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Abstract: Ferrous and ferric salts were tested for the persulfate activation (PS/Fe2+ and PS/Fe3+) and
the oxidation of Acid Red 18 (AR18). A complete removal was attained after 90 min in both PS/Fe2+

and PS/Fe3+ processes with the persulfate concentration of 6 mM. High concentrations of PS, Fe2+,
and Fe3+ promoted the AR18 degradation in both processes and the optimized pH were 3 and 3.3
for PS/Fe2+ and PS/Fe3+ processes, respectively. The mechanism of PS activation by Fe3+ was also
investigated. It was found that hydroxyl radical (HO•) and sulfate radical (SO4

−
•) were formed and

acted as dominating radicals in both processes. It is also deduced that Fe recycle offers Fe2+ for PS
activation in PS/Fe3+ process to produce HO• and SO4

−
•. The less radical side reactions lead to a

higher contribution of HO• and SO4
−
• on AR18 degradation in PS/Fe3+ process.
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1. Introduction

Synthetic complex organic dyes are important coloring materials in textile industry. There are more
than 0.7 million tons of dyes produced annually [1]. The azo dyes with nitrogen-to-nitrogen double
bonds (–N=N–) are widely used in textile industry for their high chemical stability and versatility.
As most azo dyes are nonbiodegradable and toxic [2,3], the dye wastewaters cannot be effectively
treated by conventional biotreatment processes [4]. The presence of azo dye in surface water and
groundwater may cause serious environmental problems due to the possible carcinogenicity and
biotoxicity [5].

Advanced oxidation processes (AOPs) characterized by the formation of hydroxyl radicals (HO•)
are effective methods for refractory organic wastewater treatment due to the strong and nonselective
oxidizability of HO• [6,7]. Fenton reagent (H2O2/Fe2+) oxidation is one of the most widely used
AOPs for wastewater treatment since it is easy to handle and the reaction condition is relatively
mild [8,9]. The reaction of H2O2 with Fe2+ could form a large amount of HO• and thus degrade
contaminants rapidly.

Persulfate (S2O8
2−, PS) with an O-O bond has a higher redox potential (E0 = 2.01 V) than that of

H2O2 (E0 = 1.76 V). PS could be activated in certain conditions to yield high-reactivity radicals such
as SO4

−
• (E0 = 2.5–3.1 V) and HO• (E0 = 2.80 V) [10–12]. Activated PS oxidation methods are newly

emerging AOPs for organics degradation as a result of their strong oxidizability and low material
cost [12–14]. UV [15], heat [16], metal ions [17], alkali [18], and microwaves [19] are currently applied
for PS activation. Since iron catalytic process is easy to operate and has a high oxidation efficiency,
Fe2+ is the most widely used transition metal ion for initializing radical chain reaction in PS activation
process [14,20–22]. The reactions of PS with Fe2+ and organics (RH) are shown as Equations (1) to
(4) [14,23–25].

S2O8
2− + Fe2+

→ Fe3+ + SO4
2− + SO4

−
•, k = 27 M−1s−1 (1)
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SO4
−
• + H2O→ HSO4

− + HO•, k = 2.0 × 103 M−1s−1 (2)

HO• + HO• → H2O2, k = 5.2 × 109 M−1s−1 (3)

RH + HO• or SO4
−
• → H2O + R•, k = 107

− 1010 M−1s−1 (4)

H2O2 + Fe3+
→ Fe2+ + HO2• + H+, k = 3.1 × 10−3 M−1s−1 (5)

R• + Fe3+
→ R+ + Fe2+ (6)

HO2• + HO2• → H2O2 +O2, k = 8.3 × 105 M−1s−1 (7)

HO• + S2O8
2−
→ OH− + S2O8•

−, k = 1.2 × 107 M−1s−1 (8)

R• or R+ + HO• or SO4•
−
→ products (9)

Due to the high reactivity of Fe2+, oxidants (such as SO4•
− and HO•) would be consumed by

excess Fe2+ before they react with contaminants. Several methods have been proposed to control
the release-rate of Fe2+ and thus improve the oxidation efficiency. Chelating agents (i.e., citric acid)
were used by Liang et al. [20] to combine with Fe2+ for controlling the reaction rate of PS with Fe2+.
Oh et al. [26] and Xu et al. [27] demonstrated that Fe2+ could be slowly released by using zero-valent
iron, and found that the contaminant degradation efficiency was increased significantly.

