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Abstract: Tunable aryl imidazolium ionic liquids acting as Brønsted acid ionic liquids were found
to be efficient catalysts for per-O-acetylation and reductive ring opening of benzylidene acetals.
This method requires a truly catalytic amount of the least expensive available ionic liquids that are
water-stable and reusable and also stable at room temperature. The reactions were obtained in one
hour with good to excellent yields. These reactions can form C−O and C−H bonds with a high atom
economy. Furthermore, the ionic liquid is an anomeric selective catalyst in per-O-acetylation and
reductive ring opening of benzylidene acetals of sugar moieties.
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1. Introduction

Regioselectively functionalized carbohydrates have recently become an important development in
glycochemistry and glycobiology. Sugar molecules consist of several hydroxyl groups that are difficult
to employ selectively as they have similar reactivity profiles. Therefore, methodologies that accomplish
potent protection and selective alteration of monosaccharides are fundamental synthetic appliances in
organic chemistry [1]. The use of distinctive hydroxyl groups in selective protection of carbohydrate
molecules is a key step in the chemical synthesis of complex carbohydrates. Per-O-acetylation of
sugars is an essential intermediate in carbohydrate transformation and synthesis [2]. In this respect,
the ring-opening of cyclic benzylidene acetals comparable to O-benzyl ethers, in a regioselective aspect,
is a favorable path owing to the ease of formation of the acetal, as well as the well-established quality
of the benzyl ether protection [3]. One major and important transformation in carbohydrate chemistry
is the acetylation of monosaccharides. In particular, per-acetylated carbohydrates are imperative
and convenient intermediates in the chemical synthesis of complex carbohydrates, particularly for
chemical glycosylation. Per-O-acetylated sugars can be employed directly as glycosylation donors [4,5].
Per-O-acetylation is one of the most commonly utilized reactions in carbohydrates, mainly for primary
protection of sugars. The acetylation reaction is commonly performed using acetic anhydride as
the reagent and an array of catalysts. However, the surplus of acetic anhydride as a solvent causes
tedious work in the neutralization process. A ring conformation that can fix benzylidene acetals
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either oxidatively or reductively is a favorable protective group in carbohydrate [6,7]. The reductive
ring opening of benzylidene acetals is an essential reaction in this context and has been very useful
in the selective manipulation of neighboring hydroxyls in polyols. The first reagent utilized for
affecting this conversion was LiAlH4–AlCl3 [8–14]. The benzylidene sugar can form two regiospecific
benzyl ethers by the reductive ring-opening reactions [15–18]. Various Lewis acid catalysts, such as
InCl3 [19], In(OTf)3 [20], ZnCl2 [21], Sc(OTf)3 [22], TMSOTf [23], Cu(OTf)2 [24], and triphenyl carbenium
tetrafluoroborate [25], have been introduced for the acid-catalyzed per-O-acetylation and reductive
ring opening of benzylidene acetals of sugars. However, these catalysts also undergo significant
shortcomings, such as an expensive reagent, long reaction time, and harsh reaction conditions. Solid
acid catalysts can relieve these problems, as they are cheap and allow the straightforward deportation
of the catalysts from the reaction system [26–30]. The function of ionic liquids (Ils) as environmentally
favorable reaction solvents for synthesis and catalysis has received broad recent consideration [31–34].
Per-O-acetylation of sugars catalyzed by ionic liquids such as dicyanamide based ionic liquid, zinc-based
ionic liquid, and dialkyl imidazolium benzoates ionic liquid were studied [35,36]. This work reports
a systematic screen of selected ionic liquids (Ia–If, Scheme 1) The Brønsted–Lowry acid as catalysts
for a per-O-acetylation of d-glucose and regioselective ring opening of benzylidene acetals at the O-4
position of glucopyranoside. These ionic liquid catalysts have, to the best of our knowledge, not been
previously utilized in this transformation. The imidazolium-based ionic liquids are synthesized as
a novel type of ionic liquid, which acts as a Brønsted acid catalyst for both per-O-acetylation and
benzylidene ring-opening reactions, is moisture-insensitive, stable at room temperature and reusable.
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Scheme 1. Tunable aryl imidazolium ionic liquid Ia–If.

