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Abstract: Biodiesel is a potential alternative for fossil fuel. However, its large-scale application
is held up by the disadvantage of a homogenous process, the scarce availability of raw materials
and the production cost, which is higher than for fossil diesel. In this work, biodiesel production
was carried out using both refined and used cooking oils. The process was investigated in a batch
reactor, in the presence of CaO as a heterogeneous catalyst prepared by the calcination of the natural
Waste Grooved Razor Shell (GRS). Characterizations by X-Ray Diffraction (XRD) and Thermal
Gravimetric (TG)/Differential Thermal Analysis (DTA) showed that the as-received GRS consists of
aragonite, (i.e., CaCO3) as the main component and of water and organic matter in a lower amount.
After calcination at 900 ◦C, CaO was formed as the only crystalline phase. The effects of several
experimental parameters in the transesterification reactions were studied, and their impact on the
produced biodiesel properties was investigated. The studied variables were the methanol/oil molar
ratio, the catalyst weight percentage (with respect to the oil mass), the calcination temperature
of the parent GRS and the recycling and regeneration of the catalyst. The physico-chemical and
fuel properties, i.e., viscosity, density and acid value of used oils and of the produced biodiesel,
were determined by conventional methods (American Society for Testing and Materials (ASTM)
methods) and compared with the European standards of biodiesel. The optimal identified conditions
were the following: the use of a 15:1 methanol/oil molar ratio and 5 wt% of CaO with respect to the
oil mass. After 3 h of reaction at 65 ◦C, the biodiesel yield was equal to 94% and 99% starting from
waste and refined oils, respectively.

Keywords: waste grooved razor shell; biodiesel; transesterification; CaO catalyst; recycle
and regeneration

1. Introduction

Earth is increasingly affected by several disasters, such as hurricanes, prolonged droughts and
severe floods, that are related mainly to global warming, which is mostly the result of fossil fuels
usage [1]. Human daily activities contribute deeply to the modification of the natural environmental
equilibrium, causing severe climatic changes [2].
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Today’s civilization is on the threshold of a critical transition, as over the next 50 years it is
expected that there will be the largest increase in energy demand that has ever occurred in history.
This is due to both an increase in the world’s population and the improvement of living standards in
some developing countries. Rapid growth in energy needs will be difficult to bear in the medium term
by the currently known reserves of fossil fuels (oil, coal and natural gas) [3,4].

Most of the energy consumed in the world comes from oil, coal and natural gas. However, the world
has been looking for new alternatives for the energy matrix, and, with this, the natural sources of
biomass are a viable alternative. Therefore, there is an increasing incentive to develop technologies
allowing the use of renewable energy sources that are ecologically sound and economically viable.

Biodiesel, a mixture of fatty acid methyl esters (FAMEs), is defined as fuel obtained from natural
renewable sources, and it can be used in diesel cycle engines [5]. It has been used in blends with fossil
diesel, and the amounts used have been steadily increasing worldwide [6]. Its combustion does not
release more CO2 than the amount consumed during the photosynthesis process [7].

The production of biodiesel is currently carried out using the transesterification of vegetable oils
and animal fats [8–12]. The industrial production of biodiesel is principally based on homogeneous
catalysis in basic media. This process has the disadvantage of using acid for the neutralization of the
base excess [13–15], with consequent environmental damage caused due to the byproducts formed.
It is, therefore, imperative to implement a process for sustainable diesel production.

The synthesis of biodiesel can also be performed by heterogeneous catalysis. Such a strategy offers
technical and environmental advantages over homogeneous catalysis, as it facilitates the purification of
alkyl monoesters, allows the recycling of solid catalysts throughout their useful life and minimizes the
generation of effluents. Besides, it considerably facilitates glycerin recovery and purification [14,16,17].
Several solids have been proposed as potential catalysts for biodiesel synthesis. The performance
of these materials as catalysts is related to the nature of basic sites [18]. Calcium oxide is the most
studied catalyst. Besides its basic properties, it has several other advantages, such as being available
everywhere, easily recyclable, cheap and non-toxic [18]. However, similarly to many other catalysts,
CaO suffers from lixiviation, which inexorably induces a loss of efficiency [14,17,18]. Moreover, calcium
oxide reacts with water and CO2, which lead respectively to lime and calcium carbonate, which are
significantly less active than the corresponding oxide [19].

