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Abstract: Recent years have witnessed an incredibly high interest in perovskite-based materials.
Among this class, metal halide perovskites (MHPs) have attracted a lot of attention due to their
easy preparation and excellent opto-electronic properties, showing a remarkably fast development
in a few decades, particularly in solar light-driven applications. The high extinction coefficients,
the optimal band gaps, the high photoluminescence quantum yields and the long electron-hole
diffusion lengths make MHPs promising candidates in several technologies. Currently, the researchers
have been focusing their attention on MHPs-based solar cells, light-emitting diodes, photodetectors,
lasers, X-ray detectors and luminescent solar concentrators. In our review, we firstly present
a brief introduction on the recent discoveries and on the remarkable properties of metal halide
perovskites, followed by a summary of some of their more traditional and representative applications.
In particular, the core of this work was to examine the recent progresses of MHPs-based materials in
photocatalytic applications. We summarize some recent developments of hybrid organic-inorganic
and all-inorganic MHPs, recently used as photocatalysts for hydrogen evolution, carbon dioxide
reduction, organic contaminant degradation and organic synthesis. Finally, the main limitations and
the future potential of this new generation of materials have been discussed.

Keywords: metal halide perovskites; renewable energy; photocatalysis; material science

1. Introduction

Environmental sustainability and the development of alternative and renewable energy
supplies represent two of the major challenges of the current society [1,2]. Rapid urbanization and
industrialization have resulted in a remarkable water shortage and a massive contamination of the fresh
water available. The increase of human activities, related to hazardous greenhouse gases emissions,
has been recognized as the major driver of the present global climate change issues. Moreover, the rapid
population growth, coupled with increasing energy demand, are alarming, and require the employment
of alternative renewable energy sources for a viable future. Therefore, the development of alternative,
renewable and green energies replacing unrenewable and limited fossil fuels, and environmental
remediation, have become extremely hot topics in academic research, in order to guarantee a sustainable
existence on our planet.

Solar power is a renewable energy source that is sustainable and inexhaustible, unlike fossil
fuels. Moreover, it can be considered an attractive alternative due its abundance, easy accessibility
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and cleanliness [3,4]. In the recent years, increasing attention has been turned on the applications
of solar-light energy, such as solar cells, for heating systems and electricity production. In a year,
the solar energy irradiating the surface of the Earth is approximately 3,850,000 exajoules (EJ), and it has
been proven that, in the current scenario, only 1% of this energy would meet the energy demand of
human beings [5]. Human energy consumption in 2005 was estimated to be 539 EJ globally per year,
which is around 0.014% of the total solar energy reaching the Earth [6,7]. Moreover, the solar energy
employment can increase the world’s safety and human sustainability by decreasing the pollution,
lowering the risk of mitigating climate change and reducing such a dangerous dependence on fossil
fuels. Solar-light based engineering can provide cost-effective and efficient applications, and recent
great developments have been achieved using such a sustainable and green source of power.

From this perspective, photocatalysis is considered one of the main routes for an efficient utilization
of solar-light energy. The field of photocatalysis has notably expanded in recent decades, undergoing
a rapid development in relation to energetic challenges and environmental issues. In particular,
photocatalytic processes have been used for renewable energy production and storage, as well as
for the remediation and protection of the environment, in particular for treating polluted air and
water [8-10]. The multidisciplinary nature of this technology can be considered among the reasons
for the rapid evolution, which counts on the contribution of semiconductor physics, surface sciences,
photo and physical chemistry, materials science and chemical engineering. Inspired by natural
photosynthesis, photocatalytic processes have been applied in different fields, such as the degradation
of organic compounds in the liquid and gaseous phase [11-14], water splitting [15,16], carbon dioxide
reduction [17,18] and photocatalytic organic synthesis [19,20]. In general, the photocatalytic process
can be defined as the acceleration of reactions in the presence of a photocatalyst, which can provide
chemical alteration in another species as a consequence of an initial absorption of light radiation.
The process usually refers to heterogeneous photocatalysis, when the two chemical species are in
different phases (i.e., liquid-solid). Nowadays, the interest in heterogeneous photocatalysis mainly
focuses on semiconductors as photocatalysts, because of their intrinsic optical and electronic properties,
including the ability to photogenerate electron-hole pairs [21,22]. Heterogeneous photocatalysis
exhibits several advantages over other conventional catalytic processes, such as homogenous
photocatalysis, including higher stability and a potential recyclability of the photocatalysts used
during the process [23-25].

Titanium dioxide (TiO;) is by far the most used and investigated semiconductor photocatalyst,
due to its efficient photostability, non-toxicity and abundance. However, TiO,, with its wide band
gap (3.2 eV), limits its applicability in the ultraviolet (UV) wavelengths range, which accounts
for only 5% of the total solar-light energy that is potentially available [26]. Moreover, the fast
recombination of the photogenerated electron-hole pairs leads to a fast dissipation of the energy that
reduces the efficiency in photocatalytic processes [27]. Some traditional approaches to overcoming
the mentioned issues include the extending of the absorption edge to the visible light range [28,29],
and the decreasing of the recombination rate of the photogenerated electrons and holes [30,31]. In the
past, the solutions studied for enhancing the photocatalytic efficiency include the design of suitable
band gaps [32,33], the employment of nanosized structures [25,34], the adoption of facet-engineered
surface and interface design [35,36], metal and non-metal co-catalysts and dopants utilization [37-40],
surface modification [41,42] and the heterostructure or Z-scheme construction [43—-46]. However,
the low light-absorption ability, the disadvantageous charge carriers’ recombination rate, and the
low photo-conversion efficiencies of the majority of the photocatalysts, remain among the major
challenges to be faced. Table 1 reports some recent reports on frequently employed photocatalysts.
However, the development of new materials can open a window to enhancing the current
photocatalytic performances.



Catalysts 2020, 10, 709

Table 1. Summary of some employed materials for photocatalytic applications.

Photocatalysts Examples Photocatalytic Applications Ref.
nitrides N3~-based g-C3Ny NOy oxidation [47]
. . oxides 0% -based ZnO wastewater treatments [48]
Binary semiconductor photocatalysts

sulfides-based CdSs wastewater treatments [49]

chalcogenides - ] ;
selenides-based CdSe photocatalytic CO, reduction [50]
ABO; AgNbO3 hydrogen evolution [51]
. AB,Oy4 Caln,0Os5 wastewater treatments [52]

ternary oxides
ABO, AgGaO, wastewater treatments [53]
Ternary photocatalysts ABOy BiVO, wastewater treatments [54]
ternary halide ABX3 CsPbBr3 wastewater treatments [55]
sulfides-based CuGa$S, wastewater treatments [56]
ternary chalcogenides

selenides-based CuGaSe, hydrogen evolution [57]

3 0f 34
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In the last 20 years, metal halide perovskites (MHPs) have received a remarkable amount of
attention as one of the most promising materials in the photovoltaic field, due to their excellent
optoelectronic properties. In particular, hybrid organic-inorganic MHPs have often been used in the
photovoltaic community in the past 10 years, due to their unprecedented rate of power conversion
efficiency [47,48]. A pioneering study, introduced by Miyasaka and their research group, investigated
the concept of the self-organization potential of MHPs in the nanoporous TiO; layer for dye-sensitized
cells [49,50]. Since then, hybrid organic-inorganic MHPs have rapidly shown their great potential due
to their higher efficiency, in comparison to the more traditional silicon or gallium arsenide-based solar
cells [51]. Moreover, the hybrid MHPs have excellent carrier diffusion lengths and superior electronic
properties, as well as distinct advantages such as structural simplicity and flexibility [52]. These have
been considered as a great advantage in many light-based applications. Despite their remarkable
properties, the relatively poor environmental stability of hybrid organic-inorganic MHPs is one of their
main drawbacks [53]. All-inorganic MHPs have recently drawn increasing attention, particularly due
to their higher stability, but there are further developments needed in order to enhance their efficiency
and feasibility.

To the best of our knowledge, there are limited reviews regarding the booming use of MHPs-based
materials as photocatalysts; nevertheless, this topic has witnessed incredibly fast development in the
last 10 years [53-66] (Figure 1). Herein, we aim to briefly introduce metal halide perovskites, reviewing
their optical and electrochemical properties, and especially their potential in photocatalytic applications.