2. Results and Discussion

Selective per-O-acetylation of d-glucose (1a) was explored as a model compound. Treatment
of compound 1a with acetic anhydride (10 equiv.) in the presence of ionic liquid Ia (0.1 equiv.) at
room temperature proceeded to completion of the reaction in one hour (Table 1, entry 1). Under
these conditions, the product 1,2,3,4,6-penta-O-acetyl-d-glucopyranoside (2a) was obtained in 99%
yield respectively. Subsequently, ionic liquids Ib, Id, Ie, and If (Scheme 1) were investigated
in this transformation. Under the same conditions as described above, these catalysts provided
per-O-acetylation 2a in good to excellent yields (Table 1, entry 2, 4, 5, and 6). However, Ic did not
proceed with the reaction smoothly, and achieved a 29% yield of 2a (Table 1, entry 3), because of the
weak acidity of the Ic.

2.1. Per-O-Acetylation

The study of the ionic liquid suggested that Ia was the best catalyst for the per-O-acetylation
reaction, providing 2a in excellent yield. The reaction was routinely monitored using TLC and produced
2a after applying purification compounds. Based on these preliminary results, the acetic anhydride
loading was explored. To determine the minimum amount of acetyl reagent required, we used 7.5
equivalents and 6.0 equivalents of acetic anhydride with ionic liquid for 24 h (Table 1, entry 10).
Increasing the temperature to 80 ◦C resulted in the formation of selective 2a in an isolated yield of 92%
in very short reaction time (Table 1, entry 11).
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Table 1. Optimized condition of per-O-acetylation without solvent.
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3 Ic 25 1 h 10 2a (29%)
4 Id 25 1 h 10 2a (70%)
5 Ie 25 1 h 10 2a (96%)
6 If 25 1 h 10 2a (86%)
7 Ia 25 1 h 7.5 2a (99%)
8 Ia 25 1 h 6.0 2a (99%)
9 Ia 25 1 h 5.25 2a (95%)
10 Ia 25 24 h 6.0 2a (94%)
11 Ia 80 1 h 6.0 2a (92%)

a The yields are isolated yields.

The scope, limitations, and generality of the method were explored. Table 1 shows the
per-O-acetylation of other important d-hexoses 1b–1d, d-pentose 1e, and disaccharide 1f under
this set of optimized conditions. d-galactose 1b readily provided the corresponding penta-acetate 2b
quantitatively (Table 2, entry 1), whereas d-mannose 1c afforded product 2c in excellent yield 93%
(Table 2, entry 2). Reducing the equivalent of acetic anhydride to 4.8 equivalents led to a similar result
in the case of methyl glucopyranoside 1d, and the expected compound 2d was isolated in 99% yield
(Table 2, entry 3). Equally, d-xylose 1e led to exclusive formation of the corresponding product 2e in
97% yield (Table 2, entry 4) and increasing the equivalent of acetic anhydride, the substrate 2f produced
compound 1f in 96% yield (Table 2, entry 5), respectively.

Table 2. Ionic liquid (Ia) catalyzed the solvent-free per-O-acetylation of hexoses.
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Entry SM t (h) Ac2O (eq) P (Yield)

1 1b 1 h 6 2b (98%)
2 1c 3 h 6 2c (93%)
3 1d 1 h 4.8 2d (99%)
4 1e 1 h 4.8 2e (97%)
5 1f 1 h 9.6 2f (96%)

2.2. Reusability of TAIIL for Per-O-Acetylation of d-Glucose

The anticipation of ionic liquid as a solvent replacement, especially on broad proportion application,
counts on the usage of potent recycling to help blunt costs and curtail their environmental impact.
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In the reaction of 1a with acetic anhydride in the presence of Ia to form 2a. After the filtration of the
reaction mixture and the extraction of the product with ethyl acetate for ionic liquid, the ILs were
concentrated, dried under a high vacuum, and reused. Figure 1 shows five cycles of the acetylation in
ILs that are recovered and reused for further per-O-acetylation reactions. No significant loss of activity
of these products was observed (91–99%). After reuse of ionic liquid Ia, 19F NMR confirmed that ionic
liquid remains in the aqueous phase.
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Figure 1. Recycling of Ia in the synthesis of penta-acetate d-glucose 2a.

