fully removing crystals that are deeply
embedded in the porosity of a GDE is very challenging. Salt crystals can induce permanent structural
damages to the GDE, increasing permeability and reducing hydrophobicity [171,197].

5.4.2. Challenges in Flow-By Configuration

An electrolyser is operated in flow-by mode when the differential pressure across the GDE is zero
or positive, ∆P ≥ 0 [133]. Under these circumstances, the gas does not cross the GDE, and no bubbling
of CO2 is observed in the catholyte. In flow-by configuration, CO2 enters in the pores of the GDE and
reaches the catalyst layer through diffusion, leading to a concentration gradient. Small droplets of
electrolyte are typically visible on the gas side of the GDE. The penetration or flow of catholyte towards
the gas chamber through the GDE is named “perspiration”. Perspiration occurs mainly for two reasons:
(1) changes in GDE hydrophobicity due to electrowetting, and (2) changes of differential pressure
across the GDE. In addition, gas products resulting from CO2R could increase the internal pressure of
the GDE, lowering its tightness and thus promoting perspiration [121]. Perspiration affects electrolyser
performance. It prevents the precipitation of carbonate salts in the GDL, avoiding the blocking of CO2

pathways towards the catalyst [133]. Analyses of perspired solutions showed the presence of K2CO3

and KHCO3 and pH values of 10 [121]. This is advantageous as it inhibits permanent pore obstruction.
However, the solution itself can block the porosity and slow the flow of CO2 in the GDE at the expense
of reactor performance.

In general, when current is applied to the cell, small perspiration droplets appear on the back of
the GDE. Over time, the droplets grow to coalesce and fall at the bottom of the gas chamber. Without an
outlet to remove the perspired electrolyte, the gas compartment would eventually flood. Consequently,
it is essential to discharge any electrolyte build-up. The perspired electrolyte is often redirected to
the catholyte storage tank to recirculate afterwards. It is relevant to highlight how simple changes
in gas and electrolyte recirculation can make a significant difference in performance. De Mot et al.
considered two options in the recirculation of perspired electrolyte, which was removed from the gas
compartment by the CO2 flow [190]. In one option, the CO2 flow was bubbled through the catholyte,
while in the other option, the CO2 just ended in the headspace of the storage tank (i.e., no bubbling
through). The key difference between the two options was that only in the former was the catholyte
continuously bubbled and saturated with CO2. As a result, a pH difference was observed between
CO2-saturated and non-saturated catholyte with worse CO2-to-formate conversion performance in the
former because of a lower pH. In the same study, perspiration flow rates were investigated at different
positive differential pressures. As expected, at higher differential pressures, perspiration was more
evident. Without electrowetting, perspiration was visible at 30 mbar, whilst minimal perspiration
(0.38 mL/min) was recorded at 0 mbar under electrowetting conditions [190].

It is vital to point out that different experimental setups can lead to different GDE performance,
and specific results should not be generalised, given the large number of variables affecting the operation
of an electrolyser. Among other factors, the presence of cracks on the GDE adds further complexity to
the interpretation of the role of porosity on perspiration [129,190]. Increased perspiration does not
necessarily impact the faradaic efficiency of CO2R, since pores could already be flooded in the presence
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of surface cracks. However, this effect may not be visible when defect-free GDEs are employed. Then,
it is essential to thoroughly characterise the structural integrity of the GDE not only to better interpret
and understand the experimental data, but also to achieve the best electrolyser performance. Endrődi
et al. have proposed a procedure to benchmark CO2 electrolysers and facilitate data mining [106].
The proposed benchmarking protocol consists of reporting details of cell materials and components,
including their physical and chemical properties, before and after CO2 electrolysis. They developed
pre-operational, operational, and post-operational procedures with several characterisations and
data reports.

Ideally, one should avoid the blockage of CO2 transport in the GDE. Unfortunately, this is not
possible due to detrimental wetting processes common to all flow configurations. The most common
issue is electrowetting, but PTFE degradation under cathodic potentials in aqueous electrolytes has
also been reported [198]. Consequently, opportunities for the characterisation and optimisation of
GDEs should be seized.