The investigations of marine or earth sources of calcium-based shells have attracted attention
for many applications [20,21]. The majority of such shells consist of about 96% aragonite, that is
CaCO3 mineral, along with other components, such as organic substances and traces of SiO2 and MgO
oxides [22,23].

Thus, marine shells can be considered as sources of heterogeneous catalysts for biodiesel
production [20,24].

The main goal of the present work is the preparation of CaO starting from Grooved Razor
Shell (GRS). The resulting catalyst was characterized by different techniques, such as XRD, (Fourier
Transform-Infrared (FT-IR), TG/DTA and SEM and investigated in the transesterification reaction of
refined oils and used cooking oils for biodiesel production. The obtained results contribute to the
valorization of marine resources, such as GRS, as a natural source of calcium oxide.

2. Results and Discussion

2.1. Materials Characterization

Figure 1 displays the XRD patterns of the GRS material before and after calcination at 900 ◦C.
Before calcination, the diffraction pattern (Figure 1a) shows that the crystal structure of the shell sample
is aragonite, a variety of the calcium carbonate, CaCO3, phase according to JCPDS (Joint Committee on
Powder Diffraction Standard) file N◦00-005-0453 [23,25]. After calcination of the GRS sample at 900 ◦C
for 1 h (heating rate 10 ◦C·min−1), diffraction peaks appeared at 2θ = 32.26, 37.44, 53.9◦ (Figure 1b),
which are characteristic of CaO (JCPDS N◦00-02-0968) [23]. Such a temperature was selected as a
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suitable calcination temperature to produce the CaO catalyst from the GRS shell according to the
TG/DTA analysis.
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Figure 1. XRD patterns for the (a) natural GRS shell and (b) calcined GRS shell at 900 ◦C.

The FT-IR spectrum of the GRS powder is displayed in Figure 2, curve a. The spectrum shows
bands located at 1445, 1083 and 857 cm−1 attributed to ν1, ν2 and ν3 vibration modes of carbonate ions
that are typically found in aragonite polymorph calcium carbonate [26]. In addition, the doublet at
699 and 712 cm−1 was assigned to the ν4 vibration mode of carbonate ions. The small band observed
at 1789 cm−1 is due to the C=O stretching vibration [23,26]. The presence of water molecules in
the un-calcined sample was confirmed from the broad peak which appeared at around 3270 cm−1.
In Figure 2, curve b is the spectrum of the GRS shell after calcination at 900 ◦C. It is worth noting that
the easily formed CaO reacts with the moisture and CO2 present in the atmosphere. Accordingly,
the strong peak at 3640 cm−1 was attributed to strongly chemisorbed water or to OH groups [23];
additionally, the two bands at 2979 and 2890 cm−1 were ascribed to the stretching of perturbed OH
groups [27]. The bands at 1460, 1410, 1245, 1063 and 872 cm−1 were assigned to the C–O stretching and
bending, ν1, ν2, ν3 and ν4 vibration modes, respectively, of calcium carbonate species formed upon
CO2 adsorption on CaO [23,26].
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Figure 2. FT-IR curves for the (a) GRS shell and (b) calcined GRS shell at 900 ◦C.