2019

MHPs-based solar cells with
2015 reported a PCE > 25%[35]

Study on Various Bismuth-
based MHPs morphologies

2009 ABiyl, [64] 2017

HOIPs first used in All-inorganic MHPs-based
photovoltaics with reported a LEDS [67]

3.8%PCE[63]

IIIlIlIIIlIIlIIlllIIlllIIlIlllllllllllllll.lllllllll>

1972 2016-2017

ABO, perovskite-based Pb-based HOIPs
photocatalysts [57] Photocatalysis [33, 56]

MHPs-based tandem system [63]

979 998
1212 ! Pb-based HOIPs
Photoelectrocatalysis [34, 61]

Proposal of heterostructural New oxide photocatalysts with

photocatalysts[38] layered and tunnelled

structures [63]
Figure 1. Timeline of progress in photocatalysis and metal halide perovskite-based materials.
2. Heterogeneous Photocatalysis: Principles

Heterogeneous photocatalysis is an interdisciplinary branch of science that has its source in several
areas, including chemistry, physics and biology. Heterogeneous photocatalysis can be considered as
one of the most successful approaches used for solar energy harvesting, and many environment-related
issues have already arisen at the stage of pilot plants [67-70]. Historically speaking, the first study
referred to Fujishima and Honda, who in 1972 reported the photochemical water splitting ability of
TiO; [66].

The photocatalytic process can be related to the ability of a material to absorb photons and promote
a reaction, where there is no net storage of chemical energy and the radiant energy is used to carry out
a target reaction whose kinetics would be extremely slow, compared to the case of the absence of the
photocatalyst. In general, heterogeneous photocatalysis is based on the irradiation of semiconductors
by a light source with an energy at least equal to that of its band gap. The process, while varying the
details in terms of reactions and mechanisms, can be described in four stages: (I) absorption of light
energy to generate electron—hole pairs; (II) separation of the photogenerated charges; (III) transfer of
electrons and holes to the surface of photocatalysts; (IV) utilization of photogenerated charges for redox
reactions on the surface of the catalyst. The mechanism is displayed in Figure 2A. Figure 2B shows the
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reduction and oxidation levels of the principal photocatalytic reactions, with reference to vacuum vs
the normal hydrogen electrode (NHE), in terms of the thermodynamic feasibility. The energy of the
photoexcited electron must be higher than the corresponding redox level, and the conduction band
potential (CB) of the photocatalyst should be located at a higher energy value.

Among the limits of such a mechanism, either on the surface or on the bulk sites of the
photocatalysis, the potential electrostatic recombination (III*) of the photogenerated charges may
dissipate the harvested energy in the form of a radiative and non-radiative recombination, such as
light and heat, decreasing the efficiency of the photocatalytic process.

H,O/H

A Ve B s
n COy/HCOOH
A COJ/CO
AT 505 1 CO,/JHCHO
=r
—

CO,/CH;OH

V vs NHE (eV)

CO,/CH,

Figure 2. (A) Steps in photocatalytic reaction process: (I) light absorption, (II) separation of
photogenerated charges, (III) transfer of electrons and holes, (III) eventual recombination of charges;
(IV) redox reactions where A and B mean chemicals in reductive and oxidative reactions, respectively.
(B) Energy levels of the important photocatalytic reactions with respect to normal hydrogen electrode
NHE at pH = 0.

According to the mentioned principles, there are three main fundamental approaches useful to
enhancing the efficiency of a photocatalyst: (i) the increase of its absorption ability in the visible range
(45% of the solar spectrum) [71]; (ii) the decrease of the recombination rate of the photogenerated
electron—holes pairs [72] and (iii) the evaluation of the redox capacity of the semiconductors according
to the target photocatalytic application [73].

3. Metal Halide Perovskite

3.1. Background on Metal Halide Perovskites

Perovskite materials, with a similar crystal structure of calcium titanate (CaTiO3), were discovered
in 1839 by Perovski, a Russian mineralogist [74,75]. Recently, MHPs have been gaining a
remarkable amount of attention in the numerous academic fields, yielding over 100 peer-reviewed
articles [76] (Figure 3).

MHPs were firstly investigated for their captivating optical properties [77,78], as well as their
interesting quantum effects [79-81]. In the past 20 years, MHPs-based materials have witnessed an
unbelievable development, especially in photovoltaics, with a remarkable increase of interest also in
many other light-driven related applications [76]. MHPs have recently been involved in significant
discoveries related to nanometer-sized semiconductors, due to their visible and near-infrared optical
abilities, the beneficial effects of their surface defects and their specific electronic structure [48,50,82,83].
Solar-cells have shown to be a great implementation of MHPs due to their easy preparation and
remarkable efficiencies, leading to results comparable to the more traditional semiconductors-based
devices, such GaAs and Si, due to their high crystallinity and low temperature processing [84].
The evaluation of the potential of MHPs as sensitizers on mesoporous TiO; electrodes was started
in 2005 in the Miyasaka group [85], inspired by the quantum photochemistry research of Teshima
and Kojima [86,87]. Preliminary studies with methylammonium lead halide perovskite nanocrystals
(CH3NH;3Pbl3) showed promising results in visible light absorption ability when deposited on
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a TiO; electrode. Schmidt et al. in 2014 published the first solution-based colloidal approaches
based on lead halide hybrid organic-inorganic MHPs [88]. Recently, remarkable advances in the
exploration and development of all-inorganic MHPs have also been achieved. Protesescu et al. [89]
investigated the ability of different cesium-based MHPs to act as entire visible spectrum-absorbers,
with surprising and remarkable quantum yield efficiencies. Nowadays, the discoveries associated with
the remarkable optical and electrical properties of MHPs have extended to several other applications,
such as light-emitting diodes, photodetectors, X-ray detectors, memory devices, and many others [90].
The interdisciplinary interests of MHPs, necessitating expertise in chemistry, physics and optoelectronics,
may challenge a great part of the research community, leading to intensive and practical developments
in the near future.

Reasearch on Metal Halide Perovskite (2012-2019)

Number of articles

03 Y T T T T
2012 2013 2014 2015 2016 2017 2018 2019

Years

= Materials Science (29.6 %)
= Chemistry (20.7 %)
Physics and Astronomy (12.4 %)
Energy (11.2 %)
= Engineering (11 %)
= Chemical Engineering (6.9 %)
u Biochemistry and Biology (3.5 %)
= Environmental Science (1.4 %)
= Multidisciplinary (1.2 %)
= Computer Science (0.7 %)
u Other (1.3 %)

Figure 3. Trends of the published scientific articles on metal halide perovskites and academic trends.
Analysis search results by Scopus.com.

3.2. Perovskites” Fundamental Structure, Composition and Applications

MHPs have an ABXj structure (Figure 4), whcih contains a hybrid organic-inorganic or inorganic
monovalent cation in the A-site position (methylammonium MAT, formamidinium FA™, cesium Cs*
or mixed cations), a divalent oxidation state IVA metal element in the B-site (Pb%*, Sn?*, Ge?* ... ),
and a halide anions in the X-site (I7, Br~ or CI7).

O Xsite (I, CI',Br)

Q B-site (Pb?', Sn?', Bi?', etc.)
O A-site (MA™, FA™, Cs™)

Figure 4. General crystal structure of metal halide perovskites.

When the A-site is occupied by organic cations (MA* or FA*), we usually refer to these as hybrid
organic-inorganic MHPs. In recent research, in order to overcome the relative environmental instability
of hybrid organic-inorganic MHPs, scientists have efficiently replaced the organic cations with inorganic
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metals (all-inorganic MHPs) without decreasing the electro-chemical properties [91]. Moreover,
intensive research into structural and compositional modifications have produced breakthroughs in
MHPs efficiencies [92-94].

