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Abstract: The first-principle modeling of heterogeneous catalysts is a revolutionarily approach, as 

the electronic structure of a catalyst is closely related to its reactivity on the surface with reactant 

molecules. In the past, detailed reaction mechanisms could not be understood, however, 

computational chemistry has made it possible to analyze a specific elementary reaction of a reaction 

system. Microkinetic modeling is a powerful tool for investigating elementary reactions and 

reaction mechanisms for kinetics. Using a microkinetic model, the dominant pathways and rate-

determining steps can be elucidated among the competitive reactions, and the effects of operating 

conditions on the reaction mechanisms can be determined. Therefore, the combination of 

computational chemistry and microkinetic modeling can significantly improve computational 

catalysis research. In this study, we reviewed the trends and outlook of this combination technique 

as applied to the catalytic synthesis of methanol (MeOH) and dimethyl ether (DME), whose detailed 

mechanisms are still controversial. Although the scope is limited to the catalytic synthesis of limited 

species, this study is expected to provide a foundation for future works in the field of catalysis 

research based on computational catalysis. 

Keywords: computational chemistry; microkinetic modeling; methanol synthesis; DME synthesis 

 

1. Introduction 

First-principle modeling is a combination of solid state physics and surface chemistry [1]. It can 

be used to find the electronic structure of a catalyst, which relates to its reactivity on the surface, 

where the bonds of reactant molecules break to form new bonds. Using a computational catalyst is a 

paradigm shift approach in contrast to the trial and error method that has been used for decades [2], 

as it can rapidly replace conventional experimental tools, including infrared (IR), X-ray diffraction 

(XRD), and Raman spectra. Previously, detailed reaction mechanisms were hard to completely 

understand because the reaction networks are very complex and little was known about their 

physicochemical exactness [3]. However, the first-principle approach makes it possible to analyze a 

specific elementary reaction of a reaction system, thereby shedding light on the reaction mechanisms 

of many catalytic systems. 

The use of a microkinetic analysis on catalytic reaction systems originated from Bush and Dyer’s 

work [4], where they conducted an experimental and computational analysis of complex kinetics for 

industrial high-temperature chlorocarbon rearrangement and hydrocarbon cracking by evaluating 

the surface reaction mechanisms to predict the performance of the industrial reactors. Since then, 
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several researchers have considered the detailed catalytic reaction mechanisms in kinetic modeling 

[5,6]. Dumesic et al. established the framework microkinetics of heterogeneous catalysis [7]. As a 

microkinetic model includes all possible elementary steps, a rigorous investigation of the detailed 

reaction pathways is possible. Further, the dominant pathway can be elucidated through a 

microkinetic model, which could be increasingly helpful in designing catalysts and improving the 

catalytic process by deepening our understanding regarding the fundamentals of reaction 

mechanisms. Therefore, the combination of a quantum chemical approach and microkinetic 

modeling can create synergetic effects that facilitate the analysis of catalytic reaction mechanisms. 

As global warming worsens and fossil fuels are depleted, the utilization of carbon dioxide (CO2), 

which is one of the main contributors to greenhouse gases, has become of great interest to researchers 

[8–12]. The electroreduction of CO2 to low-molecular-weight organic chemicals has been one of the 

most well-known CO2 utilization techniques for over a century [13–15]. The conversion of CO2 to 

methanol (MeOH) and dimethyl ether (DME) is a promising CO2 utilization method because the 

products are renewable, economically competitive, and eco-friendly fuels [16,17]. MeOH and DME 

can be applied in various capacities, including internal combustion engines [18], solvents, 

refrigerants, and propellants. Both MeOH and DME are being widely synthesized in many industries, 

and there have been many studies on their synthesis, ranging from the development of catalysts and 

their kinetics to process systems engineering. However, the kinetics and detailed mechanisms are still 

controversial, leaving several questions unsolved. For example, which pathway is dominant between 

CO and CO2 hydrogenations, and how does catalyst support affect reactivity [19,20]. For these 

reasons, there is a need for further investigation to enhance and improve the MeOH and DME 

production processes. 

MeOH synthesis from syngas has three overall reactions, including CO and CO2 hydrogenations 

and the water–gas shift reaction (WGSR): 

CO hydrogenation: CO + 2H2 ⇌ CH3OH (1) 

CO2 hydrogenation: CO2 + 3H2 ⇌ CH3OH + H2O (2) 

WGSR: H2O + CO ⇌ H2 + CO2 (3) 

Meanwhile, DME synthesis from MeOH occurs by one overall reaction, as follows: 

MeOH dehydration: 2CH3OH ⇌ CH3OCH3 + H2O (4) 

In general, the dehydration of MeOH over solid acid catalysts is known to occur in the two 

competitive pathways—the associative (direct) and dissociative (sequential) pathways—as 

illustrated in Figure 1. However, there is still controversy regarding which pathway is dominant over 

the other. On the associative pathway, two MeOH molecules adsorb to the catalyst, and the MeOH 

hydration proceeds to form water and DME at the same time. Meanwhile, on the dissociative 

pathway, two MeOH molecules are adsorbed one by one to produce water (water elimination or 

formation reaction) by the first MeOH molecule, followed by the production of DME by the second 

molecule (DME elimination or formation reaction). 
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Figure 1. The associative and dissociative pathways of methanol (MeOH) dehydration. Reprinted 

with permission from [21]. Copyright (2015) American Chemistry Society. 

2. Results and Discussion 

2.1. Computational Chemistry 

2.1.1. Methanol Synthesis over Cu-based Catalysts 

Cu-based catalysts are well known for their involvement in MeOH synthesis from syngas. 

Despite various experimental studies regarding MeOH synthesis, since the appearance of the first 

commercial MeOH synthesis plant by BASF Inc. in 1923, some of their detailed mechanism is still 

unknown [22]. Early-stage theoretical modeling of MeOH synthesis was reported in the 1990s [23,24], 

where vibrational frequencies for hydrogenation intermediates were successfully predicted and 

compared to FT-IR experimental results. Since then, researchers have been trying to elucidate a 

deeper understanding of the MeOH synthesis reaction on Cu-based catalysts. Bauschlicher et al. 

calculated the binding energy and vibrational frequencies of CO on a Cu(100) surface using a 38 atom 

cluster model [25] and found that the binding energy of CO was dependent on the cluster size, while 

the vibrational frequency was not. 