Simultaneous TG-DTA analyses were performed in order to investigate the suitable calcination
temperature to obtain a pure CaO catalyst from GRS. As has been shown in Figure 3, the TG curve
shows a weight loss between 200–400 ◦C, which was associated with the elimination of water and the
organic components typical of the natural shell. The corresponding weight loss is about 3%. According
to the literature [23] and as shown by XRD patterns recorded upon the temperature programmed
oxidation treatment at different temperatures under air flow (see the experimental part for details
and results, in Supplementary Materials, Figure S1), the formation of calcite, another mineral form
of CaCO3 (JCPDS N◦01-086-2339) and the disappearance of the aragonite phase occur. A second
weight loss (~40%) was observed in the range of temperature between 600–860 ◦C. Then, above 860 ◦C,
the weight of the sample remained constant. The heat flow curve measured by DTA shows a main
endothermic peak at 845 ◦C corresponding to the minimum of the DTG curve, which was attributed
to the transformation of calcite into CaO, in agreement with the XRD patterns (Figure 1, curve b,
and Supplementary Materials, Figure S1).

The morphological features of the un-calcined GRS shell and of the resulting material after
calcination at 900 ◦C were studied by Scanning Electron Microscopy (SEM). The un-calcined GRS shell
exhibits rod and spherical particles with irregular sizes (see Figure 4a). After calcination at 900 ◦C (see
Figure 4b), agglomerated irregular particles are visible; moreover, a macro-porous structure appears,
with many voids and intraparticle spaces, likely due to the evolution of gaseous species, such the
release of water, organic matter and CO2 due to the decomposition of CaCO3 to CaO.

The EDS analysis of shells shows that Ca and O are the main components, in both uncalcined
and calcined shell samples. The Ca content ranged between 21.57 and 25.12 at % for uncalcined and
calcined shells, while the O content varied between 64.58 and 68.89 at %. Traces of Na (0.46 at %) were
detected in the uncalcined sample. In both materials, carbon was present at 13.38 and 5.99 at % in
the uncalcined and calcined shell, respectively. In the uncalcined GRS, the carbon was ascribed to the
organic matter and also to carbonates, detected also in the calcined material (see FT-IR spectra, Figure 2).
Moreover, the contribution of the carbon grid used for sample deposition cannot be excluded.
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2.2. Oil Characterization

The oils used in this work were a refined cooking oil purchased from a local supermarket and a
waste cooking oil, collected from the University Restaurants of Rabat, Morocco, respectively. In Table 1,
the physical properties and fatty acid methyl esters weight composition of the refined and used oils
are listed. The most abundant fatty acid is the linoleic acid methyl ester (C18:2), with percentages of
~57.4% and ~53.9% in refined and used oils, respectively.
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Table 1. Physical properties and fatty acid methyl esters composition of refined and used frying oils.

Properties Units Refined Frying Oil Used Frying Oil

Viscosity (40 ◦C) cSt 33.5 36.6
Density (20 ◦C) g/cm3 0.921 0.960

Acidic value mg KOH/g 0.27 1.32

Fatty acid type Carbon chain Composition (wt%)

Myristic C14:0 - 0.16
Palmitic C16:0 9.79 10.24

Palmitoleic C16:1 traces traces
Stearic C18:0 3.66 3.85
Oleic C18:1 23.0 28.87

Linoleic C18:2 57.36 53.86
Linolenic C18:3 6.19 3.02

Table 1 also reports the viscosities, densities and acid values of the studied oils. The used oil has a
relatively higher acidic value than the refined one (1.32 vs. 0.27) as a consequence of the hydrolysis
of the triglycerides during the frying process. However, the acidic value of the used oil is still below
the critical FFAs concentration requested to prevent the alkali-catalyzed transesterification [7,28,29].
The physico-chemical properties of the used oil are dramatically modified because such oil was used
for fish frying, and it was replaced each day, collecting above 1900 to 2000 L/month.