Generally speaking, the cation selected for the A-site is responsible in the determination of the
orientation cage within the structure, and its manipulation may lead to the beneficial transition of
the optoelectronic properties [95-97]. The size of the A-cation adversely affects the symmetry of the
structure, causing distortions on the B-X bond which controls the electronic properties in the perovskite
framework [98]. Among the organic cations, methylammonium (MA™) has been widely used because
of its radius (1.8 A), resulting in lower packing symmetry, higher band gap and higher efficiency, and it
appears to be the more suitable in solar cells [95]. In general, inorganic elements exhibit better stability
compared to organics; therefore, the organic cations have been beneficially substituted with cesium
cations (Cs*) in what have become known as all-inorganic MHPs [99].

The B-site is generally occupied by elements belong to the IVA group of the periodic table.
Its modulation was found to be affected by proceeding along the periodic table group, with a reduction
in the stability of the divalent oxidation state, decreasing as a consequence of the band gap and
electron pair effect, due to the enhancement of its electronegativity and covalent characters [72,100].
Despite lead-based MHPs gaining a lot of success, partial or total substitution of lead (Pb) with other
ions, such as tin (Sn), may led to increases of its absorption ability and environment stability [101].
Moreover, ions doping, in particular with environmentally friendly ions (e.g., Ca, Mn, Sr, Bi), has been
recently considered, in order to find an equilibrium between good performances and environmental
aspects [102-107], leading, in particular, to an increased stability.

Finally, the X-site is occupied by a halogen element that has a great influence on the valence band
energy of the MHPs, according to its electronic features. In particular, the valence bands and the
associated electron binding energies of MHPs have been recorded to decrease after applying the XVII
group elements, going from Cl to I. Manipulation with mixed halogen ions has led to an enhancement in
the thermal stability, in comparison to the single halogen ion-based MHPs counterparts. Mixed Cl and
I halide perovskite have shown improved efficiency in the pioneering work of Lee and co-workers [50].
Previous researchers have further suggested that mixed Cl and I halogens may be beneficial for the
growth of crystal domains, due to a slower crystal lattice generation process, leading to a decrease in
the grain boundary number, enabling the charge carriers to move across the structure, thus reducing
charge recombination [108]. The introduction of Br-halide ions resulted in an increase in the quality
of the final material in terms of the symmetry of the lattice, its stability under a humid environment,
and its morphology and optical properties [109,110]. However, total substitutions of Br resulted in
photoinduced phase segregation, and thus the mentioned approach still need further insights [111].

In general, several compositional factors are not entirely understood, including long-term
environmental stability, toxicity and final efficiencies, and these are the main points to be addressed in
the future in order to assure the feasibility of MHPs.

MHPs attract our attention mainly for the rapid development they have recently achieved in the
photovoltaic field, by accomplishing notable progresses in only a few decades. Among the traditional
applications where MHPs have witnessed extraordinary developments, one may cite solar cells and
light emitting diodes.

Research into perovskite-based solar cells started in 2005, with the aim of examining the possibility
of using halide perovskites as sensitizers on mesoporous TiO, electrodes. The halide perovskites were
firstly applied in the dye-sensitized technology in solar cell devices [112]. Lead-based hybrid MHPs
(CH3NH3Pbl;3) adsorbed on TiO; film was firstly discovered as a potential alternative to the traditional
solar cell materials, showing a remarkable photocurrent efficiency [113]. Moreover, if any significant
differences were observed, the tests were performed on a different substrate, verifying the interesting
ability of the MHPs [51]. In addition, the researchers noticed that the transfer of photogenerated charge
carriers could directly occur on the perovskite, resulting in the non-necessity of an electron-accepting
layer. Thus, perovskite solar cells may be fabricated from direct junctions between the perovskite,
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the n-type TiO; and p-type hole-transport material (HTM) films. Following this concept, a planar pin
junction was prepared by co-evaporation of CH3NH;I and PbCly, and this structure further increased
the photocurrent efficiency [114]. As reported by McMeekin et al. [115], by employing a tandem
architecture, halide perovskite-based photovoltaic cells can potentially boost the efficiency of the more
commercial modules based on silicon.

On the other hand, perovskite light-emitting diodes (LEDs) are gaining considerable attention
for applications in next-generation displays and lighting. Tremendous efforts have been devoted to
implement all-inorganic MHPs in this field [66,116], leading to remarkable achievements [117,118].
In summary, the great performance of MHPs-based LEDs can be reduced to three fundamentals:
(i) a balanced injection of charges, (ii) a minimal non-radiative charges recombination loss,
and (iii) efficient extraction of the emitted photons [119,120]. New strategies have been recently
applied in order to further enhance the efficiency of MHPs-based LEDs. Among them, the transition
from 3D bulk to 2D layered structures has resulted in an increase in radiative recombination and
efficient energy funneling, leading to nearly 100% internal quantum efficiency [121]. Nevertheless,
the improvement in device stability still remains among the major challenges, and it has been previously
reported that oppression of ion migration, with additives or blocking layers, may further optimize the
MHPs' interface connection [117].

3.3. Outstanding Properties of MHPs as Photocatalyst

MHPs have mainly emerged for their unique optoelectronic properties, including favorable band
gaps for extended light absorption in the visible light range, high charge carrier mobility, and long
charge diffusion lengths for a reduced recombination rate of photogenerated electron-hole pairs.
These properties have made MHPs remarkably suitable for photocatalytic applications, as remarked
in many recent reports [5,19,82,84,93,99,122]. In particular, the important factors that support the
potentially superior photocatalytic performance of MHPs include the following: (1) a high optical
absorption coefficient with easily tunable band gaps; (2) a long carrier diffusion length and suppressed
recombination rate that enhance the charge carriers lifetime; and (3) a well-balanced charge transfer
suitable for redox reactions [85].

3.3.1. Extended Optical Absorption Range

The light absorption ability of the MHPs was found to be enhanced when compared with traditional
semiconductors (e.g., TiO;), contributing to the increase of photon-to-carrier conversion efficiency,
as demonstrated in many perovskites-based solar cells [123]. A suitable band gap is fundamentally
required in order to maximize the optical absorption of photocatalytic materials. In theory, the range
of visible light absorption becomes wider, and the efficiency of light utilization can be increased,
by narrowing the band gap values [122]. MHPs-based nanostructures have recently emerged as
low-dimensional semiconductors of great interest in photovoltaics, photonics and optoelectronics,
and extensive efforts have been made towards their controlled synthesis. Among their unique
properties, notable are their exceptionally good light absorption in the visible region and their
tunable photoluminescence, which have witnessed increasing attention in different applications and
technologies [124].

The engineering of the band structures is considered fundamental in the rational tuning of the
electronic and optical properties of perovskite nanostructures, and it is among the key means of
achieving multifunctional optoelectronic efficiency [125]. In general, the MHPs have a direct band gap
ranging across the entire visible spectrum, meaning that, in a photocatalytic application, the charge
carriers can be efficiently generated at lower energies [125,126]. Among the advanced properties of
MHPs has been reported an easy approach to achieving seamless tuning of the band gap, by simply
changing the mixing ratio of the halide elements (e.g., I-Br, Br—Cl) [127]. Protesescu et al. showed
that the emission wavelength of CsPbX3 (with X = Cl, Br or I) can be shifted from 410 nm to 512 nm,
and then up to 685 nm, changing only the halogen element in the X-position to Cl, Br or I, respectively.
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In the same research, mixed halogen composition led to the potential to absorb light through the entire
range of the solar spectrum [128]. The modification of the band gaps of MHPs is very interesting
with regards to targeted device design that requires specific energy levels. In recent years, it has been
reported that the efficiency of MHPs-based devices can be compared to the state-of-the-art of quantum
dots and organic materials as traditional solar-light absorbers [117,129,130].

