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Abstract: A series of highly robust nano-micro hybrid materials based on meso-tetra(4-hydroxyphenyl)
porphyrins (M=H,Pd, Zn)andtitaniumdioxide(denotedasTHPP-TiO2, THPP-Pd-TiO2, andTHPP-Zn-TiO2)
have been prepared by a facile sol-gel method for the first time. When Pt nanoparticles are incorporated
in these hybrids, Pt/THPP-Pd-TiO2 achieves good H2 production activity (2025.4 µmol g−1 h−1 and
12.03 µmol m−2 h−1), higher than that of Pt/THPP-Zn-TiO2 (1239.8 µmol g−1 h−1 and 7.46 µmol m−2 h−1)
and Pt/THPP-TiO2 (576.8 µmol g−1 h−1 and 4.02 µmol m−2 h−1), owing to the different central metal ions in
porphyrins. The best activity of Pt/THPP-Pd-TiO2 would be attributed to the two-center catalysis from
coordination Pd metal ions and Pt nanoparticles, while the higher activity of Pt/THPP-Zn-TiO2 than
Pt/THPP-TiO2 could be ascribed to the more effective light harvesting and electron transfer between
THPP-Zn and TiO2. In addition, the hybridized Pt/THPP-Pd-TiO2 catalyst exhibits unattenuated
hydrogen production stability even after recycling the experiment 10 times (cumulative turnover
number of 5111 after 50 h), far superior to that of the surface-sensitized Pt/THPP-Pd/TiO2 catalyst with
analogous components, due to the more stable Ti-O bonds between four phenols in porphyrins and
TiO2 for the hybrid system. The present study provides a promising approach for constructing stable
organic–inorganic hybrid systems with unique hierarchical structures for efficient light absorption
and electron transfer.

Keywords: porphyrin photosensitizer; titanium dioxide; organic–inorganic hybrid material;
photocatalytic H2 evolution; durability

1. Introduction

Photocatalytic hydrogen generation over the semiconductor-based photocatalyst under solar light
irradiation is a promising approach to solving current energy and environmental issues [1–4]. The active
and stable photocatalysts are vital for highly efficient hydrogen production. As a good candidate
photocatalyst, TiO2 has been widely used owing to its low toxicity, abundance and stability against
the light irradiation [5–10]. The photoactivity of TiO2 is closely relevant to particle size, crystal form,
surface morphology, and pore structure, and therefore the proper engineering of TiO2 in photocatalytic
system can greatly improve its activity. TiO2 with a large surface area and micro/mesoporous structures
can facilitate reactant/product transfer and enhance optical absorption efficiency, which shows a
perfect performance in dye-sensitized TiO2 photocatalysis [11–13]. However, pure TiO2 has poor
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response to visible light due to its wide band gap and fast electron-hole recombination, which limit its
photocatalytic activity. In general, noble metal (Au, Ag, and Pt) is usually loaded on TiO2, which can
effectively inhibit fast charge carrier recombination [14].

To enhance the light response of the TiO2-based photocatalytic systems, the two most
efficient strategies, bandgap engineering (cation/anion doping, or semiconductor heterojunction
construction, etc.) [15–18] and dye sensitization [11–13], have been proposed. In this regard, sensitizing
TiO2 with photosensitizer is a facile but effective way to realize the visible-light-driven photocatalysis of
TiO2. Among all the reported dye sensitizers, metal complexes and metal-free organic dyes are widely
applied in TiO2-based photocatalytic hydrogen evolution [11]. Porphyrins and their metallic derivatives
with conjugate structures have attracted much attention due to their excellent light absorption,
prospective photoexcitation, electron-transfer ability, low cost and excellent thermal and chemical
stability [19,20]. Moreover, their photoelectronic properties can be easily tuned by introducing diverse
functional groups on the peripheries or metal ions on the centers of their macrocycles. Thus, porphyrins
are promising candidates for constructing functional nanomaterials. R. Banerjee et al. reported the
synthesis of a porphyrin-based porous polymer and its application in sensitizing TiO2 nanoparticles
by ball-milling method, and the obtained composite showed higher activity for H2 evolution than
the parent precursor under visible light irradiation [21]. Liu et al. reported photocatalytic systems
with Sn-porphyrins as the sensitizer by surface sensitization, and the H2 evolution activities of a
series of Sn-porphyrins with different functional groups and Pt nanoparticles with different surface
stabilizers were investigated [22]. Nevertheless, the common dye-sensitized TiO2 photocatalytic
systems are still unsatisfactory because the dye would shed from the semiconductor and follow
by photodegradation [23]. Moreover, charge injection from dye to TiO2 is an inefficient process,
which limits the efficiency of photogenerated charges [24,25]. Due to insufficient adsorption stability
and low charge mobility, it is necessary to anchor the dyes onto TiO2 by a covalent bond for exploring
durable and efficient photosynthesis systems.