The accuracy of the density functional theory (DFT) calculations in MeOH synthesis over Cu 

catalysts was reported [26] by calculating the reaction Gibbs energies with three exchange-correlation 

(XC) functionals: Perdew–Burke–Ernzerhof (PBE), Heyd–Scuseria–Ernzerhof (HSE), and random 

phase approximation (RPA). Interestingly, each XC functional created different results, where PBE 

was shown to be the best, followed by HSE. Wellendorff et al. [27] suggested a new XC functional, 

the Bayesian error estimation functional with van der Waals correlation (BEEF-vdW), which is the 

only XC functional that describes the kinetics and selectivity of MeOH synthesis concerning CO and 

CO2. BEEF-vdW was compared to revised PBE (RPBE) on the Cu(211) surface by calculating the Gibbs 

free energy diagrams using both XC functionals [28]. It was shown that the CO2 hydrogenation 

pathway with the BEEF-vdW functional was consistent with the previous experimental results.  

A major challenge in the field of catalysis is the difficulty of identifying active sites and their 

thermodynamics. While there are many reports on the active sites of industrial Cu/ZnO/Al2O3 

catalysts [24,29–31], the debate about the effectiveness of these sites is ongoing because the reactivity 

of the CO and CO2 hydrogenations over metal catalysts is highly correlated with their oxide supports 

(Figure 2). Behrens et al. [30] suggest that the active site on Cu/ZnO-based catalysts is the stepped 

Cu(211) surface with Zn alloying. Comparative DFT calculations on three different surfaces were 

conducted and the Gibbs free energies of each reaction path were calculated. The results indicated 

that the reaction intermediates, such as HCO, H2CO, H3CO, were more stably absorbed on the 

stepped Cu(211). Furthermore, the active site was stabilized by the ZnO support, thereby increasing 
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the fractional surface area of Cu(211) with the ZnO concentration. However, researchers still question 

whether there exists a difference in reactivity between the ZnCu alloy and the ZnO/Cu catalyst. In 

Kattel et al.’s DFT calculation [32], it was shown that the ZnCu(211) surface was oxidized when the 

lattice Zn was transformed into ZnO, and the oxidized site enhanced the MeOH production.  

 

Figure 2. Density functional theory (DFT) calculation models for each catalyst facet. Reprinted with 

permission from [30]. Copyright (2012) American Association for the Advancement of Science. 

Subsequently, researchers investigated if the same effect could be found for supports other than 

ZnO. Reichenbach et al. [29] performed rigorous DFT calculations on ZnO/Cu systems to investigate 

the effect of ceria and zirconia supports on Cu. The accuracy of the reaction energies and activation 

energy calculated by DFT-PBE was verified by the coupled-cluster method (CCSD(T)) and 

experimental data. When the bond lengths and Wannier orbitals of the intermediates and adsorbates 

were calculated, shown in Figure 3, the main reaction pathway of the ZnO support was different from 

that of zirconia and ceria. This is because the absorbed configurations of Zr and Ce were more stable 

than those without supports. 

 

Figure 3. Wannier orbitals of [CO2]−, [HCOO]− (formate), HCOOH (formic acid), and CO2 bound 

straight to Zn, bent to Zn, Ce, and Zr in the surface model. Reprinted with permission from [29]. 

Copyright (2018) Elsevier. 

Our knowledge of elementary reactions has been expanded with microkinetic modeling 

research, thereby ending the long-lasting debate on reaction mechanisms. One of the applicative 

examples is the effect of water in the reaction mechanism, and more specifically, whether the water 

molecule itself or the dissociated O*/OH* species join the reaction. A DFT calculation clearly showed 

that the presence of water molecules influences the reaction pathway by changing both the 

thermodynamically and kinetically preferred intermediates. It was also shown that the coverage of 

O*/OH* species on the Cu surface could promote the formation of MeOH [33]. 

Very recently, a practical first-principle microkinetic model was suggested, where all reaction 

rates are calculated using the DFT for activation energies and fitting reaction pre-factors to 

experimental data [34]. The reactivity of Cu alloys, including the commercial-like catalyst and three 

others, was calculated [35] based on the suggested elementary reactions and microkinetic modeling. 
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Consequently, the superior performance of the commercial catalyst was shown to make great 

contributions in understanding the reaction and development processes efficiently. 

2.1.2. Methanol Synthesis over Other Catalysts 

The first-principle calculation made it possible to evaluate the reactivity and reaction mechanism 

of promising catalytic materials, among which ceria attracted great attention [36]. Ceria is known to 

have two reaction pathways: (1) The COOH pathway via a carboxyl intermediate and (2) the HCOO 

pathway via a formate intermediate. This first-principle microkinetic modeling showed that the 

HCOO pathway is kinetically more favored. 

Experimental values of the formation energies of MeOH synthesis on Cu, Ru, Rh, Pd, Ag, Re, 

Os, Pt, and Au surfaces were used to validate the reactivity of the Cu cation and suggest other 

promising metal catalysts [37]. Although this report is the first attempt to screen catalysts using 

computational chemistry on MeOH synthesis, it did not consider the adsorption site of metal 

surfaces, which is critical in determining the reactivity of catalysts. Additionally, the reaction 

mechanism was simple, and reaction barriers were not calculated. 

2.1.3. First-Principle Modeling on DME Synthesis 

For the DME synthesis, hydrophobic zeolites are well known for their high catalytic selectivity 

and reactivity. Zeolite is composed of cages, pores, and channels of various sizes, and its reactivity 

and selectivity are dependent on the relative size between the components of zeolite and reactant 

molecules. The structural database of whole zeolites is well established in the International Zeolite 

Association database [38]. As zeolite is widely used for the synthesis of olefin, gasoline, and DME, a 

considerable amount of research on zeolite catalysis has been performed to understand its properties 

[2,39,40]. This section reviews the zeolite structure, Brønsted acid site, MeOH adsorption reaction, 

and MeOH to DME reaction pathway, with a focus on DME synthesis. 