The nature of the electronic structure of MHPs, and the formation of energetic bands through
the hybridization of metal and halogen orbitals, has led to successful results in photocatalytic
applications [131]. In contrast with the conventional semiconductors, whose band gaps are formed
between bonding and antibonding orbitals, in MHPs the valence band edge shifts in energetic levels,
according to the halogen component, while only small changes are ascribed to the conduction band
edges [132]. In this case, the A-site cation produces the major effect on the band gap value of the
perovskites. It was reported that, with shifting from inorganic cesium (Cs*) to organic MA* and FA*
cations, as the sizes of cations respectively increase, the band gap of the corresponding material red
shifts. This behavior was ascribed to an enhancement in the tilting angle of metal-halogen bonds
and the distortion of the crystal structure [133,134]. The B-site’s composition may also influence the
optical properties, most likely due to the electronegativity of the metal element employed [72,100].
It can be concluded that the final band gap, and the connected optoelectronic properties of the MHPs,
strictly depend on the final stoichiometry, if comparable sizes and shapes are maintained. On the other
hand, the Stokes shift increases as the size of the nanoparticles is reduced, due to the formation of a
confined holes state delocalized across the entire nanocrystal, showing the size-dependency of MHPs’
properties [133].

In terms of quantum yield (QY), the electronic structure and the band gap formed between the
antibonding orbitals lead to the predominant formation of shallow traps, allowing typically remarkably
high values, and a strong defect tolerance. Higher values of QY were reported for inorganic Cs-based
and hybrid MA- and FA-based halide perovskites, whereas Cl-based MHPs have much lower values of
QY with respect to their Br and I counterparts, due to the small size of the Cl-halogen anions affecting
the defects in the crystal structure [131]. Furthermore, the metal-ions doping approach has exhibited
the potential enhancement of the optical properties of the halide perovskite. For example, it was
reported that when Pb was partially replaced by other cations, such as Mn, the structure may lead to a
strong Stokes-shifted emission, resulting in a higher utilization of solar energy [135]. On the contrary,
blue shift in the band edge was detected by doping the halide perovskite with other cations (Sn?*, Cd?*,
AI>* and Zn?*). These effects can be ascribed to the contraction of the original MHPs' lattice, which may
result in wide band gaps and lower absorption abilities [136,137]. Thus, dopant atoms led to a potential
modification of the absorption wavelengths, as was demonstrated in the literature, with non-obvious
beneficial effects [138].

The morphology of MHPs recently gained more attention with regards to the design of MHPs-based
materials, in particular transferring from bulk to low dimensions (0D, 1D, 2D and 3D) nanomaterials.
The nanostructures have shown distinctive optoelectronic properties in comparison with their bulk
counterparts, due to their quantum-confined effects. The tuning of the band structures of the perovskite
nanostructures allows the design of novel, efficient and functional light-active MHPs, leading to a new
degree of freedom in the modification of their optoelectronic characteristics. Previous studies have
shown that a band gap between 1.34 and 1.5 eV can effectively absorb visible light, but at lower values,
the photogenerated charges recombination rate negatively increases. According to this assumption,
the energy band diagram of 3D perovskite materials seems to be the most suitable to satisfy the
mentioned requirements [139]. On the other hand, when the dimension was reduced to 2D or 1D,
the band gap appeared to enlarge, which can be beneficial for some solar light-driven applications [124].
Thus, the control of the compositions, structures and dimensions can affect the band gap of MHPs,
leading to a wide tunability with regards to light emission, and absorption ranging from ultraviolet to
the near-infrared wavelength [125].
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3.3.2. Direct Generation of Free Charge Carriers

Exploring charge carriers kinetic is essential to the design of new photocatalysts, because it allows
us to reveal the photocatalytic mechanisms and to optimize the material efficiency.

The semiconductor-based photocatalysis is initiated by the absorption of a photon with an energy
at least greater than the band gap energy of the photocatalyst, inducing inter-band transition, with the
formation of electrons and holes in the conduction and valence bands, respectively. The electron-hole
pairs are photogenerated within a femtosecond time, thus they tend to easily recombine in the
bulk or on the surface of the photocatalyst, with the subsequent loss of energy in terms of light or
heat [140]. Then, the non-recombined charge carriers can migrate to the surface, and they can be trapped
before undergoing the interfacial charge transfer. Afterwards, the redox reactions can occur through
interfacial charge transfer, influenced by the energetic position of the trapped states. Thus, the overall
photocatalytic efficiency is dependent firstly on the pico/nanosecond competition between charge
carrier recombination and trapping, and secondly on the micro/millisecond recombination of the
trapped charge carriers and interfaces [71]. Thus, energy level alignments at the interfaces, in strict
relation with the band gap, play a key role in the engineering of the charge transport behavior of
the semionductors.

In the MHPs-based material, increases in the separation and extraction of photo-generated carriers
have been recorded as coupled with a decrease in the recombination of charge carriers. Therefore,
in the majority of the solar-light driven applications, the MHPs can act both as a charge generation
and a transport medium [122]. As for their other properties, the performance of MHPs greatly varies
depending on several factors, including crystal structure, nanoscale morphology, microstructure,
and the hierarchical architecture of the final [128,141]. However, the easy control over the band
alignment in MHPs represents a great advantage, and helps us provide novel and functional materials
for different light-driven applications.

3.3.3. Long-Range Balanced and Ambipolar Charge Carrier Transport Properties

The diffusion length of the photogenerated carrier has been considered one of the strongest gaps
for screening materials for light-driven processes [142].

In the field of heterogeneous photocatalysis, carrier diffusion and transport are important
parameters to be consider. The electronic structure, including determination of the absorption
coefficient and the charge carrier concentration, remarkably influence carrier lifetime and diffusion
length. After the photogeneration of the electrons and holes, excited carriers subsequently undergo
separation and transport from the bulk to the surface of the semiconductor. In photocatalytic reactions,
charge separation and transport processes are a primary concern [143]. These phenomena, comparable
to an electron flow, such as current, are mainly influenced by parameters such as the diffusion coefficient,
and the gradient, mobility and concentration of the electrons and holes. As the electronic structure
predominantly determines the effectiveness of good mobility, a long carrier diffusion length represents
a key advantage as regards the intrinsic properties of a semiconductor [144].

Scientific breakthroughs with MHPs in 2013 were focused on the potential use of
MHPs as promising light-harvesters, along with their beneficial electronic properties, such as
a long photogenerated diffusion and lifetime, which can be compared to the traditional
semiconductors [142,145,146]. Studies on photophysical processes, such as transient absorption
spectroscopy, have recently confirmed the effectiveness of charge carrier dynamics in monitoring the
photogenerated carriers, in terms of photon absorption, vibrational relaxation and exciton generation
and separation [147-149]. The advantageous properties include balanced long electro-hole diffusion
lengths that surpassed those of typically used photovoltaic materials [145], high charge carrier mobility
and lifetime [150], and beneficial interfacial charge transfer dynamics, as well as still-uncovered electron
injection dynamics [151]. Moreover, MHPs have been shown to possess an ambipolar charge carrier
transport capacity, which can assure potentially outstanding photocatalytic properties, with balanced
hole and electron mobility under light illumination. Recent studies have revealed that the ambipolar
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performance can be considered an intrinsic property MHPs as a feature independent from the device
architecture [152].

3.3.4. Point-Defect Tolerance and Reduced Recombination Centers

The presence of point-defects on a photocatalyst can affect its structural, electronic and optical
properties, and can thus be used as a strategy for improving its performance [153].

As for other semiconductors, the intrinsic optoelectronic features of MHPs are greatly determined
by several factors, including the presence of beneficial defects in the crystal structure, which, in the
case of this family of materials, can be easily controlled by synthesis [154]. Both experimental and
theoretical studies have recently demonstrated that defects, including vacancy, impurity and the
presence of interstitial atoms, may lead to decreases in band gap value, enhancing the light absorption
through the visible range and resulting in higher photocatalytic activity [155,156].

It seems very useful for the future to gain deeper insights into the potential defect science
of MHPs, which seems to be essential for the enhancement of the efficiency of materials in
light-driven technologies.