Recently, organic/inorganic hybrid materials have been proven as very promising in obtaining
new materials with desirable properties because the combined advantageous characteristics of organic
and inorganic parts can realize the optimization and complementarity of their properties [26–31].
To prepare TiO2-based nano hybrid materials, many approaches, such as dispersion polymerization [32],
hydrothermal method [33], template-assisted growth [34], and sol-gel method [35–37] have been
developed, among which the sol-gel is a facile method for preparing multi-component and highly
dispersive materials.

Herein, with meso-tetra(4-hydroxyphenyl) porphyrins (M = H, Pd, Zn, denoted as THPP, THPP-Pd
and THPP-Zn) (Scheme 1) as visible-light absorption antennas, respectively, a series of novel TiO2-based
organic/inorganic hybrid nanocomposites (denoted as THPP-TiO2, THPP-Pd-TiO2, and THPP-Zn-TiO2)
were fabricated using four firm Ti-O bonds as the interfacial linkers by a simple sol-gel method.
When Pt nanoparticles (Pt NPs) were loaded onto the hybrids, these hybrid systems could display
stable photocatalytic H2 evolution properties under visible light irradiation, showing an increasing
trend in the sequence of Pt/THPP-Pd-TiO2 > Pt/THPP-Zn-TiO2 > Pt/THPP-TiO2 due to the effect of
central metal ions in porphyrins. Compared with analogous surface-sensitized Pt/THPP-Pd/TiO2

catalyst, the photocatalytic stability of the hybridized Pt/THPP-Pd-TiO2 was significantly improved.
In addition, the mechanism of electron transfer and photocatalytic H2 production in the hybrid
materials was investigated.
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2. Results and Discussion

The synthesis of the three porphyrins, THPP-TiO2, THPP-Pd-TiO2, THPP-Zn-TiO2 and their
materials loaded with Pt NPs, and comparative Pt/THPP-Pd/TiO2 was included in the experimental
section. The X-ray diffraction (XRD) patterns of the samples are shown in Figure 1. Five diffraction peaks
at 25.53◦, 38.12◦, 48.22◦, 54.18◦, and 62.94◦ of Gel-TiO2, THPP-TiO2, THPP-Pd-TiO2 and THPP-Zn-TiO2

samples corresponded to (101), (103), (200), (105), and (204) planes of the crystalline anatase structure
of titanium dioxide. The diffraction peaks of THPP-TiO2, THPP-Pd-TiO2, and THPP-Zn-TiO2 matched
well to those of pure Gel-TiO2, indicating that the presence of porphyrins in the hybrid did not change
the crystallinity of TiO2. The relatively regular diffraction peaks without the peaks of other impurities
showed the high purity of these samples.
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Figure 1. The XRD patterns of Gel-TiO2, THPP-TiO2, THPP-Pd-TiO2 and THPP-Zn-TiO2.

The surface areas of the photocatalyst play an important role in the hydrogen production in
the photocatalytic system. Nitrogen adsorption–desorption isotherms were measured at 77 K to
obtain the Brunauer–Emmett–Teller (BET) surface areas and pore size distributions of the samples
(Figures S1 and S2 and Table S1). The BET surface areas of THPP-TiO2, THPP-Pd-TiO2, THPP-Zn-TiO2,
Gel-TiO2, and, for comparison, P25-TiO2 were evaluated to be 143.4, 166.1, 168.3, 162.9, and 55.4 m2 g−1,
respectively. The results suggested that the sol-gel method could increase the BET surface areas of TiO2.
In addition, the micro/mesoporous structure, comprising both micropores (1~2 nm) and mesopores
(3~5 nm), could be observed in porphyrin-TiO2 and Gel-TiO2 materials, in contrast to that (29 nm) of
mesoporous P25-TiO2, which shortened the transport length and contributed to the faster diffusion of
the electrons from the bulk to the surface, thus inhibiting the charge recombination and increasing the
catalytic efficiency.