The plausible mechanism (Scheme 2) of the reaction appears to be through the acylium intermediate
formed by the reaction of Ionic liquid and Ac2O. The acylium intermediate would be able to acetylate
the free alcohol moieties very efficiently. After starting material 1 reacted with the acylium intermediate
to form 1’ the Ia’ abstracts the proton from 1’ to form acetylated compound 2.
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2.3. Reductive Ring Opening of Benzylidene Acetals

This investigation reports a systematic screen of selected ionic liquids (Ia–If, Scheme 1) as catalysts
for a regioselective ring opening of benzylidene acetals at the O-4 position of hexopyranosides. Those
ionic liquid catalysts have, to our knowledge, not previously been utilized in this transformation.
The reaction conditions using the best ionic liquid catalysts were optimized to provide a robust and
reliable procedure. The O-4 selective ring-opening reaction was selected for optimization. Initially,
sugar 3a was accepted as an excellent substrate. Firstly, 3a with ionic liquid, Ia (1.0 equiv.), and
triethylsilane (10.0 equiv.) were used in dichloromethane (DCM) at room temperature. The expected
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product 4a was assembled, then the reaction mixture was treated with tetra-n-butyl ammonium fluoride
(TBAF, 11.0 equiv.) and acetic acid (AcOH, 11.0 equiv.) at room temperature for one hour, providing 4a
in 78% yield (Table 3, entry 1). Screening results of ionic liquids (Table 3, entry 2−6) indicated that Ia
was superior to Ib–If, probably due to weak acidity of ionic liquid Ib–If.

Table 3. Optimized conditions of regioselective O-4 ring-opening reactions.
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Performing the reaction with ACN as the solvent yielded 88% of the product 4a (Table 3, entry 7).
Decreasing the ionic liquid catalyst to 0.5 and 0.25 equivalents yielded product 4a in 90% and 77%
yield respectively (Table 3, entry 8–9).

The optimized conditions were examined. Thus, compounds commonly used in carbohydrate
chemistry with different protection groups were tested in this transformation. As indicated in (Table 4,
entry 1), the corresponding product 4b was obtained in excellent yield after increasing reaction time.
Under the same optimized condition, 3c was transformed into 4c as the only product (Table 4, entry 2).
In the subsequent reaction, with a longer reaction time of 8h, 3d was converted into 4d with a 72%
yield (Table 4, entry 3). However, the reaction of 3e afforded 4e as the final compound in good yield
(Table 4, entry 4).

Table 4. Reductive ring-opening of various 4,6-O-benzylidene-d-hexopyranosides at room temperature
in the presence of Ia as a catalyst.
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The plausible mechanism (Scheme 3) shows that acetals oxygen (O-4) 3 abstract a proton from
ionic liquid Ia to form the intermediate 3’, which should then have converted to intermediate a. Then,
the addition of Et3SiH to form the 3a. Finally, the treatment of tetra-n-butylammonium fluoride (TBAF)
and acetic acid with a’ to obtain the desired product 4, with the removal of triethylsilyl fluoride (TESF).
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3.2. General Procedure

To a solution of C1, C2, C3, C4 (1 equiv.) and triflic acid, trifluoro methanesulfonic acid, and
trifluoroacetic acid (2 equiv.) in ethanol (0.5 mL/mmol). The reaction mixture was stirred for two hours
in an ice bath. The solvent was dried and the reaction mixture was washed with ether several times.
The solvent was dried to give Ia–Ic as a yellow solid and Id–If as a white solid.