4. Photocatalytic Applications

4.1. Photocatalytic CO, Reduction

CO; conversion to fuels has been promoted as a climate change mitigation measure, able to reduce
the use of fossil fuels with a simultaneous beneficial recycling of carbon [157,158]. Thus, addressing
the problems of the depletion of fossil fuels and global warming appears to be an urgent task, and
the search for valid approaches to maintaining the atmospheric CO, level has become fundamental
and urgent [159,160]. Artificial-based photocatalytic processes, supported by globally available and
inexhaustible solar-light energy, have attracted particular attention as regards the conversion of
CO;, to solar fuels [161]. In this scenario, the remarkable optical and electrochemical properties of
MHPs may represent a pivotal advantage for their success as high-efficiency solar energy-based
photocatalysts [162]. Recently, different MHPs have been investigated as potential photocatalysts for
the reduction of CO,, demonstrating promising results (Table 2).
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Table 2. Comparison of CO, reduction efficiency of different metal halide perovskites-based photocatalysts reported in the literature.

co

CH4

H2

Photocatalyst Irradiation Medium Averaged Electron Yield umol g1 Selectivity % umol g1 umol g1 umol g1 Ref.
CsPbBr; QDs 8.5 nm 300 W Xe, AM 1.5G filter H,O/ethyl acetate 20.90 99 34.10 12.20 0.80 [163]
CsPbBr; QDs 11.6 nm 300 W Xe, AM 1.5G filter H,O/ethyl acetate - - 24 9 0.60 [163]
CsPbBr; QDs 3.8 nm 300 W Xe, AM 1.5G filter H,O/ethyl acetate - - 18.10 6.90 0.40 [163]
CspAgBiBrg unwashed 300 W Xe, AM 1.5G filter ethyl acetate 16.20 100 5.50 0.65 - [164]
CspAgBiBrg in Abs EtOH 300 W Xe, AM 1.5G filter ethyl acetate 105.30 100 14.10 9.60 - [164]
Bulk CspAgBiBrg in Abs EtOH 300 W Xe, AM 1.5G filter ethyl acetate 5.60 - - - [164]
CsPbBr; QDs 100 W Xe, AM 1.5G filter ethyl acetate 284.70 99.3 49.50 229 1.07 [165]
CsPbBr; QDs/G.O. 100 W Xe, AM 1.5G filter ethyl acetate 357.40 99.1 58.70 29.6 1.58 [165]
CsPbBr3 100 W Xe, AM 1.5G filter CO, and H,0 vapour 33.42 100 - - - [166]
CsPbBr3/ZIF-8 100 W Xe, AM 1.5G filter CO, and H,0 vapour 46.49 100 - - - [166]
CsPbBr3/ZIF-67 100 W Xe, AM 1.5G filter CO, and H;,O vapour 88.89 100 - - - [166]
15%-CsPbBr; QDs/UiO-66 300 W Xe, 420 nm filter H,O/ethyl acetate 222 - 98.57 3.08 - [167]
CsPbBr; NCs 300 W Xe, 420 nm filter ethyl acetate 29.60 100 3.62 2.79 0 [158]
CsPbBr3 NCs/Pd NS (100) 300 W Xe, 420 nm filter ethyl acetate 41.382 97.6 7.92 3.07 0.50 [158]
CsPbBr3 NCs/Pd NS (300) 300 W Xe, 420 nm filter ethyl acetate 59.08 96 12.63 10.41 117 [158]
CsPbBr3z NCs/Pd NS (600) 300 W Xe, 420 nm filter ethyl acetate 101.39 93.5 5.77 5.26 3.29 [158]
CsPbBr3 NCs/Pd NS (900) 300 W Xe, 420 nm filter ethyl acetate 52.66 94.7 3.90 - 1.40 [158]
CsPbBr; NCs 150 W Xe, AM 1.5G filter ethyl acetate/IPA 25.72 90.3 3.35 2.06 1.64 [168]
CsPbBr3 NCs/a-TiO; (10) 150 W Xe, AM 1.5G filter ethyl acetate/IPA 106.56 90.5 7.73 10.12 5.08 [168]
CsPbBr3 NCs/a-TiO, (20) 150 W Xe, AM 1.5G filter ethyl acetate/IPA 193.36 95.5 11.71 20.15 4.38 [168]
CsPbBr3 NCs/a-TiO; (30) 150 W Xe, AM 1.5G filter ethyl acetate/IPA 140.09 93.7 8.05 144 442 [168]
CsPbBr3 NCs/a-TiO; (50) 150 W Xe, AM 1.5G filter ethyl acetate/IPA 79.25 874 8.72 6.47 5.01 [168]
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The instability of the commonly-used MHPs has been reported in the current literature as one
of the main drawbacks of aqueous solutions [162]. Low-polar, non-aqueous solvents, such as ethyl
acetate, have been widely selected in many studies in order to assure a longer stability of the particles
during the photocatalytic processes [165,169]. In order to overcome the stability issues, CO, can be
reduced to its gaseous form at high temperatures, however, the application of a solid—vapour system
may be limited by several factors, including a lower efficiency and selectivity [170]. On the other
hand, the separation and transfer of the photogenerated charges may also represent a limit to the
photocatalytic applications [90]. The recorded high photoluminescent quantum yield can be interpreted
as the fast consumption of the excited electron—hole pairs in the radiative charge recombination before
the chemical reactions [171]. An efficient separation of the electron-hole pairs, temporally and spatially,
can be easily resolved by coupling MHPs’ interfaces in compositions with other materials, including
TiO,, graphene oxide or metal-organic frameworks [165-168]. As far as future prospects go, it seems
that the composition of multiple and suitable semiconductors may lead to the potential acceleration of
the photoinduced electron transfer, inducing greater catalytic reaction sites, and it can also facilitate
the injection of the free electrons in the subsequent chemical reactions [172]. In conclusion, even if the
employment of MHPs in CO, reduction photocatalysis is still at its first stage, previously reported
results demonstrate their great potential for progress in the near future.

4.2. Photocatalytic Hy Evolution

Heterogeneous photocatalysis based on solar-light energy is considered among the promising
ways to generate hydrogen, as a renewable approach to facing the recent energy crisis and demand.
As in the majority of light-driven applications, the well-known TiO,-based photocatalysts have
demonstrated great potential as a low-cost and environmentally friendly approach to solar-hydrogen
production. However, the principal barriers are the rapid recombination of photo-generated charges,
as well as backward reactions and low activation under visible light irradiation [16]. The optical
and electrochemical properties of MHPs may provide a new paradigm for solar fuel production, and
recently have also been tested as ideal candidates in photocatalytic hydrogen generation [84].

A summary of recent approaches to photocatalytic hydrogen evolution, by means of MHPs and
their composites, has been summarized in Table 3.
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Table 3. Comparison of H, generation efficiency of different hybrid organic-inorganic perovskites and their composites reported in the literature.

Photocatalyst Irradiation Medium HER pmol h-1g=1  Apparent Quantum Efficiency (%) Ref
MAPDbBr3 A > 420 nm mixed HI/HBr acid 11.20 - [173]
MAPDbBr3/Pt A >420 nm mixed HI/HBr acid 33.60 - [173]
MAPDbBr3_, I« A > 420 nm mixed HI/HBr acid 1021.20 - [173]
MAPDbBrs_,Ix/Pt A > 420 nm mixed HI/HBr acid 2604.80 8.10 (450 nm) [173]
MAPDbBr3 A > 420 nm HI acid 11.31 - [53]
DME-MAPDbBr3 A > 420 nm HI acid 22.62 - [53]
DMSO-MAPbBr3 A > 420 nm HI acid 31.67 - [53]
Pt:DMSO-MAPDbBr; A > 420 nm HI acid 57.00 - [53]
MAPDbBr3 300 W Xe, A > 420 nm HI solution 14.00 - [174]
MAPDbBr3/Pt 300 W Xe, A > 420 nm HI solution 40.00 - [174]
MAPDbBr3/rGO 300 W Xe, A > 420 nm HI solution 938.90 1.4 (450 nm) [174]
MAPDbBr3 A >420 nm saturated HI solution 38.00 - [162]
Pt/MAPbBr; A > 420 nm saturated HI solution 90.00 - [162]
TiO,-Pt/MAPDbBr3 A > 420 nm saturated HI solution 620.00 - [162]
Pt/TiO,-MAPDbBr3 A > 420 nm saturated HI solution 1986.67 70 (420 nm) [162]
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The encapsulation technique was first applied in order to overcome the instability problems in
hydrogen generation based on MHPs. In 2016, Crespo-Quesada et al. [175] presented their work on
CH3NH3Pbl-based photocathodes used as a light absorber and an efficient charge transfer under
solar simulator irradiation. In their work, a simple encapsulation approach was used, leading to the
generation of Hy over 2 h in a mildly neutral electrolyte. Similarly, Nam et al. [176] applied a lift-off
process to encapsulate the MHPs-based photoelectrode, achieving more precise desired morphological
dimensions, and the possibility of additional layers with specific protective and photocatalytic functions.
The prepared device showed remarkable results toward water oxidation as well as an excellent long-term
stability in a strongly oxidizing electrolyte. The stability problem in the water splitting application is
associated with the decomposition of the MHPs that usually occurs because of the ingress of water
molecules through the pinholes. Thus, as an alternative, a remarkable enhancement in the stability
was achieved by employing pinhole-free hole transport layers [177]. Another method was identified
by Park and their group, who prepared a suitable solar-driven hydrogen evolution system based
on bare MHPs using hydrohalic acids as medium [53]. In their work, photocatalytic H, generation
was performed without co-catalysts or oxidants, and stable conditions were maintained over 160 h
due to the dynamic equilibrium between phases. Lately, similar techniques have been employed
using mixed aqueous HBr/HI solution. Powder samples of MHPs loaded with Pt co-catalyst particles,
applied on the surface, demonstrated superb photocatalytic H, evolution activity, especially due to the
efficient band gap and the subsequent separation at the interface of the materials [173]. The enhanced
results of such a structure should be considered in future, with regards to other MHPs-based materials.
In order to overcome the unfavorable and expensive approaches previously mentioned, Kim et al.
investigated a simpler strategy for the utilization of conventional MHPs photocatalysts by designing a
semi-transparent photocathode compatible with strongly acidic aqueous electrolytes [178].