6. Opportunities for Improvement of CO2 Electrolysis

The efficiency of CO2 flow electrolysers is affected by limitations, and seeking opportunities to
overcome these deficiencies is essential to deliver CO2 electrolysis on a larger scale. CO2 electrolysers
are affected by three main issues: (1) failure of GDE components and operation, (2) impact of CO2

dissolution in the pH and carbonation of the electrolyte, and (3) steady control and operation of flow
configurations, which are interrelated. For example, the carbonation process may be greater in the
flow-through configuration as CO2 gas is continuously bubbled in the catholyte. Despite electrode
failures having been previously associated with carbonation in alkaline hydrogen fuel cells [199–202],
opportunities are available to investigate electrolyte carbonation during CO2R. The presence of
CO2 bubbles in the flow-through configuration not only promotes the electrolyte carbonation and
crystallisation in the GDE pores but also increases the ohmic drop, lowering the energy efficiency
of the process. Therefore, the flow-by configuration outperforms the flow-through configuration,
the former being a more efficient process for CO2 electrolysis, especially for long term operation, where
electrolyte precipitation can lead to salt build-up in the GDE, hindering CO2 mass transfer. Flow-by
configuration prevents the formation of salt deposits in the GDE through perspiration, but perspiration
can also obstruct CO2 mass transport. Consequently, research on the proper removal of perspiration
fluid is critical. Then, the possibility of using flow-by configurations as a scalable long-term CO2R
system requires broad and coordinated investigations. In order to control the perspiration rate during
the reduction process, the pressure in the gas compartment needs to be continuously monitored
and adapted, otherwise leading to unstable Faradic efficiencies. Moreover, the effect of recirculating
perspiration fluid needs to be carefully considered, always looking at the impact of CO2 saturation on
electrolyte pH and carbonation.

A different approach to prevent the formation of salt deposits and mitigate electrode flooding is
the incorporation of microstructures with tailored wettability in the GDEs. Such tailored GDEs could
facilitate carbonate clearance at the gas–liquid interface and achieve enhanced CO2 conversion rates
for extended periods of time. For example, Perry et al. used polymers of intrinsic microporosity (PIMs)
to improve the performance and stability of copper–GDEs for CO2 reduction to ethylene [203]. A
solution of PIM was simply drop-casted onto a sputtered Cu-GDE, resulting in a PIM layer able to
hinder flooding by forming a stable hydrophobic surface. The performance was also improved with
a selectivity of ethylene production of 45.5% at 67.4 mA/cm2. Alternative solutions are necessary to
achieve these goals, starting from the understating of what parameters govern CO2R in GDEs and how
their contributions are interlinked.

Sánchez et al. have produced a schematic of the correlations among different parameters affecting
GDE performance in CO2R, as shown in Figure 10 [204]. Porosity, hydrophobicity, and electrical
conductivity are closely related, so changing one of them would affect the others. Trade-offs ought
to be found to maximise the synergic contribution of each parameter. Often guided by trial and
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error, we believe that improved CO2 electrolysis will come from a more fundamental understanding
of the factors affecting the GDE. Clearly, gas transport in a GDE is dependent on maintaining the
electrode porosity free from obstructions during operation. Electrolyte flooding or precipitation are
two sides of the same coin where either liquid electrolyte or electrolyte salt precipitation in the porosity
drastically compromise CO2 transport to the catalyst layer. For this reason, it is crucial to control the
wettability of the electrode. Looking at Figure 10, it is clear that wet proofing with PTFE is a common
approach to tune the wettability of MPS, MPL, and CL, as discussed in detail in Section 2. PTFE or
other hydrophobic additives prevent flooding, but they also fill part of the free volume present in the
GDL and increase electrical resistance, since they are electrical insulators. On the other hand, more
hydrophobic catalyst layers are less prone to HER, since water is repelled away from the catalyst,
resulting in a better selectivity towards CO2R. The incorporation of conductive additives such as
carbon nanotubes can increase the conductivity of the CL, resulting in improved CO2R performance.
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Figure 10. Simplified schematic of a gas diffusion electrode (GDE) showing interlinked contributions
of gas diffusion layer (GDL) and catalyst layer (CL) design parameters. Black, brown, and green refer
to microporous layer (MPL), CL, and macroporous layer (MacroPL, i.e., microporous substrate, MPS),
respectively. Positive effects are presented in blue, negative effects are presented in red. The increase
(↑) or decrease (↓) of parameters is also shown. PTFE, polytetrafluoroethylene; CC current collector;
j, current density; MWCNT, multi-walled carbon nanotubes. Reproduced with permission from
reference [204].

In the pursuit of better CO2R, some research groups have developed custom-made GDEs using
porous PTFE membranes or self-supported nanostructures as a replacement to traditional carbon
GDLs [64,188,205–210]. Sargent and co-workers have done extraordinary work in the fabrication
of custom-made GDLs. Their new GDE configuration consists of a PTFE/Cu/carbon-black/graphite
layered structure [64]. A copper catalyst was deposited on a PTFE membrane, carbon black was added
onto the catalyst to ensure electrical conductivity, and finally graphite was airbrushed to form a top layer
current collector. The electrode achieved 70% FE for C2H4 with a total current density of 750 mA/cm2