The infrared spectra (Figure 5) for refined and used cooking oils were similar. The main absorption
bands can be observed: CH stretch of alkene at 3008 cm−1; CH2 alkane stretch at 2922 and 2853 cm−1;
carbonyl stretch C=O at 1743 cm−1; angular deformation of alkane CH at 1462 and at 1370 cm−1;
stretching of the C-O ester bond at 1160 cm−1 and asymmetric angular deformation of CH at 725 cm−1,
characteristic of long hydrocarbon chains (CH2)n.
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The 1H-NMR spectra of the refined and used oils are also similar, as shown in Figure 6. The two
spectra clearly indicate signals at 4.05–4.38 ppm (OCH2; sn-1, sn-3), 5.25 ppm (OCH; sn-2) due
to the glycerol fraction, 5.05–5.5 ppm (CH=CH), 2.6–2.9 ppm (bisallylic, CH=CH–CH2–CH=CH),
2.1–2.5 ppm (CH2C=O), 1.9–2.1 ppm (allylic, CH2–CH=CH–) and 1.61 ppm (CH2–CH2C=O); 1.24 ppm
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and 1.30 ppm correspond to the alkyl group (CH2)n, and those at 0.75–1.0 ppm are characteristic of
terminal CH3 triglycerides comprising both a saturated and unsaturated fatty acid chain [7,30].
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The application of a thermogravimetric analysis has been widely reported in the literature as a
useful technique for the characterization of oils, as well as of derived biodiesels [31]. Figure 7 reports
the TG/DTG results for the refined and used oils investigated in the present article. The weight curve
of the two oil samples started to significantly decrease at around 375 ◦C, and it continued until total
degradation at 445 ◦C (see DTG curves a’, b’). However, the waste oil curve presented an additional
first small loss at 290 ◦C (Figure 7, curves b, b’) that was assigned to the oxidation of free fatty acids
that are formed during frying. Thus, although the thermogravimetric profiles of the refined and waste
oils are quite similar, the small feature at around 300 ◦C is an important characteristic that depends
on the free fatty acids content; therefore, TG/DTG is a helpful method for discriminating between
mixtures of different oils.
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2.3. Catalytic Activity

Calcium oxide, CaO, is known as an efficient transesterification catalyst [32]. It is not expensive
and can be recycled. The cockle shell (Anadara granosa), which is available in abundance, has been
reported as a source of calcium oxide and has been used as a catalyst for the transesterification reaction
to produce biodiesel [33]. In the present work, we have considered it attractive to investigate another
shell type (GRS) as a source of CaO for the transesterification reaction, and we have evaluated the
optimal reaction conditions for biodiesel production. It is well known that biodiesel yield depends
on several factors, such as the molar ratio of methanol to oil, amount of catalyst, time and reaction
temperature [7]. In this study, particular attention was paid to the effect of the methanol/oil ratio
because of its influence on the cost of the biodiesel product [7]. The reaction time was fixed at 3 h,
a longer reaction time resulting in the hydrolysis of esters, forming soap [24]. The reaction temperature
was set at the boiling point of methanol, 65 ◦C. The molar ratio of methanol to oil was varied from 3:1
to 18:1 for different catalyst amounts.

2.3.1. Effect of Methanol/Oil Molar Ratio

Figures 8 and 9 display the results obtained in the transesterification reaction of waste and refined
oils, respectively, working at different weight contents of the catalyst with respect to the oil, in the
range of 1.5 to 5 wt%. The conversion of the waste oil increased by increasing the methanol/oil molar
ratio up to 12:1 and remained stable at 15:1. At a given methanol/oil ratio, the conversion values
increased by using a higher amount of catalyst, with the highest conversion, equal to 94%, achieved in
the presence of 5 wt%. At a methanol/oil molar ratio of 18:1, the conversion diminished to ~91% with 5
wt% of catalyst, while a value of 87% was registered by using the lowest amount of catalyst, 1.5 wt%.
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A similar trend and higher conversions were registered by using the refined oil (Figure 9). In such
a case, the highest value of conversion, 99%, was achieved at a molar ratio of 15:1 with 5 wt% of catalyst,
while slightly lower conversions were registered at 12:1 and at 18:1, ~98% and 96.5%, respectively.

In conclusion, based on our results, 15:1 is the ideal methanol:oil ratio in the transesterification
reaction using CaO obtained from calcined GRS.