The high reaction rates of Fe2+ and oxidants make PS/Fe2+ process transfer to PS/Fe3+ process
rapidly. Photocatalysis with UV or solar light was an effective method for wastewater treatment [28],
and has been used for improvement of the utilization of Fe2+ [29]. However, Fe3+, the oxidative
product of Fe2+, is also an effective catalysis for PS oxidation process as a result of the Fe recycle [23]
(Equations (5) and (6)). George and Dionysios [30] investigated the activation processes of several
peroxides with nine transition metals as activators and found that both Fe2+ and Fe3+ were effective for
PS and H2O2. As the prices of ferric salts are lower than those of ferrous salts, the reagent cost could
be reduced by replacing ferrous salts with ferric salts in PS oxidation process. However, little study
has been reported about the mechanism and the kinetics of contaminant oxidation by PS/Fe3+ process
under different operation conditions. The role of Fe3+ on the PS activation and pollutions degradation
remains enigmatic.

In this work, PS, combined with ferrous salt (PS/Fe2+) and ferric salt (PS/Fe3+), was used for the
degradation of azo dye Acid Red 18 (AR18), and the oxidation abilities of PS/Fe2+ and PS/Fe3+ were also
explored and compared. The effects of different operation conditions on AR18 degradation in PS/Fe2+

and PS/Fe3+ processes were investigated. The reactive species and oxidation efficiency of PS/Fe2+ and
PS/Fe3+ processes were also compared with AR18 as model contaminants in contrast experiments.

2. Results

2.1. Comparison of PS/Fe2+ and PS/Fe3+ Processes

Figure 1 shows the comparison of different oxidation processes applied in the destruction of AR18.
As can be seen in Figure 1, AR18 was difficult to be oxidized by PS alone and the addition of Fe2+ and
Fe3+ significantly promoted the AR18 degradation. The oxidation of AR18 by PS/Fe2+ and PS/Fe3+

processes were represented by the following pseudo-first-order reaction kinetics

dCAR/dt = −kCAR, (10)

where CAR is the AR18 concentration (mg/L), k is the reaction rate coefficient, and t is the reaction time.
Equation (10), after integration, becomes

CAR = CAR0 exp(−kt), (11)

where CAR0 is the initial concentration of AR18.
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The high correlation coefficient (R2 = 0.92 and 0.99 for PS/Fe2+ and PS/Fe3+ processes, respectively)
obtained from the linear plots of ln(CAR/CAR0) vs. time (Figure 1) showed that the experimental date
fits the pseudo-first-order model well. The reaction rate constants of PS/Fe2+ and PS/Fe3+ processes
were 0.264 min−1 and 0.05 min−1, respectively. Though the reaction rate of PS/Fe3+ process was
lower than that of PS/Fe2+ process, nearly 100% removal of AR18 was attained within 60 min in the
PS/Fe3+ process.
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Figure 1. AR18 degradation curves by different oxidation processes (pH = 4.5, CFe2+ = CFe3+ = 0.1 mM, 
CPS = 3 mM, CAR0 = 40 mg/L). 