for 150 h [64]. The same custom-made electrode was assembled into an MEA, achieving 50% FE for
ethylene and 23% energy efficiency [206]. Since no catholyte was present, humidified CO2 was used to
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sustain current densities above 100 mA/cm2 for over 100 h. Recently, Sargent and co-workers have also
fabricated a further improved GDE configuration following similar principles [207]. A blend of Cu
nanoparticles and perfluorinated sulfonic acid ionomer was spray-cast on a PTFE/Cu/ionomer GDL
support, resulting in an intimate mix of the catalyst with hydrophobic and hydrophilic functionalities
enhancing gas and ion transport. The resulting system reached 65–75% FE for C2H4 at unprecedented
partial current densities of 1.34 A/cm2 with a cathodic energy efficiency of 46%. Moreover, stable
current densities and FEs were recorded for 60 h. Following a different approach, Züttel and co-workers
have proposed and demonstrated self-supported metal-based GDEs [36]. The self-supported porous
Zn GDEs were prepared via the electrodeposition of Zn on a Cu mesh. Afterwards, the electrode was
immersed in PTFE and sprayed with carbon black/PTFE mixture and heated at 350◦C in N2 for 30
min. Current densities of 200 mA/cm2 with FE approximately 84% for CO were achieved using Zn
self-supported GDE in a flow-cell reactor. Similarly, self-supported copper-GDEs were obtained by
coating a hydrophobic microporous layer, carbon black, and PTFE particles onto the CuxO nanowires
grown on Cu gauzes [210]. FE higher than 40% towards C2+ products at current densities higher than
200 mA/cm2 and overpotential less than 0.6 V were achieved. These examples are both inspiration and
evidence of the many opportunities ahead to deliver scalable CO2 electrolysis.

7. Conclusions and Future Perspectives

Electrolyser and electrode design have a great influence on CO2R since productivity, selectivity,
energy efficiency, and stability are not only dependent on the electrocatalyst. This is especially true
for the industrialisation of CO2 electrolysis, where current densities higher than 250 mA/cm2 and
cell voltages below 3 V are required [21,102,115]. In this review, the fundamentals of aqueous-fed
and gas-fed CO2 electrolytic cells have been presented and discussed. Among the two, only gas-fed
electrolysers can transport enough CO2 at the catalyst to achieve high current densities. Therefore,
CO2 gas-fed flow electrolysers are ideal for assessing electrocatalyst performance in condition relevant
to scale-up and show much greater potential for future development. Thus, further investigation on
the scalability of these reactors is required. The development of gas-fed electrolysers introduces new
challenging factors in the design of reactors and GDEs. Identifying and controlling these factors is of
paramount importance to improve the performance of electrolysis systems. The influence of these
factors has been presented in this review both in terms of electrolyser flow configuration and GDE
structure and components, including the integration of the two. The way CO2 gas is introduced in the
cell is very important. Two different flow configurations have been reported in the literature: flow-by
and flow-through. Here, we discussed the key benefits and challenges of both configurations and how
they affect electrolyte carbonation and GDE degradation. The flow-by configuration appears to be
better suited for long-term operation, since it minimises electrolyte precipitation in the GDE. To this
end, the proper management of catholyte perspiration through the GDE is essential.

CO2R performance is also governed by the porosity, hydrophobicity, components, and structure
of the GDE. A trade-off among these factors must be found to avoid electrolyte flooding (flow-by
configuration) or electrolyte salt deposition (flow-through configuration). Here, we discuss the basics
of carbon-based GDEs commercially available and typically used in electrolysers. Nevertheless, most
of these GDEs were optimised for operation in hydrogen fuel cells and do not necessarily exhibit
the best CO2R performance. To date, carbon-based GDEs have reported maximum current densities
of ca. 500 mA/cm2 and maximum lifetimes of ca. 4400 h. Considering techno-economic aspects for
the industrialisation of CO2 electrolysis, GDEs should operate above 1 A/cm2 for more than 30,000 h.
Therefore, new and improved GDE materials and configurations are required. In this work, we
discussed prominent examples of new approaches towards improved GDEs achieving CO2R current
densities in excess of 1 A/cm2.

The role of phases in reactor operation and electrolyte carbonation have also been discussed.
A two-phase solid–liquid reaction environment (catalyst-CO2(aq), with CO2 delivered at the catalyst
as dissolved species in the electrolyte) has been proposed in place of the often considered three-phase
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solid–gas–liquid system (catalyst–CO2(g)–electrolyte, with CO2 delivered at the catalyst in gas
phase). The validity of each model is currently under debate, and further research is needed to
determine the impact of phases on cell performance. Additionally, research is needed to overcome
the detrimental effect of electrolyte carbonation on reactor performance, limiting the amount of CO2

available to the conversion process. There are many challenges and opportunities ahead of us, and it is
important to recognise that CO2 electrolysis has to be addressed at multiple levels, from materials and
electrode design to electrolysers design and operation, which are all essential to deliver CO2R at the
industrial scale.
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