Similar results have been observed in the majority of previous studies concerning the use of
heterogeneous CaO-based catalysts [33]. It is important to note that the adequate methanol/oil ratio in
homogeneous conditions ranges between 6–8:1, while in heterogeneous conditions where the reaction
mixture forms a three-phase system, catalyst-oil-methanol, higher methanol:oil ratios are required
in order to overcome the resistance to diffusion between different phases and shift the equilibrium
towards product formation [34]. The use of an alcohol/oil ratio superior to the stoichiometric one
has a significant effect on the biodiesel production cost [35]. Indeed, the polar hydroxyl groups of
methanol acting as an emulsifier lead to the formation of gels, resulting in a difficulty of separation
and purification of methyl ester [36].

Based on the results that have been reported so far, which fixed the best experimental conditions
for the biodiesel yield at a methanol/oil molar ratio of 15:1, reaction temperature of 65 ◦C (boiling
point of methanol) and reaction time of 3 h, the effect on the triglycerides conversion of the catalyst
amount (wt% with respect to the oil) was investigated. The catalyst amount, as CaO derived from
GRS, varied from 0.5–5% of the oil weight, and the results are shown in the Supplementary Materials,
Figure S2, where two curves using refined (a) and waste (b) oil, respectively, are displayed. This results
in the conversion abruptly increasing from ~65–99% by using refined oil and by increasing the catalyst
amount from 0.5 to 1.0–1.5 g, confirming data discussed in Figure 9. A similar trend was observed with
waste oil with an increasing amount of catalyst, with the highest conversion (equal to 94%) achieved
in the presence of 1.5 g of catalyst, according to Figure 8. The nonlinearity observed between the
biodiesel conversion and catalyst loading was attributed to the heterogeneous nature of the reaction.
At a low amount of catalyst, there are not enough active sites for the transesterification reaction [37].
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On the other hand, the transesterification reaction performed in the heterogeneous phase needs a long
induction time in order to achieve the requested interaction between the reactants and the surface of the
catalyst. In this sense, when the plateau is reached, diffusional phenomena are mostly controlling the
reaction. Moreover, it cannot be excluded that the catalyst’s structure modification occurring during
the transesterification reaction affects the conversion behavior [38].

2.3.2. Effect of Catalyst (GRS) Calcination Temperature on the Biodiesel Production

Figure 10 displays the conversion (%) of the refined oil versus the calcination temperature of the
natural shell used as the catalyst, at the fixed experimental conditions described previously (5 wt%
of catalyst, methanol/oil ratio of 15:1, reaction temperature at the methanol boiling point and 3 h
of reaction).
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refined oil.

As shown in Figure 10, the conversion slightly increases by increasing the calcination temperature
from 400 to 600 ◦C, then rises quite rapidly by calcining the natural shell in the range of 600–700 ◦C,
and the maximum conversion is reached at 800–900 ◦C when CaO is formed.

The structural modifications of the GRS as a function of the calcination temperature (see
Supplementary Materials, Figure S1) account for the observed behavior.