A Brønsted acid site of Al-substituted zeolite is commonly accepted to initiate MeOH 

adsorption, followed by its dehydrogenation reaction. In 1995, Haase et al. [41] succeeded in 

calculating the interaction of MeOH with a Brønsted acid site of a simple zeolite structure using the 

second-order Moller–Plesset perturbation theory (MP2) (Figure 4). Their calculations showed a 

reasonable match to the experimental results. They also observed that the OH stretching frequency 

of MeOH changed due to the electronic correlation with the acid site of the catalyst, which is 

consistent with the IR spectroscopy results.  

 

Figure 4. Models of a high silica zeolite with the chabazite (CHA) topology (H-SSZ-13); (a) periodic 

model with DFT Perdew–Burke–Ernzerhof (PBE)-D3 method, (b) 46 atomic cluster model with 

Møller–Plesset perturbation theory (MP2)/PBE-D3 method, and (c) 2T cluster model with coupled-

cluster method (CCSD)(T)/MP2 method, where T abbreviates the SiO4 tetrahedron, which is a basic 

unit of zeolites. Reprinted with permission from [41]. Copyright (2017) American Chemical Society. 

Recently, Plessow et al. [42] calculated the H-SSZ-13 zeolite using a hierarchical cluster approach 

to secure an acceptable level of accuracy, which could provide a detailed mechanism of the MeOH 

dehydrogenation reaction. They performed quantum chemical calculations at different levels in 
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different models to ensure the accuracy of their results. Their work is the first reported to accurately 

calculate the transition states and activation energy of the MeOH dehydrogenation reaction, which 

is significant, not only for MeOH to DME, but also for MeOH to olefin reactions. 

2.2. Microkinetic Modeling 

2.2.1. Methanol Synthesis over Cu-based Catalysts 

ZnO was deemed appropriate as a catalyst for MeOH synthesis in the 1920s, even though it 

required harsh operating conditions (T = 600–700 K and P = 200–300 bar) [43,44]. It was not until after 

the 1960s that a MeOH synthesis process that used Cu-based catalysts, which operates at low 

pressures, was developed. Since then, MeOH has been synthesized industrially from syngas over a 

Cu/ZnO/Al2O3 catalyst [45], and several studies using microkinetic models have been conducted to 

elucidate the reaction mechanisms. In 1992, Taylor et al. [46] synthesized surface formate 

experimentally by using a mixture of CO2 and H2 over a clean Cu(100) surface and used a microkinetic 

model to propose a pathway for formate synthesis that was composed of only three elementary steps 

(CO2 and H2 adsorption steps and a surface reaction between the adsorbed CO2* and H*). They 

determined that the surface reaction was the rate-limiting step by comparing the rates of the other 

reactions and the binding energies, and calculated the kinetic parameters from the experiments. In 

1995, a microkinetic model for all the MeOH synthesis pathways, including the 16 elementary steps 

for the CO2 hydrogenation and the WGSR, was suggested by Askgaard et al. [47]. The hydrogenation 

of H2COO* to methoxy (H3CO*) and oxide (O*) intermediates was assumed as the rate-limiting step 

based on the Cu(100) single-crystal experiments of Rasmussen et al. [48]. The parameters were 

estimated from the gaseous phase thermodynamic data, as well as by surface science studies. In 1997, 

a dynamic microkinetic model for CO2 hydrogenation and the WGSR with 13 elementary steps over 

Cu/ZnO catalysts was proposed [49], reflecting the transient changes in particle shape observed by 

in situ extended X-ray absorption fine structure (EXAFS) and XRD/EXAFS [50–52]. This model 

considered the dynamic changes in the concentration of oxygen vacancies at the Zn–O–Cu interfaces, 

and, as a result, provided a better description than the static microkinetic model. Grabow and 

Mavrikakis [20] presented a comprehensive mean-field microkinetic model for MeOH synthesis in 

2011, including CO and CO2 hydrogenations, and WGSRs as the overall reactions, as well as 49 

elementary steps for those reactions. In particular, the overall WGSR was divided into two pathways, 

the redox and carboxyl, as described in Table 1. 

Table 1. Redox and carboxyl pathways for the water–gas shift reaction (WGSR). Reprinted with 

permission from [53]. Copyright (2008) American Chemical Society. 

Redox pathway Carboxyl pathway 

CO + * ⇌ CO* 

H2O + * ⇌ H2O* 

H2O* + * ⇌ H* + OH* 

OH* + * ⇌ O* + H* CO* + OH* ⇌ COOH* + * 

2OH* ⇌ H2O* + O* COOH* + * ⇌ CO2* + H* 

CO* + O* ⇌ CO2* + * COOH* + OH* ⇌ CO2* + H2O* 

CO2* ⇌ CO2 + * 

2H* ⇌ H2 + 2* 

Furthermore, the novel surface intermediates, such as HCOOH* and CH3O2*, and gaseous phase 

byproducts, such as formic acid (HCOOH), formaldehyde (CH2O), and methyl formate (HCOOCH3), 

were considered. A large amount of the DFT calculations were performed with the assumption that 

the Cu(111) surface was used for the binding energies and vibrational frequencies of the gaseous 

phase and adsorbed species, and the activation energies of all the surface reactions. The results were 

applied to the microkinetic model, which indicated that the carboxyl pathway was the dominant 

pathway in the WGSR, and both the CO and CO2 hydrogenations contributed to the MeOH synthesis. 

The hydrogenation of a methoxy intermediate (CH3O*) was the common rate-limiting step for CO 
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and CO2 hydrogenation, while HCO* + H* ⇌ CH2O* + * and HCOOH* + H* ⇌ CH3O2* + * were 

relatively slow steps in the CO and CO2 hydrogenations, respectively. These results show that 

partially oxidized Cu surfaces, such as Cu(110), Cu(100), and Cu(211), might be more appropriate 

models than Cu(111) for MeOH synthesis over a commercial Cu/ZnO/Al2O3 catalyst. In 2012, Peter et 

al. [54] adapted the microkinetic model of Ovesen et al. [49], in which the sensitivity of the structure 

with several low-index Cu surfaces, including Cu(111), Cu(110), and Cu(100), was studied in the 

interest of comparing the microkinetic model with the power law and Langmuir–Hinshelwood–

Hougen–Watson (LHHW) models. 