Despite the potential results of the previously cited works, all-inorganic halide perovskites should
be considered as well, as promising materials. These materials exhibited different advantages in
comparison to other hybrid MHPs systems, including higher photocurrent density, higher photovoltage
potential, and, more importantly, higher stability in contact with several acidic electrolytes [178].

4.3. Photocatalytic Removal of Organic Contaminants

Environmental industrial emissions of organic contaminants, due to their toxicity, are globally
considered as a serious threat to human health and ecosystems. Recently, the impressive response
achieved through MHPs has inspired applications well beyond those previously mentioned. In addition
to the various well-known applications, MHPs have been utilized as remarkably efficient photocatalysts
for numerous light-driven reactions, including wastewater treatments [179,180]. The first results in
photocatalytic wastewater treatment belong to Aamir et al. [181], who reported the preparation of
new hydroxyl ammonium lead halide perovskites, OHNH3Pbl,Cl and OHNH;3PbCl3, which showed
suitable stability in an aqueous medium and visible light activity in the photocatalytic degradation
of yellow dye under ambient conditions. Lead-based MHPs emerged as visible light photocatalysts,
applied in the degradation of other organic dye contaminants such as rhodamine B (RhB). The efficiency
was found to be enhanced in the presence of assistant oxidants, such as H,O,, and the evidence of
reactive oxygen species production was defined [182]. Lead-free hybrid MHPs have been prepared
by replacing lead with cadmium, a non-toxic 6p-block element, leading to higher stability, increased
charge-carrier lifetimes, and lower charge carriers recombination rates [183]. Bismuth-based hybrid
organic—inorganic MHPs have been prepared and tested as new effective visible light-responsive
photocatalysts, for the degradation of different environment pollutants [101].

However, despite the recent success of organometallic halide perovskites, other analogue MHPs
have been developed with competitive performances. Among them, the preparation of all-inorganic
MHPs has recently gain a lot of attention, because they demonstrated better stability and the ability
to absorb a wider range of the visible light region of the solar spectrum [90]. After the pioneering
work of Protesescu et al. properties [77], the preparation of all-inorganic MHPs has been the focus of
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much effort. Gao et al. [23] reported MHPs’ potential photoactivity on organic dye degradation in 2017.
In his work, all-inorganic CsPbX3 (X = Cl, Br, I) quantum dots were promoted to study the potential
effects of preparing various types of halide perovskites for the photocatalytic degradation of methyl
orange (MO). Lately, similar evidence was obtained concerning CsPbBrj for the photodegradation of
2-mercaptobenzothiazole, an important heterocyclic aromatic compound, poorly biodegradable, toxic,
and probably carcinogenic to humans [184]. In 2019, inorganic CsPbBr; quantum dots were successfully
employed even for the removal of antibiotic residues. The photocatalytic activity was evaluated on the
photodegradation of tetracycline hydrochloride in ethanol as a model reactant, showing its benefits as
a novel visible light photocatalyst for wastewater applications [180].

Schiinemann et al. [185] suggested a polystyrene-based colloidal crystal templating approach
to synthesize macro/mesoporous CsPbBrs. The as-prepared MHP, with inverse opal morphology,
resulted in superior photocatalytic activity compared to the bare CsPbBr3 material. The results,
potentially beneficial for other photocatalytic reactions, greatly enriched the MHPs-based novel
research area.

Environmentally friendly alternative approaches, with respect to the commonly employed
lead-based MHPs, have been successfully proposed by Reyes-Pérez et al. [179], by employing CsSnBrs
in crystal violet photodegradation under visible light irradiation. A similar approach was employed
for the degradation of methylene blue and methyl orange by nanostructures of TICdI3, synthesized by
a new, efficient and quick mechanical method [186].

Lim et al. [187] have recently proposed a facile method for eight binary and six ternary
perovskite-like and perovskite-derivative nanostructures, leading to potential applications in many
hundreds of other similar materials. The optical and photocatalytic properties of perovskite-based
nanomaterials were evaluated, and distinguished applications have been proposed.

Compositional engineering applied to MHPs allowed the great tunability of the band gaps over a
wider range of the solar-light spectrum, making the photons effectively harvest sunlight. The improved
stability and successful alcohol-based photocatalytic systems based on MHPs, have been developed
by employing a lead-free double material, Csy AgBiBrg, used for the photocatalytic degradation of
four types of ionic dyes. Among the dyes degraded, rodamine B was found to be almost completely
degraded, up to 98%, within two hours of irradiation [188].

Inspired by the remarkable efficiency of MHPs, heterostructured and composite perovskite-based
photocatalysts have also been prepared. In 2017, Pu et al. [189] studied the degradation of p-nitrophenol
under visible light irradiation, by preparing methylamine lead bromide perovskite/protonated graphitic
carbon nitride nanocomposites. In the study, a higher stability and charge transfer ability were recorded;
in particular, the photoexcited electron on the hybrid perovskite conduction band was found to
preferentially transfer to the carbon-base sheets, leading to an enhanced charge separation. Their work
demonstrated the possibility of modulating the interfacial charge transfer behavior, achieving a
superior charge separation efficiency in heterostructured photocatalyst. The band alignment in the
formamidinium lead bromide-based perovskite and TiO, has been composited, in order to demonstrate
the enhancement in the selective photocatalytic oxidization of benzylic alcohols by funneling the
photogenerated electrons from the perovskite into the titanium dioxide [172].

Following these principles, all-inorganic perovskites have also been applied in composites.
Schiinemann et al. [190] synthesized a CsPbBrs/TiO, composite via low-temperature wet-impregnation,
and demonstrated its enhanced visible light activity towards the selective oxidation of benzyl alcohol.
ESR (electron spin resonance) analyses further showed the transfer of photoexcited electrons within
the CsPbBr; to the TiO,, and the generation of superoxide radicals. Similar results have been
achieved by anchoring Cs3Bily on UV100-TiO, nanoparticles used as visible light photocatalyst for
methanol oxidation in formaldehyde, with a favorable decrease in the recombination of photoinduced
charge carriers, and a suitable band gap for visible light driven photocatalytic applications [191].
Novel strategies for providing water resistance and increasing the photocatalytic efficiency of halide
perovskites in aqueous medium, through unabated charge extraction, have been recently exploited
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in effective composite systems, which help to extract the photo-generated charge carriers, as well
as providing water resistance. In Type II and Type I or Quasi Type II systems based on Cs3BiyXo,
oxalic acid and TiO,, or Ag,S, allowed the excitons to be generated by the back-illumination of the
perovskite material [192]. The presence of the TiO, and the Ag,S stabilized the interactions with water
molecules, and simultaneously efficiently decreased the photogenerated charges recombination.