2.2. Effect of the Initial pH 

Figure 2 illustrates the effects of the initial pH on AR18 degradation in PS/Fe2+ and PS/Fe3+ 
processes. It can be seen that an increasing initial pH benefited the AR18 degradation in both PS/Fe2+ 
and PS/Fe3+ processes when the initial pH was relatively low (pH < 3.3 in PS/Fe2+ process and pH < 3 
in PS/Fe3+ process). The residual AR18 concentration decreased from 49 mg/L to 4 mg/L and 59 mg/L 
to 15.6 mg/L in 30 min with an increasing initial pH from 1.6 to the suitable values (3.3 for PS/Fe2+ 
process and 3 in PS/Fe3+ process) for PS/Fe2+ and PS/Fe3+ processes, respectively. When the initial pH 
further increased, the residual AR18 concentration increased. Radicals are important oxidants in 
activated PS oxidation process and the pH greatly affected the formation of radicals. It has been 
reported that SO4•− is the main radical in PS activation process when the pH was lower than 7 [31]. 
An increasing pH could avoid the formation of (Fe(II)(H2O))2+ and inhibit acid-catalyzed PS 
breakdown [32,33] (Equations (12) and (13)). The former would promote the AR18 degradation due 
to the enhancement of the reaction of Fe2+ with PS, while the latter is unfavorable for AR18 
degradation due to the inhibition of SO4•− formation. A suitable pH was important for both PS/Fe2+ 
and PS/Fe3+ processes. The residual AR18 concentration reached a valley value and the reaction 
kinetic constant reached the peak value with the initial pH of 3 in PS/Fe3+ process and pH of 3.3 in 
PS/Fe2+ process. A similar conclusion could be found in previous studies on H2O2/ Fe2+ systems [22]. 
Though Ferrous salts can be dissolved under a pH of 2–9, the ferric oxyhydroxides may be generated 
under a higher pH (>3.0) [34]. A higher pH would lead to a loss of soluble iron ions through the 
precipitation process, and result in a decrease of the AR18 degradation rate. It is necessary to balance 
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2.2. Effect of the Initial pH

Figure 2 illustrates the effects of the initial pH on AR18 degradation in PS/Fe2+ and PS/Fe3+

processes. It can be seen that an increasing initial pH benefited the AR18 degradation in both PS/Fe2+

and PS/Fe3+ processes when the initial pH was relatively low (pH < 3.3 in PS/Fe2+ process and pH < 3
in PS/Fe3+ process). The residual AR18 concentration decreased from 49 mg/L to 4 mg/L and 59 mg/L to
15.6 mg/L in 30 min with an increasing initial pH from 1.6 to the suitable values (3.3 for PS/Fe2+ process
and 3 in PS/Fe3+ process) for PS/Fe2+ and PS/Fe3+ processes, respectively. When the initial pH further
increased, the residual AR18 concentration increased. Radicals are important oxidants in activated PS
oxidation process and the pH greatly affected the formation of radicals. It has been reported that SO4•

−

is the main radical in PS activation process when the pH was lower than 7 [31]. An increasing pH could
avoid the formation of (Fe(II)(H2O))2+ and inhibit acid-catalyzed PS breakdown [32,33] (Equations (12)
and (13)). The former would promote the AR18 degradation due to the enhancement of the reaction
of Fe2+ with PS, while the latter is unfavorable for AR18 degradation due to the inhibition of SO4•

−

formation. A suitable pH was important for both PS/Fe2+ and PS/Fe3+ processes. The residual AR18
concentration reached a valley value and the reaction kinetic constant reached the peak value with the
initial pH of 3 in PS/Fe3+ process and pH of 3.3 in PS/Fe2+ process. A similar conclusion could be found
in previous studies on H2O2/ Fe2+ systems [22]. Though Ferrous salts can be dissolved under a pH of
2–9, the ferric oxyhydroxides may be generated under a higher pH (>3.0) [34]. A higher pH would
lead to a loss of soluble iron ions through the precipitation process, and result in a decrease of the AR18
degradation rate. It is necessary to balance the ferric oxyhydroxides formation and acid-catalyzed PS
breakdown. Therefore, the initial pH of 3.3 and 3 were the suitable pH values for PS/Fe2+ and PS/Fe3+

processes, respectively.
S2O8

2− + H+
→ HS2O8

−, (12)

HS2O8
−
→ H+ + SO4•

− + SO4
2−, (13)
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2.3. Effect of Fe2+ or Fe3+ Concentration

The influences of Fe2+ or Fe3+ concentration on AR18 degradation in PS/Fe2+ and PS/Fe3+ processes
are shown in Figure 3. It is observed that AR18 cannot be effectively oxidized by sole PS (CFe2+ =