2.3.3. Catalyst Stability and Recycle

Stability in catalytic conversion and recycling are very important parameters of a heterogeneous
catalyst for a wide application [20]. Thus, to test the stability of the catalyst and its use for practical
applications, the transesterification reaction was carried out by using waste oil, 5 wt% of the catalyst in
the same conditions as previously reported. At the end of each test, the catalyst was filtered, washed
with methanol, dried and reintroduced into the reactor. Fresh amounts of oil and methanol were
added and allowed to react for a further 3 h at a temperature of 65 ◦C. This procedure was repeated
five times. The results are displayed in Figure 11. In the first catalytic test, 94% of conversion was
achieved (according to previously results, as shown in Figure 8, and confirming the reproducibility of
experiments); then, the conversion slightly decreased, test by test, up to 87% during the fifth cycle.
After that, the recovered catalyst was treated with methanol in an ultrasounds bath for 20 min at the
end of each washing step, the powder was filtered and another portion of fresh methanol was added,
and the procedure was repeated five times. The XRD characterization (data not shown) of the material
washed this way revealed peaks of Ca(OH)2, CaCO3 and CaO; therefore, before a further catalytic test
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(sixth cycle), calcination at 900 ◦C was performed. The biodiesel yield registered in the sixth cycle was
as high as 93.6%, quite close to the performance of the freshly used catalyst.
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Based on the results reported so far, it can be concluded that the observed deactivation (upon five
cycles) was related to the surface modification and blockage of the active sites due to the adsorption of
either the reagent (triglyceride molecules), reaction intermediates (diglycerides and monoglycerides) or
reaction products. Indeed, according to the literature [24], CaO forms calcium methoxide after reaction
with methanol; then, the methoxide reacts with the carbonyl of the triglyceride, forming unstable
tetrahedral intermediates that rearrange into the final products, which are three fatty acid esters and a
glycerol molecule. Therefore, it is likely that simple washing with methanol is not able to remove the
chemisorbed intermediates and reactions products from the catalyst surface, while treatment with bath
ultrasounds and further calcination at 900 ◦C is able to regenerate the pristine active CaO.

For a scale-up of the biodiesel production, one ton of biodiesel forms 50 kg of solid waste catalyst
constituted by Ca(OH)2, CaCO3 and CaO. Such solid waste, if not reused as catalyst, is easily recyclable
as a construction material.

2.4. Characterization of Synthesized Biodiesel

Table 2 compares the properties of biodiesel produced from used and refined oils with European
standards. Apart from the slightly lower yield, all the other parameters are as good as those of biodiesel
from refined oil, compliant with European standards [7]. In addition, it should be noted that the
currently recognized biodiesel standards have been established for existing diesel engines.

Thus, we cannot exclude that future engines’ improvement could allow the use of waste oils for
biodiesel production [39].

The biodiesel batches produced by using GRS-derived catalyst were characterized by different
techniques. The 1H NMR spectra (Figure 12) show that the proton of the CH-O group of the glycerol
appearing usually at 5.3 ppm disappears at the end of the reaction, as well as the fact that no signals at
4.0–4.5 ppm assigned to the protons attached to the triacylglycerols [7] were detected. The strong singlet
above 3.66 ppm indicates the formation of the methoxy group of methyl ester (–CO2CH3). The 1H
NMR spectra of the biodiesel samples taken from the waste frying oil do not show any noticeable
differences with respect to those from the refined cooking oil. The ester signals resulting from the
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OCH2 and OCH groups of triglycerides disappeared, and the signal resulting from the OCH3 ester
group of biodiesel appeared at 3.67 ppm, as shown in Figure 12. The assignments of signals in the
chemical shift regions of 0.8–3 ppm correspond to those observed in the spectra of the oil samples (see
Figure 6).

Table 2. Physico-chemical properties of biodiesel samples obtained from the refined and waste
cooking oils.

Batches’
Characteristics

Refined Oil
Biodiesel

Waste Oil
Biodiesel

European
Standards

Maximum biodiesel yield wt.% 96.5 93.5 -

Ester content wt.% 97 94.3 ≥96.5

Viscosity (40 ◦C) mm2/s 3.5 4.4 3.5–5.5

Density (15 ◦C) g/cm3 0.881 0.908 0.88–0.9

Acid Value mg KOH/g oil 0.27 0.44 0.5 max

Water content ppm 348 456 500 max

Sulphur Ash content mg/Kg 5.6 7.8 10 max

Flash point ◦C 130.3 139 120 min

Cetane number 49.5 52.2 51 min
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The NMR results were confirmed by FT-IR spectroscopy analysis of biodiesel samples (Figure 13).
It is important to note the presence of the band at 1436 cm−1. This band can be selected for biodiesel
quantification because it is characteristic of methyl esters (OCH3) [40]. The FT-IR analysis confirmed
the high quality of the obtained biodiesel samples independently of the nature of the used feedstock.
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Based on such results, it is plausible that an industrial application of waste earth or marine
shells, constituted by calcium and hydrated lime [20,24], could be applied for the large scale synthesis
of biodiesel.