Some of the results previously discussed are reported in Table 4 as a comparison of the main
organic pollutants treated in the previous literature.
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Table 4. Comparison of organic contaminants degradation percentage for different metal halide perovskites and their composites, reported in the literature.

Photocatalyst Band Gap (eV) Irradiation Pollutant Degradation % Ref.
TICdI; 2.9 UV Light methyl orange dye 27 [186]
TICdI3 29 UV Light methylene blue dye 100 [186]

CsSnBr3 1.74 Visible light crystal violet dye 73.1 [193]
CsSnBrj 24 500 W Xe, Visible light methyl orange dye 90 [167]
CsPbCl; 2.4 500 W Xe, Visible light methyl orange dye 82 [167]
CsPbBr; 2.26 300 W Xe, A > 420 nm tetracycline hydrochloride in ethanol 76 [180]
CsPbBry 2.26 300 W Xe, A > 420 nm tetracycline hydrochloride in water 18 [180]
CsPbBr3 2.26 300 W Xe, A > 420 nm tetracycline hydrochloride in isopropanol 53 [180]
CsPbBr; 2.26 300 W Xe, A > 420 nm methyl orange dye in ethanol 70 [180]
OHNH;PbI,Cl 37 Solar light dye Direct Yellow 27 93.98 [194]
OHNH;PbCls 3.9 Solar light dye Direct Yellow 27 82.19 [194]
Cs3BiIg-OA 2.12 Visible light methylene blue in water 62.1 [192]
Cs3Bixlg-OA/Ag,S - Visible light methylene blue in water 88.8 [192]
Cs3BisI9-OA/TiO, - Visible light methylene blue in water 83.5 [192]
Cs3Bi; Brg-OA 2.65 Visible light methylene blue in water 26.6 [192]
Cs3BiyBrg-OA/Ag,S - Visible light methylene blue in water 40.13 [192]
Cs3BiyBrg-OA/TiO, - Visible light methylene blue in water 27.6 [192]
Cs3Bi;Brg 2.65 Visible light methylene blue in isopropanol 66.3 [192]
Cs3BiyBrg-OA NCs 2.65 Visible light methylene blue in isopropanol 58.8 [192]
[IO-CsPbBry 2.3 simulated solar light, AM 1.5 rhodamine 6G 95 [193]
Bulk-CsPbBr; - simulated solar light, AM 1.5 rhodamine 6G 75 [193]
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4.4. Photocatalytic Organic Synthesis

The economic feasibility and the efficiency of photocatalytic processes have been considered, and
they have also been identified as desirable approaches in the field of organic chemistry. Advances
in the artificial formation of organic compounds have been achieved via photoredox catalysis with
semiconductors of different nature [195-197]. The traditional photocatalysts employed have shown
limits, such as difficult preparations, the uneconomic content of high-cost noble metals, instability,
and in certain cases, low activities, leading to the necessity of new, easy-to-produce, economical and
effective alternatives. Given the widespread success of MHPs in many light-driven applications,
recently many researchers have questioned the possibility of their use in highly efficient photocatalytic
organic molecules synthesis. Some of the mentioned research is summarized in Table 5.
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Table 5. Comparison in different organic synthesis reactions of different metal halide perovskites and their composites, reported in the literature.

Photocatalyst Irradiation Photocatalytic Reaction Conversion %  Selectivity % ref.
TiO, simulated light irradiation, AM 1.5G oxidation of benzylic alcohol 15 95 [172]
FAPbBr3 simulated light irradiation, AM 1.5G oxidation of benzylic alcohol 15 99 [172]
nano-FAPbBr3 simulated light irradiation, AM 1.5G oxidation of benzylic alcohol 11 99 [172]
15% EAPbBr;/TiO, simulated light irradiation, AM 1.5G oxidation of benzylic alcohol 63 99 [172]
15% FAPDbBr3/SiO, simulated light irradiation, AM 1.5G oxidation of benzylic alcohol 13 99 [172]
15% FAPbBr;/TiO,-M simulated light irradiation, AM 1.5G oxidation of benzylic alcohol 37 99 [172]
15% EAPbBr;/TiO, A > 500 nm oxidation of benzylic alcohol 13 99 [172]
15% FAPbBr;/TiO, without light irradiation oxidation of benzylic alcohol 0 0 [172]
CsPbl; Vis LED, 420-700 nm thiophenol coupled to disulfide 58 - [198]
CsPbBry Vis LED, 420-700 nm thiophenol coupled to disulfide 98 - [198]
CsPbBr,Cl Vis LED, 420-700 nm thiophenol coupled to disulfide 98 - [198]
CsPbBry5Cly 5 Vis LED, 420-700 nm thiophenol coupled to disulfide 68 - [198]
CsPbBrCl, Vis LED, 420-700 nm thiophenol coupled to disulfide 35 - [198]
CsPbCl3 Vis LED, 420-700 nm thiophenol coupled to disulfide 12 - [198]
CsPbCls Vis LED, 420-700 nm thiophenol coupled to disulfide 93 - [198]
CsPbCl3 + Brp Vis LED, 420-700 nm thiophenol coupled to disulfide 62 - [198]
Cs3BiyBrg visible light > 420 nm alcoholysis of styrene oxide in IPA (isopropanol) >99 - [195]
Cs3BiyBrg visible light > 420 nm alcoholysis of styrene oxide in IPA >99 - [195]
CsPbBry visible light > 420 nm alcoholysis of styrene oxide in IPA 1 - [195]
CsPbl; visible light > 495 nm polymerization of 3,4-ethylenedioxythiophene 32.6 - [199]
CsPbBr3 Blue LED 455 nm a-alkylation of aldehydes >99 96 [200]
CsPbBr3 NCs 12 W Blue LED, 455 nm synthesis aldehyde 85 - [19]
CsPbBr3 NCs 12 W Blue LED, 455 nm synthesis aldehyde 52 - [19]
CsPbBr3 NCs 12 W Blue LED, 455 nm synthesis tertiary amines 920 - [19]
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Table 5. Cont.

Photocatalyst Irradiation Photocatalytic Reaction Conversion % Selectivity % ref.

CsPbBr3 NCs 12 W Blue LED, 455 nm synthesis tertiary amines 79 - [19]

CsPbBrs NCs 12 W Blue LED, 455 nm cyclization of benzaldehyde phenylhydrazone 88 - [19]

MAPDbBr3 12 W Blue LED, 455 nm cyclization of benzaldehyde phenylhydrazone 75 - [19]
cyclization of ethyl )

CsPbBr3 NCs 12 W Blue LED, 455 nm (2)-3-phenyl-3-(phenylamino)acrylate 93 [19]
cyclization of ethyl .

MAPbBr3 12 W Blue LED, 455 nm (Z)-3-phenyl-3-(phenylamino)acrylate 65 [19]

CsPbBrs NCs 12 W Blue LED, 455 nm coupling of benzoic acid with 78 - [19]

4-bromotrifluorobenzene

CsPbBry 4.6 W Blue LED photopolymerized styrene 12 - [201]

no perovskite 4.6 W Blue LED photopolymerized styrene 3.2 - [201]

no light 4.6 W Blue LED photopolymerized styrene 1 - [201]
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Huang et al. [172] studied the efficiency in photocatalytic oxidization of benzylic alcohols,
by utilizing an energy band alignment within formamidinium lead bromide MHPs and TiO, irradiated
by solar-light. In their work, the authors highlighted the necessity of a capping agent in improving
the instability of the MHPs-based composites. As alternative, in 2017, all-inorganic CsPbl; quantum
dots were applied for the synthesis of conducting polymers, which are widely used, especially in
optoelectronic devices, and are usually prepared by slow and difficult chemical or electrochemical
methods [199]. Recently, Zhu et al. [200] compared two lead-based MHPs colloids, for selective
carbon—carbon bonds for the formation of aldehydes, leading to the development of many other
possibilities for potential organic compounds synthesis. In fact, the same catalytic systems shown
were evaluated for the photocatalytic formation of symmetrical and unsymmetrical disulfides from
thiol [198]. Moreover, Tan et al. [201] tested the stability of lead-based MHPs protected by high molecular
weight polymers fully immersed in water, further demonstrating the success of these materials in
photoactivated organic synthesis. A three-component hybrid perovskite-based solar photocatalyst
cell (NiOx/FAPbBr3/TiO;) was adopted for photocatalytic organic synthesis, due to its capacity for
bond-activation with high selectivity, and high conversion rates under ambient conditions [202].