1-(4-Nitrophenyl)-1H-imidazole-3-ium trifluoromethanesulfonate (Ia). 1H NMR (400 MHz, CD3OD) δ 9.30
(m, 1H), 8.18 (m, 2H), 7.91 (dd, J = 10.0, 8.4, Hz, 1H), 7.76 (m, 2H), 7.54 (d, J = 3.6 Hz, 1H); HRMS (ESI,
M + Na+) calcd for C16H22O11Na 190.0618, found 190.0616.

1-(4-Nitrophenyl)-1H-imidazole-3-ium methanesulfonate (Ib). 1H NMR (400 MHz, Methanol-d4) δ 9.53 (m,
1H), 8.38 (m, 2H), 8.11 (m, 1H), 7.93 (m, 2H), 7.72 (m, 1H).

1-(4-Nitrophenyl)-1H-imidazole-3-ium trifluoromethaneacetate (Ic). 1H NMR (400 MHz, CD3OD) δ 9.35 (s,
1H), 8.16 (m, 2H), 7.94 (s, 1H), 7.74 (m, 2H), 7.54 (s, 1H).

Phenyl-1H-imidazole-3-ium trifluoromethanesulfonate (Id). 1H NMR (400 MHz, CD3OD) δ 9.42 (s, 1H),
8.06 (s, 1H), 7.75 (m, 3H), 7.64 (m, 3H); HRMS (ESI, M + Na+) calcd for C16H22O11Na 145.07653, found
145.07657.

1-(p-Tolyl)-1H-imidazole-3-ium trifluoromethanesulfonate (Ie). 1H NMR (400 MHz, CD3OD) δ 9.37 (d,
J = 1.2 Hz, 1H), 8.01 (d, J = 1.2 Hz, 1H), 7.74 (s, 1H), 7.59 (d, J = 7.6 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H),
2.44 (s, 3H); HRMS (ESI, M + Na+) calcd for C16H22O11Na 159.09247, found 159.09222.

1-(4-Methoxyphenyl)-1H-imidazole-3-ium trifluoromethanesulfonate (If). 1H NMR (400 MHz, CD3OD) δ
9.30 (s, 1H), 7.96 (m, 1H), 7.73 (d, J = 1.6 Hz, 1H), 7.64 (dd, J = 6.8, 2.0 Hz, 2H), 7.14 (m, 2H), 3.87 (s, 3H);
HRMS (ESI, M + Na+) calcd for C16H22O11Na 175.08719, found 175.08714.

3.3. General Information

The reactions were conducted in flame-dried glassware, beneath the N2 atmosphere. Acetonitrile
and dichloromethane were refined and dried from a secure purification system containing activated
Al2O3. All reagents were obtained from good-value sources and were nor purified unless otherwise
mentioned. Flash column chromatography was enforced to Silica Gel 60. Thin-layer chromatography
(TLC) was performed on precoated glass plates of Silica Gel 60 F254 disclosure was accomplished
by spraying with a solution of Ce(NH4)2(NO3)6 (0.5 g), (NH4)6Mo7O24 (24.0 g) and H2SO4 (28.0 mL)
in water (500.0 mL) and heating on a hot plate. Optical rotations were measured at 589 nm (Na),
1H and 13C NMR were recorded with 400 MHz instruments. Chemical shifts are in ppm from Me4Si
generated from the CDCl3 lock signal at δ 7.26. Infrared spectra were taken with a Fourier transform
infrared (FT-IR) spectrometer using NaCl plates. Mass spectra were analyzed on an instrument with
an ESI source.