3. Material and Methods

3.1. Chemicals and Reagents

Solen marginatus (Grooved Razor Shell) is a bivalve mollusk of the Solenidae family. The animal
lives along the shoreline buried in the sand and meets in the low-lying areas and the sublittoral zone.
The species occurs from the south of the North Sea to the Mediterranean Sea and the Atlantic coast
of North Africa. The shell is thin, fragile and elongated. The dorsal and ventral edges are straights
and parallels. The anterior end of the shell truncates obliquely, with a distinct groove on the back
and belly near the edge, up to 120 mm long. It feeds by filtration of water retaining food particles,
especially plankton.

The other reagents, methanol, ethanol, ethyl ether and KOH, are of analytical grade (Sigma-Aldrich,
Darmstadt, Germany) and were used as received.

3.2. Catalyst Preparation

The catalyst was prepared using calcium carbonate in the form of aragonite nanopowder obtained
from grooved Razor Shell (GRS), following the method used by Mahmood et al. [21]. The GRS was
washed repeatedly with boiling distilled water and dried at 120 ◦C in an oven. Then, they were crushed
into small particles (75 µm). The obtained powder was mechanically stirred with the 50 mL and 0.5 mL
of surfactant BS-12 at 1000 rpm at room temperature for 90 min. The resultant slurry was then filtered
and dried at 80 ◦C overnight and then stored in a vacuum desiccator for further use. The catalyst was
prepared by calcination of the as-received GRS at temperatures ranging from 100–900 ◦C.
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3.3. Characterization Techniques

X-Ray Diffraction (XRD) patterns were registered by using a powder diffractometer
(Shimadzu-6100, Tokyo, Japan) equipped with a variable temperature unit (model HA-1001). In order
to investigate the structural modification occurring in the temperature-programmed oxidation mode,
the sample material was put in an alumina holder and exposed to CuKα (Kα = 1.54184 Å) radiation
(40 kV × 30 mA) in a continuous temperature step scan operation mode, from 30–900 ◦C, at a heating
rate of 10 ◦C min−1 under air flow (60 mL min−1). Prior to the XRD runs, each sample was kept under
isothermal conditions at the selected temperature for 30 min. The samples were analyzed over the
angular range of 20–70◦ 2θ at a scanning speed of 0.02◦ s−1.

Infrared spectral data were collected by using a VERTEX 70 (Bruker, Milan, Italy) spectrometer
equipped with an ATR MIRACLE DIAMANT apparatus (Perkin-Elmer, Milan, Italy). The device has a
spectral range of 4000–500 cm−1. The spectra were collected by co-adding 16 scans at a resolution of
4 cm−1.

Simultaneous thermogravimetric/differential thermal analyses (TG/DTA) were carried out on
a Labsys TM Evo (1F) Setaram apparatus, by heating from room temperature up to 900 ◦C with an
increasing rate equal to 10 ◦C·min−1, under air flow (60 mL min−1).

The morphology of the catalyst was investigated by scanning electron microscopy, with a Jeol
JSM-7000F FE-SEM, (Jeol, Osaka, Japan). The samples were deposited on carbon grids for analysis.

The physico-chemical and fuel properties, i.e., viscosity, density and acid value of the vegetable
oils and produced biodiesel, were determined by the conventional methods (American Society for
Testing and Materials (ASTM) methods) and compared with the European standards of biodiesel [41].
The fatty acid concentrations in the raw material and the prepared biodiesel purity were determined to
measure their corresponding methyl esters content by a Peri Chrom 2000 gas chromatograph (GC)
equipped with a flame ionization detector (FID) and a capillary column DB-WAX (30 m × 0.32 mm,
0.23-µm film thickness). The detailed method was described previously [7,42].

The oils and transesterification products were also analyzed by NMR, FT-IR and
TG/DTA techniques.