Among the possible lead-free and more eco-friendly alternatives, Bi-based MHPs have been shown
to be promising, with advantageous low toxicity and higher air-stability [203]. As an example, lead-free
Cs3BiyBrg has recently demonstrated exceptional high activity and selectivity in solar light-driven
photocatalytic organic synthesis [195]. The reasons for such an unexpected catalytic ability are attributed
to the combination of the photocatalytic process and the presence of proper Lewis acidic centers on the
surface of the photocatalyst, leading to a higher activity with respect to the lead-based counterpart.

The development of MHPs in photocatalytic organic chemistry, even if at its early stage, has shown
promising results, offering a preliminary framework for future investigation.

5. Current Limitations and Future Perspectives

The core of our work is to review the recent achievements in MHPs-based materials applied in
photocatalytic processes. Recently, the discovery of their easy preparation and processing, coupled with
remarkable optical and electrochemical properties, has attracted the interest of several academic fields.
Therefore, MHPs have been considered in the new generation of materials with great potential in
many light-driven applications, leading to an incredibly rapid development. The field of MHP-based
photocatalysis is still in a relatively early stage of discovery, and some limits still need to be addressed in
order to achieve further improvement and promote future industrial commercialization. Their feasibility
is still hindered by relatively poor stability in particular environments, and in certain cases, the efficiency
can be further improved. Structural and chemical stability, as well as temperature, humidity and
long-term irradiation, represent the main gaps to be overcome in order to design and optimize
MHPs-based photocatalysts.

In recent years, several approaches have been developed in order to achieve promising and stable
photocatalytic reaction environments by means of MHPs [204-206].

Structural and chemical stabilities include the lack of polymorphism [207], and a lack in resistant
crystalline phases [208]. These effects can be easily overcome by selecting suitable preparation
conditions, such as temperature and pressure [209], or by modifying the MHPs morphological
compositions [210]. Generally speaking, the MA* and FA™ organic precursors, MA*-based MHPs,
showed higher photocatalytic performance and superior thermal stability, but similar humidity
problems [211]. Hybrid organic—inorganic structures have strict requirements for ion size, and the
structural symmetry stability is considerably decreased by a small lattice expansion or distortion.
In general, it has been reported that the tolerance factor, mainly dependent on the effective radii of
the employed ions [212], may influence the structural stability, and thus by replacing or mixing the
compositions of MHPs with different sized ions is a possible means to obtain crystal structures with
greater stabilities [213]. Furthermore, thermal and humidity disadvantages can be faced by mixing
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or replacing organic cations with inorganic elements, for example, cesium has emerged as the most
widely used inorganic precursor [110,214,215].

More specifically, several methods have been tested in order to enhance environmental stability
in relation to target photocatalytic reactions, including CO, reduction, H; evolution, organic matter
photodecomposition or organic transformations. The relative HOIPs (hybrid organic inorganic
perovskite) sensitivity to degradation by polar molecules can be addressed by using low-polarity
solvents for CO, reduction, such as ethyl acetate or acetonitrile, creating stable photocatalytic reaction
conditions [164]. Further enhanced stability can be achieved by combining HOIPs with graphene
or graphitic carbon nitrile, by passivation through the interaction between the surface groups [174].
In addition, the compositions with TiO, or transition MXenes structures can help to speed up the charge
separation, by acting as reaction sites to improve the overall stability [216]. Morphology modification,
and substitution of halogens in the HOIPs or the ions in the A- and B-sites’ structure, have also been
proven as suitable approaches to enhancing the stability toward decomposition [163,164,167,192].
In the same way, low-polarity solvents may be employed in photocatalytic organic synthesis, including
non-polars such as toluene, dichloromethane, tetrahydrofuran, hexane etc. [19,166,195,200,217].

Suitable compositions, and re-engineering of the HOIPs-based systems, can be useful approaches
not only to achieving higher transformation efficiency, but also to stabilizing the photocatalysts
in photo-oxidation processes [172]. Besides the synthesis of organics into value-added products,
the complete mineralization of organic pollutants of MHPs photocatalysts has also been investigated
in toluene [218].

The precipitation—solubility equilibrium, between the HOIPs phase and the soluble ionic species,
represents one among the creative approaches to facing the stability problem. For example, saturated
hydrogen iodide (HI) acid aqueous solutions using HOIPs polycrystalline powders were found to be
a suitable method for photocatalytic H, production [53]. Due to the dynamic equilibrium between
the MHPs powders and the ionic species in the saturated solution, the material was found to remain
stable for several hours under continuous irradiation. Similar principles have been employed by
using HBr/HI mixed acid solution [173]. Improved stability and enhanced hydrogen photocatalytic
activity were achieved by composing HOIPs in supports, such as TiO, [162], rGO [219] and black
phosphorus [220].

As an alternative, a straightforward stabilization method consists of encapsulating the HOIPs
by means of a protective layer. The core-shell particles may prevent direct contact between the
material and the destabilizing environment. This approach was used for CO; reduction [221], as well
as in organic pollutants photodecomposition [222]. The core-shell structure achieved the valuable
stabilization of the HOIPs, not only in low-polarity solvents, but also in a high-polarity solvent, like
water. Adding hydrophobic ligands to coat the surface is another waterproof effective method [223].

In photoelectrochemical cells, used in H; evolution and CO, reduction reactions, HOIPs have
been coated with hole and electron transport layers (HTL and ETL, respectively), enhancing the
overall device stability. Two main options have been exploited: the implementation of MHPs
photoelectrodes in separated compartments [54], and the HOIPs integrated photoelectrode [175]. The
mentioned approaches offered relatively successful solutions. However, the development of MHPs
that are intrinsically stable under common conditions represents an ideal scenario for photocatalytic
reactions. In general, replacing or partially replacing the organic fraction with all-inorganic MHPs
has resulted in higher stability, due to the enhanced formation energy, lower configurational entropy,
and the non-volatile and less hygroscopic nature [224]. Many approaches have been developed
in different photocatalytic reactions, including CO, reduction [158,163-165,168] and organic dye
degradation [167,180,186,192-194].

Lead-based MHPs have shown very promising performances in photocatalytic processes, but
due to the high and well-known toxicity of Pb, for both the ecosystem and environment, it should be
replaced with more eco-friend elements. Generally, germanium- and tin-based perovskite systems
showed rapid oxidation and uncontrolled crystallization, resulting in poorly efficiency. Bismu- and
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antimony-based MHPs showed promising results, with stability comparable to lead-based MHPs [85].
However, appropriate efficiencies, due to the unsuitable band gaps, have not reached the traditional
standards. Thus, a better understanding of photogenerated carrier dynamics at the interfaces needs to
be addressed, in order to effectively improve the performance and stability of all lead-free MHPs.

There is a lack of total understanding of the optical and chemical reactions, and microscopic
physics mechanisms, in the majority of the MHPs’ applications. Therefore, the development of complete
theoretical models is necessary to explain the remarkable efficiency of these materials when applied
in photocatalytic processes. Theoretical research can improve the understanding of the established
activities of MHPs, and they may provide strategies to develop simpler materials and structures with
even higher efficiencies.

Thus, MHPs-based photocatalysts currently need further developments in order to be effective
with regards to the energy and environmental needs of our society. However, the state of the art has
demonstrated that MHPs represent an emerging generation of materials with several applications,
including in photocatalytic processes. Despite the number of remaining challenges, it is important to
remind ourselves that the commercial successes of emerging materials and technologies, such MHPs
and their applications, have never been achieved in just a few decades.

Our research intended to present a general overview of the main progresses in MHPs-based
photocatalysts, recognizing their great potential as future sources of interdisciplinary and
multidisciplinary research.
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