1,2,3,4,6-Penta-O-acetyl-d-glucopyranose (2a). In a solution of 1a (200 mg, 1.11 mmol), ionic liquid Ia
(37 mg, 0.11 mmol) and anhydride (633 µL, 6.7 mmol) was stirred at 25 ◦C for one hour within the sealed
tube. The mixture was quenched with water (30 mL) and extracted with ethyl acetate (3 × 30 mL).
The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated. It had
been refined by chromatography on silica gel to give the required product 2a (433 mg, 99%, α/β = 1/0.3)
as a white solid. Rf 0.53 (EtOAc/Hex = 1/1); mp 109–113 ◦C; [α]29

D +62.5 (c 1.0, DCM); IR (NaCl) ν 1752,
1647, 1371, 1221, 1147 cm−1; 1H NMR (400 MHz, CDCl3) δ 6.31 (d, J = 3.6 Hz, 1H), 5.69 (d, J = 8.4 Hz,
0.3H), 5.45 (t, J = 9.8 Hz, 1H), 5.23 (t, J = 9.8 Hz, 0.3H), 5.15–5.12 (m, 1H), 5.09 (d, J = 3.6 Hz, 1H), 5.06
(d, J = 3.6 Hz, 0.5H), 4.28-4.22 (m, 1H), 4.12-4.08 (m, 2H), 4.05(d, J = 3.6 Hz, 0.5H), 3.81 (ddd, J = 10.0,
4.4, 2.0 Hz, 0.3H), 2.16 (s, 3H), 2.09 (s, 1H), 2.07 (d, J = 2.8 Hz, 3H), 2.06 (s, 1H), 2.02 (s, 3H), 2.00 (s, 1H),
2.01 (d, J = 1.8 Hz, 3H), 1.99 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.6, 170.2, 169.6, 169.4, 168.7, 89.0,
69.8, 69.2, 67.9, 61.4, 20.9, 20.7, 20.6, 20.5, 20.4; HRMS (ESI, M + Na+) calcd for C16H22O11Na 413.1060,
found 413.1050.
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1,2,3,4,6-Penta-O-acetyl-d-galactopyranose (2b). In a solution of 1a (200 mg, 1.11 mmol), ionic liquid Ia
(37 mg, 0.11 mmol) and anhydride (633 µL, 6.7 mmol) was stirred at 25 ◦C for one hour within the sealed
tube. The mixture was quenched with water (30 mL) and extracted with ethyl acetate (3 × 30 mL).
The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated. It had
been refined by chromatography on silica gel to give the required product 2b (425 mg, 98%) as a white
solid. Rf 0.50 (EtOAc/Hex = 1/2); mp 70–80 ◦C; [α]29

D +80.8 (c 1.0, DCM); IR (NaCl) ν 1751, 1648,
1373 cm–1; 1H NMR (400 MHz, CDCl3) δ 6.35 (d, J = 1.6 Hz, 1H), 5.47 (d, J = 2.4 Hz, 1H), 5.31 (dd,
J = 2.0, 1.2 Hz, 2H), 4.34–4.29 (m, 1H), 4.08 (d, J = 4.0 Hz, 1H), 4.06 (d, J = 4.0 Hz, 1H), 2.13 (s, 3H), 2.13
(s, 3H), 2.02 (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.0, 169.9, 169.8, 169.6,
168.6, 89.4, 68.5, 67.2, 67.1, 66.2, 61.0, 20.6, 20.5, 20.4, 20.3; HRMS (ESI, M + Na+) calcd for C16H22O11Na
413.1060, found 413.1056.

1,2,3,4,6-Penta-O-acetyl-α-d-mannopyranose (2c). In a solution of 1c (200 mg, 1.11 mmol), ionic liquid Ia
(37 mg, 0.11 mmol) and Ac2O (633 µL, 6.7 mmol) was stirred at 25 ◦C for three hours within the sealed
tube. The mixture was quenched with water (30 mL) and extracted with ethyl acetate (3 × 30 mL).
The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated. It was
absolutely purified by chromatography on silica gel to give the desired product 2c (401 mg, 93%) as
colorless oil. Rf 0.50 (EtOAc /Hex = 1/2); mp 70−80 ◦C; [α]29

D +80.8 (c 1.0, DCM); IR (NaCl) ν 1751,
1648, 1373 cm−1; 1H NMR (400 MHz, CDCl3) δ 6.06 (d, J = 1.6 Hz, 1H), 5.32 (d, J = 2.4 Hz, 1H), 5.24 (t,
J = 2.2 Hz, 1H), 4.29–4.22 (m, 1H), 4.14–4.00 (m, 3H), 2.16 (s, 3H), 2.15 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H),
1.98 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.3, 169.7, 169.4, 169.3, 167.8, 90.2, 70.2, 68.4, 68.0, 65.2, 61.8,
20.5, 20.4, 20.3, 20.29, 20.26; HRMS (ESI, M + Na+) calcd for C16H22O11Na 413.1060, found 413.1056.