Rubert-Nason et al. [55] proposed some advanced solution methods for microkinetic models and 

applied them to MeOH synthesis over a Cu-based catalyst in 2014. They reformulated a typical 

microkinetic model, consisting of a system of ordinary differential equations, to a system of nonlinear 

equations through careful scaling and binding with 16 elementary steps that were the subset of the 

49 elementary steps considered in Grabow and Mavrikakis’s work [20]. As a result, the computational 

burden for solving the model was reduced, which allowed for better results of the parameter 

estimation to fit the experimental data, owing to a more systematic and comprehensive search of the 

parameter space. 

In 2015, Tang et al. [56] investigated the effects of the Cu/ZnO interface on MeOH synthesis via 

CO2 hydrogenation based on a combination of the DFT + U calculations to account for the strong 

electron correlations in the ZnO support. The catalyst model considered in their microkinetic model 

is described in Figure 5. 

 

Figure 5. Catalyst model for the DFT + U calculations; an isolated (a) Cu(111) strip, (b) ZnO(101̅0), (c) 

side and (d) top views of the Cu/ZnO catalyst model. Reprinted with permission from [56]. Copyright 

(2015) Royal Society of Chemistry. 

A total of 38 elementary steps at the Cu site of the Cu/ZnO interface were considered, including 

the HCOO, COOH, and CO pathways, the diffusion of H* from the interface to the bulk Cu(111) 

surface or the ZnO, and vice versa. Based on the turnover frequency calculations, the MeOH synthesis 

at the Cu site of the interface was shown to be negligible, as a result of the weak interaction of CO2 

with the interfacial Cu site, and no byproducts, including CO, CH2O, and HCOOH, were produced. 

Therefore, they concluded that the bulk Cu(111) surface was the active site, and the spillover of H* 

produced at the Cu site of the interface onto the bulk Cu(111) promoted CO2 hydrogenation. 

Meanwhile, Janse van Rensburg et al. [57] presented a microkinetic analysis for CO and CO2 

hydrogenations over Cu(111), Cu(211), and Zn-modified Cu (CuZn)(211) surfaces. DFT-based Gibbs 

free energy data for the 11 elementary steps were extracted from previous studies [28,30] and an in-

house developed code [58] was used for the microkinetic analysis. They concluded that the Cu(111) 
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had the lowest reactivity, while Cu(211) and CuZn(211) had similar reactivities. Note that the 

reactivity of Cu(211) was higher than that of CuZn(211) for isolated CO2 hydrogenation, while 

CuZn(211) showed a higher reactivity for both isolated CO hydrogenation and combined CO and 

CO2 hydrogenation. In 2018, Tameh et al. [26] conducted microkinetic modeling for CO and CO2 

hydrogenations on the Cu(211) surface to compare three XC functionals: PBE, HSE hybrid, and RPA 

functionals. The quasi-equilibrium assumption was applied to the adsorption and desorption 

reactions for the calculation of the site fractions of gaseous species. A total of 14 elementary steps 

were considered for isolated CO hydrogenation, isolated CO2 hydrogenation, and combined CO and 

CO2 hydrogenation. The ode15s solver of MATLAB® (MathWorks Inc.) was used to determine the 

stiff ordinary differential equations. They suggested that HCO* + H* ⇌ H2CO* + * and HCOOH* + 

H* ⇌  H2COOH* + * were the rate-limiting steps for CO and CO2 hydrogenation, respectively. 

Additionally, they determined that CO hydrogenation predominated CO2 hydrogenation for each 

functional, although the difference of the overall barrier between CO and CO2 hydrogenation 

depended on the functionals. Furthermore, different functionals led to different results for the most 

abundant surface intermediates. Xu et al. [33] investigated the role of water in CO2 hydrogenation on 

the Cu(211) surface by combining DFT and microkinetic studies, where the research focus was to 

determine if MeOH synthesis was promoted by a water molecule or O/OH derived from water. They 

found that the existence of O/OH played an important role, and the MeOH synthesis rate was 

increased by destabilizing the formate intermediate (the site fraction of HCOO* was decreased) and 

lowering the activation barriers. The CatMAP software package [59,60], a Python module for 

descriptor-based microkinetic mapping, developed by the Nørskov group, was used to conduct their 

microkinetic analysis. 

Furthermore, microkinetic modeling was conducted in our previous study [34], where the 

computational burden was alleviated by combining DFT calculations with the unity bond index-

quadratic exponential (UBI-QEP) method. Thus, the adsorption energies for 28 elementary steps of 

the CO and CO2 hydrogenations and the WGSR were calculated from the DFT calculations, and then 

the UBI-QEP method was used for the activation energies by utilizing our calculated adsorption 

energies. The pre-exponential factors were estimated by fitting the experimental data, which also 

reduced the computational costs and ensured the reliability of the model. In the microkinetic model, 

the formate intermediate was considered as a bidentate species, and the hydrogenation of a methoxy 

intermediate (CH3O* + H* ⇌ CH3OH*) was proposed as the common rate-limiting step of both the 

CO and CO2 hydrogenations. 

2.2.2. MeOH Synthesis over Other Catalysts 

There have also been microkinetic studies that consider different kinds of catalysts for MeOH 

synthesis to find the most effective catalysts, among which Ga2O3 as a promoter [61] or the bulk 

support [62,63] of finely dispersed Pd gained attention for CO2 conversion to MeOH. Chiavassa et al. 

[64] developed a microkinetic model for MeOH synthesis from a CO2/H2 mixture over Ga2O3–

Pd/silica catalysts in 2009, including a total 12 elementary steps for the CO and CO2 hydrogenations, 

and the WGSR. In this model, the surfaces of both Ga and Pd, and Pd–Ga interfaces were identified 

as the active sites, and the migration and diffusion of the adsorbed hydrogen to the Pd–Ga2O3 

interface and the Ga phase, respectively, were also included in the reaction mechanism. This model 

suggested that the competitive mechanism was the more plausible route than the uncompetitive one, 

and the hydrogenation of the formate intermediates and their decomposition on the Ga surface were 

proposed to be the rate-limiting steps. In 2014, Medford et al. [44] analyzed the thermochemistry and 

reaction network for MeOH synthesis over a Zn-terminated ZnO(0001) catalyst using the DFT and a 

steady-state microkinetic model. A total of 19 elementary steps were considered, and the kinetic 

parameters were obtained based on DFT calculations. Here, the rate-limiting steps were suggested to 

be CH2O* + H* ⇌ CH3O* + * under industrial conditions and CH3O* + H* ⇌ CH3OH* + * at high 

temperature and low pressure conditions. In the same year, Ye et al. [65] conducted a combined DFT 

and microkinetic study for MeOH synthesis from CO2 hydrogenation over a Pd4/In2O3 catalyst, in 

which a Pd4 cluster was placed on the In2O3(110) surface, and the reaction network for three possible 
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pathways of CO2 hydrogenation, consisting of 28 elementary steps, was considered, as shown in 