The morphologies of the as-prepared samples have been observed by the scanning electron
microscopy (SEM) and transmission electron microscopy (TEM). The SEM image in Figure 2A reveals
that the porphyrin-TiO2 presented a random aggregation of sheets which were closely associated
with each other. The SEM elemental mapping of THPP-TiO2, THPP-Pd-TiO2, THPP-Zn-TiO2,
indicated that the elements C and N for THPP-TiO2, C, N, and Pd for THPP-Pd-TiO2, and C,
N, and Zn for THPP-Zn-TiO2dispersed homogenously throughout the whole hybrid material,
respectively (Figure 2B–D).
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The TEM image of the porphyrin-TiO2 samples (Figure 3A–C) showed that the hybrid materials
were composed of nanospheres with an average diameter of 10 nm. The lattice fringe spacing was
estimated to be 0.357 nm, in accordance with the (101) plane of anatase TiO2 (Figure 3D–F). The selected
area electron diffraction (SAED) results of the porphyrin-TiO2 samples confirmed the formation of the
anatase phase in TiO2 (Figure 3G–I).

UV-vis absorption spectra of three porphyrins in DMF solution and in solid-state, Gel-TiO2,
and the hybrid materials based on porphyrins and TiO2 are shown in Figure 4. All the porphyrins
exhibited strong absorption in the visible region, ranging from 400 to 700 nm. The peak centered at
about 420 nm was ascribed to the Soret absorption band originating from the a1u(π)–eg(π) transition
(S0–S2), while the absorption bands ranging from 500 to 700 nm were attributed to the weaker Q bands
of a2u(π)–eg(π) transitions (S0–S1). The absorption intensities of the three porphyrins were measured
to be close to the values reported in the literature [38]. Compared with THPP, the absorption peak
numbers of THPP-Pd and THPP-Zn in the region above 500 nm were reduced from 4 to 2, owing to
the increased porphyrin ring symmetry after coordination with metal, which reduced the degree
of molecular orbital splitting and improved the degeneracy. Although the maxmium absorption
wavelengths (λmax) of the Soret absorption bands were similar, the Q-band absorption wavelengths
increased in the order of THPP-Pd < THPP < THPP-Zn. Particularly, THPP-Zn had the highest
extinction coefficient and most obvious red-shift among those porphyrins, because it was easier for
ZnPyd to occur the metal-to-ligand charge transfer (MLCT) owing to the weaker interaction between
Zn2+ (3d10) and Py macrocycle ion without any single electron [39]. This better absorption and charge
transfer properties in relation to Zn2+ ions were favorable for the H2 production reaction.
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and Gel-TiO2.

When the porphyrins was doped into TiO2 by the sol-gel method, the hybrids exhibited a red-shift
and significantly extended the absorption profile, which most probably originated from the strong
interaction between the –OH moieties of porphyrins and –Ti atoms of the TiO2, in agreement with our
previous work [40]. For the Gel-TiO2, a strong absorption peak at 325 nm with an absorption edge of
450 nm corresponded to a 3.25 eV band gap. In contrast to Gel-TiO2 with a single optical band gap
in Tauc plots (Figure S3), the hybrid materials based on porphyrins and TiO2 showed multiple band
gaps. These narrow band gaps (2.6–2.8 eV) could be caused by the doping of the porphyrins, while the
wide band gap of 3.0–3.3 eV for the three porphyrin-based hybrids should come from the inorganic
component TiO2, respectively.

To prove the feasibility of conducting photocatalytic H2 production, the first oxidation potentials
of THPP, THPP-Pd, and THPP-Zn were measured by cyclic voltammograms (CVs) to obtain HOMO
value (1.12, 1.08, and 1.10 V vs. NHE) (Figure S4 and Table S2). The zero–zero excitation energies were
estimated from the intersection of the absorption and emission spectra as 1.90, 2.19, and 2.05 eV for
THPP, THPP-Pd, and THPP-Zn, respectively (Figure S5 and Table S2). The LUMO levels of THPP,
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THPP-Pd, and THPP-Zn (−0.78, −1.11, and −0.95 V vs. NHE) were calculated from the HOMO values
of the porphyrins and the zero-zero excitation energies. The valence-band potential of Gel-TiO2 was
reported to be −0.5 V vs. NHE in our previous literature [41], which was more positive than the
LUMO values of the three porphyrins and more negative than the redox potential of H+/H2, and thus
facilitated electron injection from the porphyrins to TiO2 and favoured the proton reduction to realize
photocatalytic H2 generation. Among the three porphyrins, the higher LUMO level of THPP-Pd
than those of THPP and THPP-Zn implied that there is a stronger driving force to promote electron
transfer from THPP-Pd to TiO2, which could accelerate the rate of hydrogen production. On the
other hand, the first oxidation potentials of the porphyrins were more positive than that of the redox
couple (0.84 ± 0.12 V vs. NHE) of triethanolamine as a sacrificial agent [42], beneficial to promoting
dye regeneration and suppressing the recombination between the injected electrons and the dye cation
radical (Figure 5).
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Figure 5. Proposed mechanism of photocatalytic H2 production over Pt/porphyrin-TiO2.