The 1H-NMR spectra were recorded at 25 ◦C with a pulse duration of 30◦, a recycle delay of 1.0 s
and eight scans by using a BRUKER AVANCE 300 MHz spectrometer (Bruker, Milan, Italy). Deuterated
chloroform (CDCl3) was used as a solvent. The 13C NMR (75 MHz) spectra were obtained with a pulse
duration of 30◦, a recycle delay of 1.89 s and 160 scans. NMR spectroscopy was also used to monitor
the transesterification reaction. The conversion is illustrated by the equation given below:

C = 100×
2AMe

3ACH2
(1)

where:
C = percentage conversion of triglycerides to corresponding methyl esters.
AMe = integration value of the methoxy protons of the methyl esters (3.66 ppm).
ACH2 = integration value of α-methylene protons (2.26 ppm).

3.4. Biodiesel Synthesis

The biodiesel laboratory-scale synthesis was performed according to a conventional procedure
previously described [7,42]. The refined or waste oil, 100 g, was added under stirring to a mixture
of catalyst and methanol at 65 ◦C, placed in a 250-mL round-bottom glass flask. The use of a
reflux condenser prevented methanol evaporation. The resulting mixture was left to react at the
temperature of boiling methanol for 3 h. After that, the catalyst was removed by centrifugation,
and glycerol was separated from biodiesel after storing the resulting liquid for 8 h in a separating funnel.
The unreacted alcohol and water, present in the mixture, were removed under vacuum distillation using
a BÜCHI Rotavapor R-114 equipped with BÜCHI Water-bath B-48 (BÜCHI Labortechnik AG, Flawil,
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Switzerland). The final product, constituted by methyl esters, was dried at 80 ◦C and stored before
analysis. In order to investigate the catalyst’s reusability, catalytic cycles were carried out by using
refined oil, 5 wt% of the catalyst, a 65 ◦C temperature and a reaction time of 3 h. Five consecutive cycles
were performed by recovering the catalyst at the end of each test, filtering-washing with methanol,
drying and reusing it for a new test. After the fifth cycle, the recovered catalyst was treated with
methanol in an ultrasounds bath for 20 min; at the end of each washing step, the catalyst was filtered,
a new portion of fresh methanol was added, and the procedure was repeated five times. The catalyst
that was regenerated this way was calcined at 900 ◦C (heating ramp 10 ◦C min−1) for 1 h and used in a
sixth cycle.

4. Conclusions

From the present investigation, the following conclusions can be drawn:

• The optimal conditions for biodiesel production from waste cooking oil collected from Moroccan
university restaurants and from refined oil were determined. The raw material that was used was
characterized by good properties that were very close to the refined oil used for comparison.

• Calcium oxide obtained by calcination of waste GRS at 900 ◦C is a good performing catalyst for
biodiesel production by the transesterification of waste oil.

• The biodiesel yield reached 94 wt% at a methanol/waste oil ratio of 15:1 and with 5 wt% of
catalyst, without any additional cost due to water purification that is necessary when working in
homogenous conditions.

• The 1H-NMR, FTIR and gas chromatography analyses of the final product confirmed that: (i) the
reaction was complete, and that (ii) the biodiesel samples did not contain any trace of glycerol
and (iii) met the required international standards.

• The catalyst, in the form of CaO, was reused for up to five cycles, with a slight decrease in the
biodiesel yield from 94–87%. After that, the catalyst was regenerated by washing with methanol
in an ultrasounds bath and further calcination at 900 ◦C for 1 h, recovering an activity very close
to that of the fresh catalyst.

• The obtained results can be considered as proof that marine and earth shells can be used as a
source of catalysts for biodiesel production.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/6/703/s1,
Figure S1: XRD patterns of the natural GRS as received and after calcination at different temperatures. Figure S2:
Effect of catalyst amount (wt% with respect to oil mass) at fixed molar ratio methanol/oil of 15:1, reaction
temperature 65 ◦C, reaction time 3h for (a) refined oil and (b) waste oil.
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