Figure 6. As there exist significant varieties and complexities in the detailed catalytic reaction 

pathways in the literature, the elementary steps that have been widely used are provided in Figure 

6, where CO2 was firstly hydrogenated by the HCOO or reverse water-gas shift (RWGS) pathway, 

forming mono-HCOO or trans-COOH, respectively, and each could produce HCOOH. H2CO was 

hydrogenated by the competitive reactions to produce H3CO or H2COH, and both intermediates were 

converted to MeOH. Among the HCOO, HCOOH, and RWGS, DFT calculations show that the 

HCOOH pathway was unfavorable due to its high activation energy and the HCOO pathway was 

dominant compared to the RWGS. It was shown by the microkinetic model that H2COO* + H * ⇌ 

H2CO* + OH* and cis-COOH* + H* ⇌ CO* + H2O* were the rate-limiting steps of the HCOO and 

RWGS pathways, respectively. The activated H* on the Pd cluster and H2O on the In2O3 promoted 

the HCOO pathway by lowering the activation energy of the rate-limiting step. 

 

Figure 6. Three possible pathways of CO2 hydrogenation. Reprinted with permission from [65]. 

Copyright (2014) Elsevier. 

In 2016, Cheng and Lo [36] studied the mechanisms of CO2 hydrogenation over a reduced 

ceria(110) catalyst. The HCOO and COOH pathways were identified with 21 elementary steps, while 

dispersion interactions were assumed negligible in the DFT calculations of adsorption energies. The 

activation energies were calculated by applying the climbing image nudged elastic band (CI-NEB) 

method [66] and the Brønsted–Evans–Polanyi (BEP) relation [67–69], and the pre-exponential factors 

were obtained by calculating the vibrational frequencies and partition functions. A formaldehyde 

intermediate (CH2O*) was the key intermediate, and the HCOO pathway was dominant. 

Furthermore, the rate-limiting step was the conversion of H-formalin (H2COOH*) to CH2O*. In 2017, 

Huš et al. [35] conducted the first RWGS (the same as the COOH pathway mentioned above) 

pathway, which consisted of network-principle multiscale modeling and experiments to investigate 

the mechanisms of CO2 hydrogenation over Cu-based catalysts, including Zn3O3/Cu, Cr3O3/Cu, 

Fe3O3/Cu, and Mg3O3/Cu. For the catalyst model, M3O3 (M = Zn, Mg, Fe, Cr) was doped on the Cu(111) 

surface, as described in Figure 7. The active sites consisted of Cu and the interface of Cu–M with the 

equal ratio, and 33 elementary steps were considered, including the HCOO and COOH pathways 

and H* diffusion. Both the pre-exponential factors and activation energies were calculated from the 
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DFT, and all elementary reaction rates were scaled by a factor of 10−3 to guarantee model stability and 

reduce computational costs. Kinetic Monte Carlo simulations (kMC) were also conducted for more 

detailed results to conclude that the HCOO pathway predominated the four Cu-based catalysts, even 

though the catalytic performances were different for each catalyst. 

 

Figure 7. Catalyst models of M3O3-doped Cu. Reprinted with permission from [35]. Copyright (2017) 

Royal Society of Chemistry. 

In 2018, Frei et al. [70] conducted microkinetic simulations based on their DFT results for CO2 

hydrogenation and the WGSR on the In2O3(111) surface. By solving the microkinetic model based on 

a differential reactor model under steady-state conditions using MapleTM (Maplesoft), the apparent 

activation energies and reaction orders were determined. They then expanded their study in 2019 to 

In2O3 promotion by Pd [71], in which the microkinetic modeling methods were similar to their former 

work. Compared with the pure In2O3 catalysts, the apparent activation energies for MeOH synthesis 

were lower when the Pd atoms were doped. 

The PdIn intermetallic catalyst was recently proposed for CO2 hydrogenation owing to its high 

activity, selectivity, and stability [72]. Wu and Yang [73] conducted mechanistic studies for CO2 

hydrogenation and CO formation with 24 elementary steps by combining the DFT and microkinetic 

analysis on the intermetallic PdIn catalyst, as described in Figure 8. The CatMAP module was used 

for the microkinetic analysis, and the dominant pathway was determined to be HCOO* → HCOOH* 

→ H2COOH* → CH2O* + OH* → CH3O* + OH* → CH3OH (g) + H2O (g). The dominant pathway for 

CO formation depended on the type of surface; CO2* → CO* + O* and CO2* → COOH* → CO* + OH* 

were preferred on PdIn(110) and (211), respectively. Furthermore, HCOOH* + H* → H2COOH* was 

the rate-limiting step on PdIn(110), while on PdIn(211), it changed from H2COOH* → CH2O* + OH* 

to HCOOH* + H* → H2COOH* as a result of the temperature increase. 
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Figure 8. Surface models of PdIn(110) and PdIn(211); the Pd and In atoms are colored in blue and 

brown, respectively. Reprinted with permission from [73]. Copyright (2019) Royal Society of 

Chemistry. 

The history of microkinetic studies on MeOH synthesis is summarized in Tables 2 and 3. 

Table 2. Previous microkinetic studies for MeOH synthesis on Cu-Zn-Al (CZA) catalysts. 