For evaluating the influence of coordination metal ions on the photoactivity of the as-prepared
materials, the photocatalytic experiments were performed in the visible light region with the
Pt/THPP-TiO2, Pt/THPP-Pd-TiO2 and Pt/THPP-Zn-TiO2 catalysts using 0.5 wt% Pt particles as
co-catalyst and TEOA as sacrificial electron donor. Figure 6 illustrated the H2 evolution plots
of these hybrid systems and the corresponding data were summarized in Table S3. Pt/THPP-Pd-TiO2

catalyst exhibited higher hydrogen production activity (2025.4 µmol g−1 h−1 based on the catalyst mass
and 12.03 µmol m−2 h−1 based on the surface area) than those of Pt/THPP-Zn-TiO2 (1239.8 µmol g−1 h−1

and 7.46 µmol m−2 h−1) and Pt/THPP-TiO2 (576.8 µmol g−1 h−1 and 4.02 µmol m−2 h−1). The result
indicated that coordinated Pd metal ions play an essential role in the photoactivity of Pt/THPP-Pd-TiO2.
For the known photochemical molecular devices (PMDs), the NˆN-chelated NnMX2 (M = Pd2+, Pt2+ or
Rh2+, X = Cl−, Br− or I−, n = 2 or 4) coordination polyhedron was commonly employed as a catalyst
centre, in which the dissociation of the terminal X− anions during the photocatalytic process was
found [43,44]. It was also reported that Pd(Py)4 motifs possessing a PdN4 environment with four
monodentate pyridyl ligands could be used as the catalytic centres for photocatalytic H2 evolution,
where the breaking of the Pd-N bond and the formation of hydride intermediate may happen [45,46].
Thus, we deduced that the higher amount of H2 exhibited by the Pt/THPP-Pd-TiO2 hybrid may
be attributed to the two-center catalysis from coordination Pd metal ions of porphyrin dye and Pt
nanoparticles. In addition, the better catalytic activity of Pt/THPP-Zn-TiO2 than Pt/THPP-TiO2 could
be attributed to the more effective light harvesting and charge transfer between THPP-Zn and TiO2

mentioned above.The apparent quantum yields (AQYs) of corresponding samples were measured and
followed the order of Pt/THPP-Pd-TiO2 > Pt/THPP-Zn-TiO2 > Pt/THPP-TiO2 (Table S4), in consistance
with the results of their photocatalytic H2 production.
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Figure 6. H2 production curves of Pt/THPP-TiO2, Pt/THPP-Pd-TiO2, and Pt/THPP-Zn-TiO2 in an
aqueous solution of 10% TEOA under visible-light irradiation (λ > 420 nm).

In order to confirm the efficiencies of the photocatalysts and their stability under UV light
irradiation, control experiments of the three catalysts under complete UV-vis irradiation have been
performed (Figure S6) and all catalysts exhibited higher H2 production activities than those under visible
light, owing to the effective UV-responses of the porphyrins and TiO2 substrate. It was noteworthy that
Pt/THPP-Zn-TiO2 showed the highest activity under complete UV-vis irradiation. This result could
be ascribed to the better absorption of THPP-Zn compared to THPP-Pd and THPP in the UV band,
which could be observed in the UV-vis absorption spectra of THPP, THPP-Pd, and THPP-Zn (Figure 4).