Methyl-2,3,4,6-tetra-O-acetyl-α-d-glucopyranoside (2d). In a solution of 1d (200 mg, 1.11 mmol), ionic
liquid Ia (34 mg, 0.1 mmol) and anhydride (463 µL, 4.9 mmol) was stirred at 25 ◦C for one hour
within the sealed tube. The mixture was quenched with water (30 mL) and extracted with ethyl
acetate (3 × 30 mL). The combined organic layers were dried over anhydrous MgSO4, filtered, and
concentrated. It was absolutely purified by chromatography on silica gel to give the desired product
2d (370 mg, 99%) as a white solid. Rf 0.60 (EtOAc/Hex = 1/2); mp 51–53 ◦C; [α]29

D +46.7 (c 1.0, DCM);
IR (NaCl) ν 2960, 1750, 1648, 1371, 1225 cm−1; 1H NMR (400 MHz, CDCl3) δ 5.45 (dd, J = 10.0, 9.6 Hz,
1H), 5.04 (dd, J = 10.2, 9.4 Hz, 1H), 4.93 (d, J = 3.6 Hz, 1H), 4.87 (dd, J = 10.2, 3.8 Hz, 1H), 4.24 (dd,
J = 12.4, 4.4 Hz, 1H), 4.08 (dd, J = 12.4, 2.4 Hz, 1H), 3.96 (ddd, J = 10.0, 4.4, 2.2 Hz, 1H), 3.39 (s, 3H), 2.08
(s, 3H), 2.05 (s, 3H), 2.00 (s, 3H), 1.98 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.4, 169.9, 169.8, 169.4,
96.6, 70.6, 69.9, 68.3, 67.0, 61.7, 55.3, 20.5, 20.46, 20.4; HRMS (ESI, M + Na+) calcd for C15H22O10Na
385.1111, found 385.1111.

1,2,3,5-Tetra-O-acetate-d-xylopyranose (2e). In a solution of 1e (200 mg, 1.11 mmol), ionic liquid Ia (44 mg,
0.13 mmol) and anhydride (603 µL, 6.38 mmol) was stirred at 25 ◦C for one hour within the sealed
tube. The mixture was quenched with water (30 mL) and extracted with ethyl acetate (3 × 30 mL).
The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated. It was
absolutely purified by chromatography on silica gel to give the desired product 2e (419 mg, 97%,
α/β = 5/1) as colorless oil. Rf 0.55 (EtOAc/Hex = 1/1); [α]29

D +51.8 (c 1.0, DCM); IR (NaCl) ν 2924,
1743, 1649, 1370, 1211 cm−1; 1H NMR (400 MHz, CDCl3) δ 6.25 (d, J = 3.6 Hz, 1H), 5.70 (d, J = 6.8 Hz,
0.18H), 5.46 (t, J = 9.9 Hz, 1H), 5.36 (t, J = 5.0 Hz, 0.32H), 5.30–5.23 (m, 0.28H), 5.19 (t, J = 8.4 Hz, 0.26H),
5.06–5.00 (m, 2H), 4.35 (dd, J = 12.0, 4.0 Hz, 0.21H), 4.24 (d, J = 6.0 Hz, 0.14H), 4.14 (dd, J = 12.4, 4.8 Hz,
0.23H), 3.99 (dd, J = 12.0, 6.0 Hz, 0.22H), 3.93 (dd, J = 11.2, 5.9 Hz, 1H), 3.70 (t, J = 11.0 Hz, 1H), 3.52
(dd, J = 12.0, 8.4 Hz, 0.2H). 2.17 (s, 3H), 2.13-2.05 (m, 9H), 2.05 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H); 13C
NMR (100 MHz, CDCl3) δ 170.0, 169.7, 169.6, 168.9, 89.1, 69.2, 69.16, 68.5, 60.5, 20.8, 20.6, 20.6, 20.4;
HRMS (ESI, M + Na+) calcd for C13H18O9Na 341.0849, found 341.0842.