Researcher Year 
Reaction 

§ 
# of 

steps 
Catalyst model 

Kinetic 
parameter 

Rate-limiting 
step 

Dominant 
pathway § 

Askgaard 
et al. [47] 

1995 
CO2, 
WGS 

16 Cu(100) Estimation Assumed None 

Ovesen et 
al. [49] 

1997 
CO2, 
WGS 

13 
Cu(100), Cu(110), 

Cu(111) 

Calculation 
with 

partition 
functions, 
estimation 

Assumed None 

Grabow 
and 

Mavrikakis 
[20] 

2011 
CO, 
CO2, 
WGS 

49 Cu(111) 
DFT, 

estimation 
H3CO* + H* → 

CH3OH* + * 

CO (1/3) 
and CO2 

(2/3) 

Tang et al. 
[56] 

2015 
CO2, 
WGS 

38 Cu(111)/ZnO(101̅0) DFT + U None None 

Janse Van 
Rensburg 
et al. [57] 

2015 CO, CO2 11 
Cu(111), Cu(211), 

CuZn(211) 
DFT 

CO2 
hydrogenation: 

HCOOH (g) + H* 
→ H2COOH* + * 

CO 

Tameh et 
al. [26] 

2018 CO, CO2 14 Cu(211) DFT 

CO 
hydrogenation: 
HCO* + H* → 

H2CO* + * 
CO2 

hydrogenation: 
HCOOH* + H* 
→ H2COOH* + * 

CO2 

Xu et al. 
[33] 

2019 CO2 7 Cu(211) DFT None None 

Park et al. 
[34] 

2019 
CO, 
CO2, 
WGS 

28 Cu(111) 
DFT, UBI-

QEP, 
estimation 

H3CO* + H* → 
CH3OH* + * 

None 

§ CO, CO2, and WGS represent the CO and CO2 hydrogenations, and water–gas shift reaction, respectively. 
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Table 3. Previous microkinetic studies for MeOH synthesis on various catalysts. 

Researcher Year Reaction 
§ 

# of 
step 

Catalyst 
model 

Kinetic 
parameter 

Rate-limiting 
step 

Dominant 
pathway § 

Chiavassa 
et al. [64] 

2009 
CO, CO2, 

WGS 
12 

Ga2O3-
Pd/silica 

Estimation 
HCOO* + H* 
→ H2COO* + * 

None 

Medford et 
al. [44] 

2014 
CO, CO2, 

WGS 
19 ZnO(0001) DFT 

Industrial 
condition: 

H2CO* + H* → 
H3CO* + * 

High T and low 
P: H3CO* + H* 
→ CH3OH* + * 

CO 

Ye et al. 
[65] 

2014 CO2 28 Pd4/In2O3 DFT 
H2COO* + H* 
→ H2CO* + 

OH* 

HCOO 
pathway of 

CO2 

Cheng and 
Lo [36] 

2016 CO2 21 CeO2(110) 
DFT, BEP 
relation 

H2COO* + H* 
→ H2CO* + 

OH* 

HCOO 
pathway of 

CO2 

Huš et al. 
[35] 

2017 CO2 33 

Zn3O3/Cu, 
Mg3O3/Cu, 
Cr3O3/Cu, 
Fe3O3/Cu, 

DFT None 
HCOO 

pathway of 
CO2 

Frei et al. 
[70] 

2018 
CO2, 
WGS 

26 In2O3(111) DFT None None 

Frei et al. 
[71] 

2019 
CO2, 
WGS 

19 
Pd-

promoted 
In2O3 

DFT None None 

Wu and 
Yang [73] 

2019 
CO2, 
WGS 

24 
PdIn(110), 
PdIn(211) 

DFT 

PdIn(110) and 
(211) at high T: 
HCOOH* + H* 
→ H2COOH* + 

* 
PdIn(211) at 

low T: 
H2COOH* + * 
→ H2CO* + 

OH* 

HCOOH 
pathway of 

CO2 

§ CO, CO2, and WGS represent the CO and CO2 hydrogenations, and water–gas shift reaction, respectively. 

2.2.3. DME Synthesis 

There have been few microkinetic studies that consider DME synthesis by MeOH dehydration. 

In 2011, Carr et al. [74] conducted DFT-based microkinetic modeling for MeOH dehydration over 

tungsten Keggin polyoxometalate (POM) clusters to evaluate the effects of acid strength on the 

dehydration rate. The elementary reaction schemes considered are shown in Figure 9. They applied 

the pseudo-steady-state hypothesis (PSSH) to all the adsorbed intermediates, the quasi-equilibrium 

assumption to MeOH adsorption, and the irreversibility assumption to the water and DME formation 

reactions to develop the kinetic equations. The most abundant intermediates on the catalyst were 

assumed, with methoxides and MeOH monomers for the dissociative pathway, and MeOH 

monomers and protonated dimers for the associative pathway. They concluded that the associative 

pathway was dominant under the tungsten Keggin POM clusters. 
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(a) (b) 

Figure 9. Elementary steps of MeOH dehydration on tungsten Keggin polyoxometalate (POM) 

clusters considered in [74]. (a) The associative pathway and (b) the dissociative pathway. Reprinted 

with permission from [74]. Copyright (2011) Elsevier. 

In 2013, Moses and Nørskov [75] conducted periodic DFT calculations for MeOH dehydration 

over ZSM-22 to investigate the pathway dominancy by deriving the kinetic equations and calculating 

the relative reaction rates, in a similar process to Carr et al. [74] The quasi-equilibrium and irreversible 

step approximations were applied, and site fractions of the intermediates on non-acid sites were 

assumed to be negligible. Their results showed that the dissociative pathway was dominant, which 

is in opposition to the results of Carr et al. Although water lowered the activation energies of the key 

reactions, the overall reaction rate of the DME synthesis was barely influenced as a result of the 

entropy loss by the adsorption of water molecules. Furthermore, Moses and Nørskov concluded that 

acidity had nothing to do with the dominancy of the dissociative pathway. Jones and Iglesia [76] 

utilized a DFT and a microkinetic model to compare the associative and dissociative pathways in 

2014. Periodic DFT calculations with the van der Waals density functional (vdW-DF2) were 

conducted to simulate H-MFI zeolite [77]. The kinetic models were derived by applying the PSSH for 

the adsorbed intermediates and assuming the elementary steps to be quasi-equilibrated, except for 

the water and DME formation reactions, and specifying that the MeOH dimers were the most 

abundant adsorbed intermediates based on their IR spectra results. The conclusion was made that 

the associative pathway was dominant at T < 503 K and P = 0.1 bar or T < 570 K and P = 1 bar, while 

the dissociative pathway became dominant at higher temperatures and lower pressures. These results 

were explained by the enthalpy–entropy trade-off point of view. 