CFe3+ = 0 mM). The addition of Fe2+ or Fe3+ significantly improved the oxidizability of PS and the
AR18 degradation rate increased with the increasing Fe2+ or Fe3+ concentration in both PS/Fe2+ and
PS/Fe3+ processes. It also can be seen from Figure 3C that the reaction kinetic constants increased
from 0.04 min−1 to 0.4 min−1 and from 0.02 min−1 to 0.115 min−1 with an increasing Fe2+ or Fe3+

concentration of 0 mM to 0.5 mM in PS/Fe2+ and PS/Fe3+ processes, respectively. An increasing Fe3+

concentration improved the recycle of Fe (Equation (4)) to offer more Fe2+ for radical chain reaction.
A relatively high concentration of Fe2+ enhanced the reaction of PS with Fe2+ (Equation (1)) to form
more radicals, which resulted in the increase of AR18 degradation rate. It is noted from Figure 3B that
only a slight increase in AR18 degradation rate was attained when the Fe3+ concentration increased
from 0.3 mM to 0.5 mM. This may be ascribed to the concentration of reducing organic radicals (R•)
being much lower than Fe3+ concentration, and the low concentration of R• limited the rate of Fe
recycle reaction (Equation (4)).

2.4. Effect of PS Concentration

PS is the main source of radicals and one of the important oxidants in PS/Fe2+ and PS/Fe3+

processes. The influence of PS concentration on AR18 degradation was investigated by varying the PS
concentration from 1 mM to 6 mM.

Figure 4 presents the effects of the PS concentration on AR 18 degradation. The results indicate
that the higher PS concentration benefits the AR18 degradation in PS/Fe2+ and PS/Fe3+ processes.
When the PS concentration increased from 1 mM to 6 mM, the AR18 concentration decreased from
10.9 mg/L (degradation ratio 82%) to 1.3 mg/L (degradation ratio 98%) and from 27.8 mg/L (degradation
ratio 54%) to 0.65 mg/L (degradation ratio 98.9%) within 90 min in PS/Fe2+ and PS/Fe3+ processes,
respectively. The result of reaction kinetic research also showed a similar trend (Figure 4C). High PS
concentration increased the reaction rate of PS with Fe ion to generate more radicals, resulting in more
AR18 degradation, which was also observed by other researchers [14].
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2.5. AR18 Mineralization and Radical Detection

2.5.1. Mineralization of AR18

Contrast experiments were carried out to compare the AR18 degradation in PS/Fe2+ and PS/Fe3+

processes. As shown in Figure 5, the AR18 degradation with PS/Fe2+ occurred more rapidly than
that with PS/Fe3+ and almost 100% AR18 degradation was attained within 40 min in both PS/Fe2+

and PS/Fe3+ processes. The low recycle rate of Fe would be a probable reason of the lower AR18
and total organic carbon (TOC) degradation rates in PS/Fe3+ process. After 120 min of oxidation in
PS/Fe2+ and PS/Fe3+ processes, TOC removal ratios of about 20% were attained with AR18 completely
removed. The reason for this is that the intermediates of AR18 degradation were more recalcitrant
and not easy to be oxidized. Xu et al. [21] found that azo dye could be degraded more completely in
PS/Fe2+ than in H2O2/Fe2+ process due to the longer half-life of sulfate radicals. Therefore, the PS/Fe2+

and PS/Fe3+ processes are still an effective method for organic degradation due to the high oxidation
ability of SO4

−
•.
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PS/Fe3+ processes are still an effective method for organic degradation due to the high oxidation 
ability of SO4−•.  

Figure 4. Effect of PS concentrations on AR18 degradation in PS/Fe2+ (A) and PS/Fe3+ (B) processes and
the variations of reaction kinetic constants (C) (initial pH = 4.5, CFe2+ = CFe3+ = 0.1 mM, CAR0 = 60 mg/L).
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2.5.2. EPR Radical Detection and AR18 Degradation Mechanism

In order to investigate the PS activation mechanism, the radicals formed in PS/Fe2+ and PS/Fe3+

processes were analyzed by using electron paramagnetic resonance (EPR) spectroscopy with DMPO as
a spin trap agent. DMPO could react with different radicals in oxidation process to form unique radical
adducts. The radical adducts were much more stable than radicals (e.g., hydroxyl radical, sulfate
radical) and can be determined by using an EPR spectroscopy.