1,2,3,6-Tetra-O-acetate-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyra-nosyl)-d-glu-copyranose (2f). In a
solution of 1f (500 mg, 1.47 mmol), ionic liquid Ia (51 mg, 0.15 mmol) and anhydride (1.33 mL,
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14. mmol) was added in the dealed tube and stirred at 25 ◦C for one hour. The mixture was quenched
with water (30 mL) and extracted with ester (3 × 30 mL). The combined organic layers were dried over
anhydrous MgSO4, filtered, and concentrated. It was absolutely purified by chromatography on silica
gel to give the desired product 2f (955 mg, 96%, α/β = 1/0.22) as white solid. Rf 0.44 (EtOAc/Hex = 3/2);
mp 85–87 ◦C; [α]22

D +55.8 (c 1.0, DCM); IR (NaCl) ν 2981, 2943, 1753, 1649, 1434, 1371 cm−1; 1H NMR
(400 MHz, CDCl3) δ 6.25 (d, J = 3.6 Hz, 1H), 5.66 (d, J = 8.3 Hz, 0.2H), 5.46 (t, J = 9.8 Hz 1H), 5.35 (d,
J = 3.6 Hz, 1.2H), 5.24 (t, J = 9.0 Hz, 0.2H), 5.12 (dd, J = 10.4, 8.0 Hz, 1H), 5.08–5.04 (m, 0.2H), 5.00 (dd,
J = 10.4, 3.6 Hz, 1H), 4.95 (dd, J = 10.4, 3.2 Hz, 1H), 4.49–4.42 (m, 3H), 4.18–4.05 (m, 4H), 4.00 (ddd,
J = 10.2, 3.8, 2.0 Hz, 1H), 3.88 (t, J = 6.8 Hz, 1H), 3.81 (t, J = 9.6 Hz, 1H), 2.18 (s, 3H), 2.17 (s, 1H), 2.16 (s,
3H), 2.15 (s, 1H), 2.13 (s, 3H), 2.12 (s, 1H), 2.10 (s, 1H), 2.06 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.04 (s, 1H),
2.03 (s, 1H), 2.01 (s, 3H), 2.00 (S, 1H), 1.97 (d, J = 1.7 Hz, 3H), 1.96 (s, 1H); 13C NMR (100 MHz, cdcl3) δ
170.3, 170.2, 170.1, 170.0, 169.9, 169.6, 169.1, 168.9, 101.1, 88.9, 75.7, 70.9, 70.6, 69.5, 69.3, 69.0, 66.5, 61.4,
60.7, 20.9, 20.8, 20.6, 20.5; HRMS (ESI, M + Na+) calcd for C28H38O19Na 701.1905, found 701.1902.

4-Methylphenyl 2,3-di-O-acetyl-6-O-benzyl-1-thio-β-d-glucopyranoside (4a). To a solution of compound 3a
(100 mg, 0.22 mmol) and acetonitrile (1 mL), were added triethylsilane (352 µL, 2.2 mmol) and ionic
liquid Ia (37 mg, 0.11 mmol) in the sealed tube. After stirring for one hour at 25 ◦C, the reaction mixture
was added 1 M tetra-n-butylammonium fluoride (TBAF, 2.4 mL, 2.4 mmol) and acetic acid (137 µL,
2.4 mmol) and stirred for one hour. The mixture was diluted with water (30 mL) and extracted with
ethyl acetate (3 × 30 mL). The combined organic layers were dried over anhydrous MgSO4, filtered,
and concentrated. The residue was purified by chromatography to afford desired product 4a (91 mg,
90%) as yellow oil. Rf 0.25 (EtOAc/Hex = 1/2); [α]26