In our recent study [78], a combination of the MP2 and microkinetic modeling was conducted 

for DME synthesis from MeOH over an H-zeolite catalyst. The MP2 was used instead of the DFT to 

consider the dispersion interactions, and nine elementary steps, including both the associative and 

dissociative pathways, were included to find the dominant pathway. The pre-exponential factors 

were estimated by fitting the experimental data. As a result, the dissociative pathway was determined 

to be dominant, and the DME formation reaction of the pathway was the rate-limiting step. 

The history of microkinetic studies on DME synthesis is summarized in Table 4. 
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Table 4. Previous microkinetic studies on DME synthesis. 

Researcher Year 
Catalyst 
model 

Kinetic 
parameter 

Rate-limiting step 
Dominant 
pathway 

Carr et al. [74] 2011 
Tungsten 
Keggin 

POM cluster 
DFT None 

Associative 
pathway 

Moses and 
Nørskov [75] 

2013 ZSM-22 DFT 
DME formation step 

of the dissociative 
pathway 

Dissociative 
pathway 

Jones and 
Iglesia [76] 

2014 H-MFI DFT None 
Dependent on 

T and P 

Park et al. [78] 2020 
H-zeolite 

cluster 
MP2, 

Estimation 

DME formation step 
of the dissociative 

pathway 

Dissociative 
pathway 

3. Methods 

3.1. Computational Chemistry 

This section examines the theory of computational chemistry for the catalytic research field, 

including the theories and calculation methods for calculating adsorption energy, vibrational 

frequency, and activation energy, to understand the properties of a catalyst, based on the DFT [79]. 

The field of DFT has become a starting point for the full-fledged application of computational 

chemistry and is currently used in various fields. 

3.1.1. Surface Modeling 

For modeling a catalytic reaction, it is essential to build an adequate surface model. The surface 

model has been developed in various ways along with its purpose. There are three surface models 

categorized by Sabbe et al. [80], which are a cluster model, embedded cluster model, and periodic 

model. The cluster model is a model that focuses on the active site, and has the advantage of being 

able to perform efficient calculations with few resources. However, it is difficult to simulate a 

complex catalyst surface because it cannot consider long-range interactions, such as electrostatic 

potential. The embedded cluster model makes up for the cluster model by introducing a simple 

model for long-range interactions. In the embedded cluster model, a short-range near the active site 

is calculated by the quantum mechanical approach, and the others are considered as a kind of 

perturbation. This approach effectively simulates the catalytic reaction, such as CO2 reduction 

reactions [81]. The periodic slab model can be calculated for an infinitely regular surface that does 

not consider edges so that an accurate electronic structure for the crystal structure can be obtained. 

However, to simulate a surface with irregularities, such as defects or impurities on the surface, a 

supercell is required, which increases the computational cost. 

3.1.2. Adsorption Energy 

Adsorption energy is an important property used to investigate the catalytic reaction as it 

quantifies the amount or intensity of adsorption when the reactants in the gaseous phase adsorb onto 

the catalyst surface. The adsorption energy can be determined by calculating the ground state 

energies before and after adsorption using the DFT calculation and the difference between them, as 

follows: 

Eads = Eslab + adsorbate – (Eslab + Eadsorbate) (5) 

Early DFT calculations were only marginally able to predict the adsorption energy. Therefore, 

Feibelman et al. [82] constructed a model for CO adsorption on a Pt(111) catalyst to find the calculated 

adsorption energies using several XC functionals based on a generalized gradient approximation 

(GGA), such as Perdew–Wang 91 (PW91), PBE and RPBE, and overestimated experimental values. In 

the 2000s, Kresse et al. [83] introduced the semilocal functional to accurately calculate the adsorption 
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energy of CO on Pt(111) to compensate for the underestimated value of the gap between the highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). They also 

demonstrated that the interaction between metal and the 2π* orbital was overestimated in 

conventional DFT calculations, and suggested many alternative correction methods, including DFT 

+ U, which is a hybrid functional [84,85]. The adsorption energy of many catalytic reactions has been 

calculated for various metal catalysts other than Pt, and a high consistency between experimental 

results and calculations has been accomplished. This method was also successfully applied to 

strongly correlated materials, such as NiO [86], as well as other materials [87]. 

3.1.3. Activation Energy 

An important property in a catalytic reaction is the activation energy. Activation energy, which 

has been estimated experimentally in the form of the Arrhenius equation, can be calculated directly 

using computational chemistry. As activation energy is defined as the difference in energy between 

a transition state and the initial state, the geometry of the energy of both states must be obtained by 

the DFT. 

The most widely known method for directly obtaining the transition state is the nudged elastic 

band (NEB) method [66,88], where the minimum energy path (MEP) between the states before and 

after the reaction on the potential energy surface are explored (Figure 10). A series of atomic 

configurations between the initial and final states are used for finding the MEP. These configurations 

describe the reaction pathway and are connected by spring forces in which the distance between 

configurations are fixed. Thus, the direction of the net force on a configuration is the sum of three 

forces: the spring force connected neighbor configuration, the perpendicular force induced by the 

potential energy surface, and the unprojected forces. Through iteration, each configuration moves to 

the nearest saddle point, and the MEP is found. 

 

Figure 10. Illustration of the nudged elastic band (NEB) method on a potential energy surface (PES); 

FiNEB: nudged elastic band force, Fi S
║: spring force along the tangential τi, Fi

┴: perpendicular force, and 

Fi: the other forces. Reprinted with permission from [26]. Copyright (2000) AIP Publishing. 

3.2. Microkinetic Modeling 

Although closed-form empirical kinetic models, such as the power law and LHHW models, have 

been used widely [89,90] due to their relatively simple structure and appropriate fitness to 

experimental data, their limitations in describing changes in the rate-limiting steps under varying 

operating conditions, as well as the irrelevant parameters to the physical significance, have motivated 

the application of the microkinetic modeling approach, which considers detailed reaction 

mechanisms. To develop a microkinetic model, the overall reactions are divided into several 

elementary steps. For example, the overall reaction of CO2 hydrogenation (Equation 2) is separated 



Catalysts 2020, 10, 655 16 of 22 

 

into the following elementary steps, based on the possible reaction pathways, in Table 5. CO2 

hydrogenation can occur via two pathways (COOH and HCOO pathways), which include eight 

elementary steps, while the adsorption and desorption of CO and CH3OH, respectively, are the 

common steps in both pathways. Using a microkinetic model to augment the two competitive 

pathways, the role of each step is evaluated and the dominant pathway is elucidated. 