The standard spectra of DMPO-hydroxyl radical (DMPO-OH, hyperfine splitting constants of
AN = AH = 15 G) and DMPO-sulfate radicals (DMPO-SO4, hyperfine splitting constants of AN =

13.51 G, AH = 9.93 G, Aγ1H = 1.34 G, and Aγ2H = 0.88 G) were simulated by using Isotropic Radicals
software and are presented in Figure 6A. The EPR spectra of PS/Fe2+ and PS/Fe3+ processes are shown
in Figure 6B. The EPR spectrum of DMPO-OH mixed with DMPO-SO4 (ratio of 2:1) was simulated
and is also shown in Figure 6B. It can be seen from Figure 6B that the EPR spectrum of PS/Fe3+

process was similar with that of PS/Fe2+ process and the simulation spectrum fitted well with the
EPR spectra of PS/Fe2+ and PS/Fe3+ processes. This result indicates that the catalytic mechanism of
PS activation by Fe3+ is similar to that of PS/Fe2+ and HO• and SO4

−
• formed in both PS/Fe2+ and

PS/Fe3+ processes. According to the research of Liang et al. [34], SO4
−
•was the dominant radical at

low pH and the concentration of HO• was about 5% of SO4
−
• at pH of 4. However, only a weak

signal of DMPO-SO4 was determined in Figure 6B. The reason for this may be the high reaction rate of
DMPO with HO• (3.4 × 109 M−1s−1) [35] and the conversion of DMPO-SO4 to DMPO-OH through a
nucleophilic substitution [36].

According to the EPR studies, the possible AR18 degradation mechanism in PS/Fe3+ process was
proposed and shown in Figure 7. Firstly, AR18 (RH) reacted with radicals (formed by PS decomposition)
and yielded R•. Fe2+ was generated through the reaction of Fe3+ with R•. Subsequently, PS was
activated by Fe2+ to form SO4

−
• and then generate HO• and H2O2 (Equations (1)–(3)). Fe2+ could

regenerate through the reaction of Fe3+ and R• or H2O2. The HO• also can be yielded through the
reaction of H2O2 with Fe2+ (Fenton reaction). With a large amount of radicals formed, AR18 can be
oxidized by radicals to intermediates and then CO2 and H2O.
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times higher than that of NB with SO4−• (< 106 M−1s−1). EtOH reacts rapidly with both HO• and 
SO4−•. Therefore, excessive NB and EtOH were added to mainly scavenge HO• and both HO• and 
SO4−•, respectively. The contributions of different radicals on oxidation could be determined by 
comparing the AR18 degradation ratios after adding excessive NB or EtOH. This method for 
identification of HO• and SO4−• has been used in a great deal of research [14,37]. 

The effects of different radical scavengers (EtOH and NB) on AR18 degradation in PS/Fe2+ and 
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were unfavorable for AR18 degradation and the inhibiting effect of EtOH was stronger than that of 
NB. It can be revealed that both HO• and SO4−• are important for AR18 degradation. Based on the 
data of quenching experiments, the contributions of different oxidants for AR18 degradation in 
PS/Fe2+ and PS/Fe3+ processes were determined and are shown in Figure 8C. It can be seen that the 
contributions of HO• and SO4−• were higher in PS/Fe3+ process than that in PS/Fe2+ process. The 
reason for this may be that larger amounts of HO• and SO4−• formed in PS/Fe2+ process and caused 
more side radical reactions (Equation (8)), resulting in the formation of more other radicals. 
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2.5.3. Quenching Experiments

For a further study of the roles of different radicals, quenching experiments of AR18 degradation
in PS/Fe2+ and PS/Fe3+ processes were carried out with ethanol (EtOH) and nitrobenzene (NB) as
radical scavengers. The reaction rate constant of NB with HO• (3.9 × 109 M−1s−1) is about 1000 times
higher than that of NB with SO4

−
• (< 106 M−1s−1). EtOH reacts rapidly with both HO• and SO4

−
•.

Therefore, excessive NB and EtOH were added to mainly scavenge HO• and both HO• and SO4
−
•,

respectively. The contributions of different radicals on oxidation could be determined by comparing
the AR18 degradation ratios after adding excessive NB or EtOH. This method for identification of HO•
and SO4

−
• has been used in a great deal of research [14,37].