To check the contribution of the Pd coordination metal ions to H2 production, the control
experiments with THPP-TiO2, THPP-Pd-TiO2 and THPP-Zn-TiO2 without Pt NPs for photocatalysis
have been performed (Figure 7 and Table S3). It was found that the H2 generation rate of THPP-Pd-TiO2

without Pt NPs was 230.1 µmol g−1 h−1 (1.37 µmol m−2 h−1), while no obvious amount of H2 was
detected for THPP-TiO2 and THPP-Zn-TiO2. These results supported that Pd coordination metal ions
were conducive to the photocatalytic H2 evolution activity of THPP-Pd-TiO2.
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Figure 7. H2 production curves of THPP-TiO2, THPP-Pd-TiO2, and THPP-Zn-TiO2 in an aqueous
solution of 10% TEOA under visible-light irradiation (λ > 420 nm).

To study the difference of catalytic activity of the hybrid system Pt/THPP-Pd-TiO2 and the surface
sensitization system Pt/THPP-Pd/TiO2, the control experiments of two catalysts were carried out
(Figure 8 and Table S5). In the initial 5 h light irradiation, two catalysts with 0.5 wt% Pt loading
and approximate porphyrin amounts exhibited the same H2 evolution activity. However, in second
and third run, H2-production activity of hybrid Pt/THPP-Pd-TiO2 were rising from initial 2025.4 to
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2755.9 µmol g−1 h−1 (12.03 to 16.38 µmol m−2 h−1) in contrast with the continuous decline in the
activity of surface sensitization Pt/THPP-Pd/TiO2 to 1110.3 µmol g−1 h−1 (6.81 µmol m−2 h−1) after
the third run. During the photocatalytic reaction process, the THPP-Pd dye seriously detached from
the Pt/THPP-Pd/TiO2 material under visible light irradiation, but the detaching phenomena were not
contributed to the Pt/THPP-Pd-TiO2 catalysts even after they were used for 10 times and recycled.
As shown in Figure 9 and Table S5, the Pt/THPP-Pd-TiO2 catalyst showed an outstanding stability
without a decrease in photocatalysis. The TONH2 calculated as the number of moles of H2 divided
by the number of moles of Pt was 5111 after 50 h, indicating the higher photocatalytic activity and
stability of the hybrid materials than those of the common surface dye-sensitized system. The inorganic
component TiO2 in the hybrid materials was expected to be able to protect the THPP-Pd, and the stable
linkages between THPP-Pd and TiO2 were beneficial for efficient electron transfer from THPP-Pd* to
TiO2. Thus, organic–inorganic components in the hybrid system, in other words, have a synergistic
effect on the photocatalytic reaction.
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3. Conclusions

In summary, we have, for the first time, developed a series of unique hierarchical hybrid materials
(THPP-TiO2, THPP-Pd-TiO2, and THPP-Zn-TiO2) by combining TiO2 and porphyrins through a
sol-gel method, which possessed a highly accessible surface area as well as delivered excellent charge
separation and transport efficiency due to the stable Ti–O linkage, resulting in efficient and persistent
photocatalytic water splitting activities when loaded with Pt nanoparticles. The absorption spectra,
electrochemical properties and charge transfer processes of those porphyrins were investigated to
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vary along with the central metal ions. The effects of central metal ions led to the catalytic properties
of the hybrids for H2 production indicating a rising trend in the sequence of Pt/THPP-Pd-TiO2 >

Pt/THPP-Zn-TiO2 > Pt/THPP-TiO2. Especially, Pt/THPP-Pd-TiO2 showed the best H2 production
activity (2025.4 µmol g−1 h−1 and 12.03 µmol m−2 h−1) among the three hybrids under visible light
irradiation owing to two catalytic centers from coordination Pd metal ions of porphyrin dye and
Pt nanoparticles. The superior activity of Pt/THPP-Zn-TiO2 to Pt/THPP-TiO2 could be attributed to
the more effective optical absorption of THPP-Zn and electron transfer between THPP-Zn and TiO2.
Comparatively, the hybrid Pt/THPP-Pd-TiO2 exhibited superior stability to the analogous surface
dye-sensitized Pt/THPP-Pd/TiO2 system under similar photocatalytic conditions and an impressive
TON of 5111 has been achieved through a ten-cycle photoreaction without a decrease for 50 h.
The present results reveal that varying the central metal ions in porphyrins or conducting interface and
microstructure modulation is a facile strategy to optimize the photogenerated charge transfer pathway
and utilize the visible light of sunlight to significantly enhance the efficiency of the solar-to hydrogen
conversion efficiency.
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