Table 5. CO2 hydrogenation mechanisms; this table was reproduced from [36]. 

COOH pathway HCOO pathway 

CO2 + * ⇌ CO2* 

CO2* + H* ⇌ COOH* + * CO2* + H* ⇌ HCOO* + * 

COOH* + * ⇌ CO* + OH* HCOO* + H* ⇌ H2CO2* + * 

CO* + H* ⇌ HCO* + * H2CO2* + H* ⇌ H2COOH* + * 

HCO* + H* ⇌ HCOH* + * H2COOH* + * ⇌ CH2O* + OH* 

HCOH* + H* ⇌ H2COH* + * CH2O* + H* ⇌ CH3O* + * 

H2COH* + H* ⇌ H3COH* + * CH3O* + H* ⇌ H3COH* + * 

H3COH* ⇌ CH3OH + * 

3.2.1. Kinetic Parameter 

The kinetic parameters for each elementary step reaction should be determined to calculate the 

reaction rate. For each surface reaction, reaction rates are formulated by the following: 

ri = ki ∏j θj = Ai exp(−Ea/RT) ∏j θj  (6) 

where k, A, and Ea are the kinetic parameters of the reaction i, the pre-exponential factor, and the 

activation energy, respectively. θj represents the portion of the surface intermediate j in the total 

catalytic active site over a catalytic surface. In the equation, the subscript j represents the reactants 

involved in the i-th reaction to comprise the terms of the driving forces, while the kinetic parameters 

were assumed to follow the Arrhenius type equation. The rate of the i-th elementary step (ri) is 

expressed by the multiplication of the kinetic parameter and driving forces. Calculating A and Ea for 

each elementary step is one of the main problems in microkinetic modeling, and there are several 

different ways to obtain the parameters. When the computational chemistry is limited by poor 

computing power, the parameters are estimated by fitting experimental data. Due to its enhancement 

in computing capacity, computational chemistry is widely used, although it is still burdensome to 

calculate the parameters for a large amount of elementary steps. Accordingly, the BEP relations (also 

known as the linear free energy relations) [91,92] and the UBI-QEP method (also known as the bond-

order conservation method) [93] are often used for more practical approaches. In 2011, Maestri and 

Reuter [94] proposed the refined UBI-QEP method, which could derive activation energies that have 

values similar to those derived from the DFT, as shown in Figure 11. 
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Figure 11. Parity plot of activation energies for several dissociation reactions on Rh(111) and Pt(111) 

as derived from the UBI-QEP and DFT (blue circle—original UBI-QEP; red triangle—refined UBI-

QEP). Reprinted with permission from [94]. Copyright (2010) John Wiley and Sons. 

3.2.2. Microkinetic Model 

A microkinetic model is defined as a system of ordinary differential equations (ODEs) for the 

site balances: 

dθj/dt = ∑i Sij ri (7) 

where Sij is the stoichiometric coefficient. For all surface intermediates, Equation (6), including 

the related elementary steps, is calculated simultaneously. By calculating the equations, the site 

fractions are obtained, and the consumption and production rates of gaseous species can be 

calculated through the adsorption and desorption equations. Furthermore, the most abundant 

surface intermediate, dominant pathway, and rate-limiting steps can be elucidated as a result of the 

calculations. However, the kinetic parameters and reaction rates of different elementary steps have 

various orders of magnitude, making the ODE system so stiff that the calculation may become 

difficult. To reduce the stiffness, several solutions, such as scaling and the quasi-equilibrium 

assumption, have been adopted. 

4. Conclusions 

While there have been many microkinetic studies on MeOH synthesis since the 1990s, there were 

only a few on the microkinetic modeling of DME synthesis from MeOH. Many computational 

chemistry studies have been conducted since the DFT, and several quantum chemical methods were 

developed. From locating active sites to calculating reaction mechanisms, computational chemistry 

acts in an essential role. 

In the past, computational chemistry was rarely used to develop microkinetic models. However, 

advances in computation performance accelerated computational chemistry-based microkinetic 

modeling. With the combination of computational chemistry and microkinetic analysis, researchers 

are now able to create a synergetic effect by analyzing reaction pathways both theoretically and 
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kinetically. Moreover, kinetic parameters, such as pre-exponential factors and activation energies, 

can be obtained with theoretical backgrounds, and more elementary reactions can be considered. 

Many software programs (commercial and non-commercial), such as MATLAB®, MapleTM, kinsolv, 

CHEMKIN, CatMAP, and the complex pathway simulator (COPASI), have been used for 

microkinetic studies of MeOH and DME synthesis. 

The microkinetic modeling of MeOH and DME synthesis using computational chemistry was 

first conducted in the 2010s. Cu(111)- and Cu(211)-based CZA catalyst models have been mostly used 

because the surface of Cu(111) is known to be predominantly exposed and Cu(211) could represent 

the defective sites. For the rate-limiting step, the hydrogenation of methoxy intermediates or formic 

acid is suggested, while the dominant pathway between CO and CO2 hydrogenation is still 

controversial. Several researchers have developed microkinetic models for MeOH synthesis on 

promising catalysts to replace CZA catalysts, with Pd-In catalysts being most actively studied (Table 

3). 

Still, there remains debate on whether the DME formation step via the dissociative pathway in 

DME synthesis is the rate-limiting step. Therefore, more studies on the microkinetic analysis of 

MeOH dehydration are necessary. 

As the reaction mechanisms of MeOH and DME synthesis are not fully understood and new 

promising catalysts are continually being suggested, there is a need to accumulate more data by both 

computational chemistry and experimental studies. At the same time, the industrial application of 

microkinetic studies should be considered, which might require a multiscale modeling approach. 

Due to the complexity of microkinetic models, the direct augmentation of a microkinetic model in a 

reactor model using computational fluid dynamics (CFD) would almost be impossible. Therefore, a 

machine learning technique could be used to extract the information available in a microkinetic 

model, and then transfer it to a CFD reactor model in an implicative manner, thereby realizing a 

highly detailed level of the process simulation. 
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