Article Supplementary Material

Laccase did it again: a scalable and clean regeneration system for NAD+ and its application in the synthesis of 12-oxo-hydroxysteroids

Fabio Tonin ¹, Elisabet Martì ¹, Isabel W.C.E. Arends ^{1,†} and Ulf Hanefeld ^{1,*}

- ¹ Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
- ⁺ Current address: Faculty of Science, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The Netherlands.
- * Correspondence: u.hanefeld@tudelft.nl; Tel.: +31 15 2789304

Contents

- **Figure S1.** NGC chromatogram of *Mt*LAC purification by ion-exchange chromatography on Q-Sepharose column;
- **Table S1.** List of laccases used in the study;
- Table S2. Bioconversion of 10 mM CA to 12-oxo-CDCA in presence of 0.34 mg/mL MtLac, 0.013 mg/mL El12α-HSDH, 0.5 mM NAD+ and 5 μM of different mediators;
- Table S3. Acitivity of EvoCatal ADH screening kit towards hydroxysteroids and isopropanol;
- **Table S4.** Calculation of E-values and atom efficiencies.
- Figure S2. ¹H- and ¹³C-NMR spectra of the obtained 12-oxo-chenodeoxycholic acid.

Figure S1. NGC chromatogram of *Mt*Lac purification by ion-exchange chromatography on Q-Sepharose column. Absorbance at 280 nm and concentration of elution buffer are depicted with blue and red lines, respectively. Fractions containing *Mt*Lac are highlighted in the grey box.

Table S1. List of laccases used in the study. The enzyme concentration in stock solutions is reported.

Organism	Abbreviation	[Enzyme] (mg/mL)
Bacillus subtilis	BsLac	3.6
Casuarina glauca	CgLac	6.5
Myceliophthora thermophila	<i>Mt</i> Lac	12.7
Trametes trogii	<i>Tt</i> Lac	6.0
Trametes versicolor	TvLac	1.0

Table S2. Bioconversion of 10 mM CA to 12-oxo-CDCA in presence of 0.34 mg/mL *Mt*Lac, 0.013 mg/mL *El*12 α -HSDH, 0.5 mM NAD⁺ and 5 μ M of different mediators. Reactions were carried out in presence of 100 mM KPi buffer pH 8.0 at 25 °C for 24 h. Samples were analyzed by HPLC chromatography. In all the cases we observe a reaction selectivity of 100%.

Mediator		Conversion (%)
ABTS	NH4 ⁺ NH4 ⁺ NH4 ⁺	99.7%
Acetosyringone	HO	2.9%
Meldola's blue		0.7%
Resazurine	HO	0.0%
Syringaldazine	HO C	95.6%
Syringaldehyde	HO	3.8%

Table S3. Activity of EvoCatal ADH screening kit towards hydroxysteroids and isopropanol. EvoCatal ADH030, ADH200 and ADH420 were compared in terms of efficiency in regenerating the cofactor NAD⁺ to facilitate a double-enzyme-coupled system.

		Activity (U/g) ^a		Conversion ^b	
	CDCA	DCA	UDCA	isopropanol	(%)
ADH010	5	4	0	74	
ADH020	10	3	1	35	
ADH030	11	3	1	1411	12.6%
ADH040	16	4	1	4	
ADH130	4	1	1	n.d.	
ADH140	5	1	1	n.d.	
ADH200	17	5	4	366	4.5%
ADH210	7	2	1	11	
ADH280	9	2	1	6	
ADH380	10	3	1	141	
ADH420	6	2	0	1225	57.2%
ADH430	4	0	1	28	
ADH441	2	2	1	287	
ADH442	8	1	0	11	

^aThe activity of the different ADHs was spectrophotometrically assayed following the NAD⁺ reduction at 340 nm (ε_{340nm} = 6.2 mM⁻¹ cm⁻¹). The activity towards hydroxysteroids was determined in presence of 10 mM substrate (CDCA, DCA and UDCA), 0.5mM NAD⁺, 50 mM KPi buffer pH 8.0. The activity towards isopropanol was determined in presence of 15% (v/V) isopropanol, 0.5 mM NAD⁺, 50 mM KPi buffer pH 8.0. All the reactions were carried out at 25 °C for 10 minutes. ^bEnzymatic oxidation of the 12 α -OH group of CA to 12-oxo-CDCA was performed. Bioconversion were set up in presence of 120 mM of CA, 0.5 mM NAD⁺, 100 mM KPi pH 7.2, 15% acetone, 0.013 mg/mL of *El*12 α -HSDH and 0.05 mg/mL of commercial ADH. Reactions were carried out at 25 °C for 24 h. Samples were analyzed by HPLC chromatography. In all the cases we observe a reaction selectivity of 100%.

Table S4. Calculation of E-values and atom efficiencies. E-values were calculated as Weight_{waste} / Weight_{product}. Atom efficiencies were calculated as MW_{product} x 100 / MW_{reactants}.

a) $El12\alpha$ -HSDH + MtLac + Syringaldazine (this study).

$CA + \frac{1}{2}O_2 \rightarrow 12$ -oxo-CDCA + H ₂ O				
	Compound	Weight (mg)		
Product	12-oxo-CDCA	18377		
Waste	CA (wasted)	1975		
	NAD ⁺	136		
	Syringaldazine	21		
	DMSO	45100		
	KPi pH 7.2	6700		
E-Value	2.9			
	Compound	Equivalent MW		
Product	12-oxo-CDCA	1 406		
Reagents	CA	1 408		
	O2	0.5 32		
Atom efficiency	95.	8		

b) $El12\alpha$ -HSDH + ADH420 + Acetone (this study).

CA + Acetone \rightarrow 12-oxo-CDCA + <i>i</i> -PrOH				
	Compound	Weight (mg	Weight (mg)	
Product	12-oxo-CDCA	1829		
Waste	CA (wasted)	178		
	NAD+	14		
	Acetone	4822	4822	
	KPi pH 7.2	670		
E-value	3.1	L		
	Compound	Equivalent	MW	
Product	12-oxo-CDCA	1	406	
Reagents	CA	1	408	
	Acetone	1	78	
Atom efficiency	83.	5		

Figure S2. (a) ¹H-NMR (400 MHz, DMSO-*d6*) and (b) ¹³C-NMR (100 MHz, DMSO-*d6*) spectra of the obtained 12-oxo-chenodeoxycholic acid.

a)