The effects of different radical scavengers (EtOH and NB) on AR18 degradation in PS/Fe2+ and
PS/Fe3+ processes are presented in Figure 8A,B. It can be seen that the additions of EtOH and NB were
unfavorable for AR18 degradation and the inhibiting effect of EtOH was stronger than that of NB.
It can be revealed that both HO• and SO4

−
• are important for AR18 degradation. Based on the data of

quenching experiments, the contributions of different oxidants for AR18 degradation in PS/Fe2+ and
PS/Fe3+ processes were determined and are shown in Figure 8C. It can be seen that the contributions of
HO• and SO4

−
• were higher in PS/Fe3+ process than that in PS/Fe2+ process. The reason for this may

be that larger amounts of HO• and SO4
−
• formed in PS/Fe2+ process and caused more side radical

reactions (Equation (8)), resulting in the formation of more other radicals.
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Figure 8. The AR18 degradation ratio with and without radical scavengers in PS/Fe2+ (A) and PS/Fe3+

processes (B), and the contribution of different oxidants for AR18 degradation in PS/Fe2+ and PS/Fe3+

processes (C) (initial pH = 3, CFe2+ = CFe3+ = 0.1 mM, CPS = 0.5 mM, CAR0 = 300 mg/L, CEtOH = 500 mM,
CNB = 500 mM).
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3. Materials and Methods

3.1. Materials

AR18 was purchased from Jiaying Chemical Factory (Shanghai, China). The molecular formula of
AR18 is C20H11N2Na3O10S3 and the maximum absorbance wavelength (λmax) is 507 nm (Figure 9).
Ferrous sulfate (FeSO4•7H2O), ferric nitrate (Fe(NO3)3•9H2O), nitrobenzene (NB), and ethanol (EtOH)
were obtained from Beijing Chemical Works, China. Dimethyl-1-pyrroline N-oxide (DOMP) was
purchased from TCI (Shanghai, China) Development Co., Ltd.
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3.2. Experimental Procedures

All experiments were carried out in a 250 mL flask at a temperature of 20 ◦C. The AR18 was
dissolved in deionized water to prepare the simulated wastewater. Ferrous sulfate or ferric nitrate
was added into the AR18 solution to attain a certain concentration of Fe2+ (CFe2+) or Fe3+ (CFe3+).
The initial pH was adjusted by using sulfuric acid or sodium hydroxide with a pH meter (model
PHS-25, Shanghai Precision & Scientific Instrument Co. LTD, Shanghai, China). The reaction was
initialized by the addition of PS solution. Samples were taken from the flask by using a pipette at
given intervals.

In the radical analysis experiments, the persulfate solution (5 mL, 6 mM) with spin trap agent
(DMPO, 0.1 M) were activated by Fe2+ or Fe3+ (0.1 mM) for 7 min, and then the solution was sampled
with a quartz capillary and analyzed immediately by an electron paramagnetic resonance spectrometer
(EPR, Bruker EMX 10/12, Karlsruhe, Germany).

3.3. Analyses

The UV-VIS spectrum of AR18 was analyzed by using a UV-VIS spectrophotometer (UV-5200
PC, Shanghai Metash Instruments CO., LTD. Shanghai, China. The concentration of the AR18 was
obtained by monitoring the absorbance at λmax and computing the concentration with a calibration
curve. Total organic carbon (TOC) was determined by a TOC analyzer (multi N/C 2100, Analytik
Jena, Jena, Germany). The electron paramagnetic resonance (EPR) spectra were obtained at room
temperature with a microwave frequency of 9.856 GHz, microwave power of 2 mW, receiver gain of
6.32 × 102, modulation frequency of 100 kHz, modulation amplitude of 1.0 G, time constant of 0.01 ms,
sweep time of 10.24 s, and sweep width of 50 G.
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4. Conclusions

In this work, AR18 was successfully degraded by PS/Fe2+ and PS/Fe3+ processes, and the
degradation ratio increased with the increasing concentrations of PS, Fe2+, and Fe3+ with an optimized
pH of 3 and 3.3 for PS/Fe2+ and PS/Fe3+, respectively. According to the EPR study for radical formation,
HO• and SO4

−
• formed in both PS/Fe2+ and PS/Fe3+ processes and played a dominant role in the

degradation of AR18. The results of quenching experiments revealed that the contribution of HO• and
SO4

−
• on AR18 degradation was higher in PS/Fe3+ process than that in PS/Fe2+ process, which can be

attributed to the fewer side radical reactions in the process of PS/Fe3+. As ferric salt is cheap and easy
for storage, PS/Fe3+ process would be a feasible method for azo dye wastewater treatment.
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