D –37.4 (c 0.8, DCM); IR (NaCl) ν 3478, 3030, 2920,
1752, 1494, 1373 cm−1; 1H NMR (400 MHz, CDCl3) δ 7.73−7.28 (m, 6H), 7.06 (d, J = 8.4 Hz, 2H), 5.04 (t,
J = 9.2 Hz, 1H), 4.88 (t, J = 9.6 Hz, 1H), 4.61 (d, J = 10.0 Hz, 1H), 4.59–4.50 (m, 2H), 3.83−3.74 (m, 2H),
3.70 (td, J = 9.6, 2.4 Hz, 1H), 3.55–3.51 (m, 1H), 2.92 (s, 1H), 2.30 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H); 13C
NMR (100 MHz, CDCl3) δ 171.2, 169.5, 138.4, 137.6, 133.4, 129.6, 128.4, 128.0, 127.8, 127.6, 85.8, 78.4,
76.7, 73.7, 70.0, 69.9, 69.87, 21.1, 20.8; HRMS (ESI, M + Na+) calcd for C24H28O7SNa 483.1453, found
483.1446.

4-Methylphenyl 2,3,6-tri-O-benzyl-1-thio-β-d-glucopy-ranoside (4b). To a solution of compound 3b (100 mg,
0.18 mmol) and acetonitrile (1 mL), were added triethylsilane (287 µL, 1.8 mmol) and ionic liquid
Ia (31 mg, 0.09 mmol) in the sealed tube. After stirring for 24 hours at 25 ◦C, the reaction mixture
was added 1 M tetra-n-butylammonium fluoride (TBAF, 2 mL, 2 mmol) for one hour. The mixture
was diluted with water (30 mL) and extracted with ethyl acetate (3 × 30 mL). The combined organic
layers were dried over anhydrous MgSO4, filtered, and concentrated. The residue was purified by
chromatography to afford desired product 4b (85 mg, 85%) as yellow oil. Rf 0.25 (EtOAc /Hex = 1/2);
mp 62–64 ◦C; [α]26

D −7.4 (c 0.8, DCM); IR (NaCl) ν 3478, 3030, 2920, 1752, 1494, 1373 cm−1; 1H NMR
(400 MHz, CDCl3) δ 7.48 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 7.6 Hz, 2H), 7.39–7.28 (m, 13H), 7.06 (d,
J = 8.0 Hz, 2H), 4.93 (dd, J = 10.8, 6.0 Hz, 2H), 4.77 (dd, J = 17.0, 10.6 Hz, 2H), 4.64 (d, J = 9.2 Hz, 1H),
4.62–4.52 (m, 2H), 3.83–3.73 (m, 2H), 3.65 (t, J = 9.2 Hz, 1H), 3.54 (t, J = 8.8 Hz, 1H), 3.50–3.43 (m, 2H),
2.62 (s, 1H), 2.32 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 138.4, 138.2, 138.1, 138.0, 137.9, 137.7, 132.6,
129.7, 129.6, 128.6, 128.4, 128.37, 128.2, 127.9, 127.7, 87.9, 86.1, 80.4, 78.0, 75.5, 75.3, 73.6, 71.6, 70.3, 21.1;
HRMS (ESI, M + Na+) calcd for C34H36O5SNa 579.2181, found 579.2184.

Methyl 2,3-di-O-acetyl-6-O-benzyl-α-d-glucopyranoside (4c). To a solution of compound 3c (100 mg,
0.27 mmol) and acetonitrile (1 mL), were added triethylsilane (431 µL, 2.7 mmol) and ionic liquid Ia
(47 mg, 0.14 mmol) in the sealed tube. After stirring for one hour at 25 ◦C, the reaction mixture was
added 1 M tetra-n-butylammonium fluoride (TBAF, 3 mL, 3 mmol) and acetic acid (171 µL, 3 mmol) for
one hour. The mixture was diluted with water (30 mL) and extracted with ethyl acetate (3 × 30 mL).
The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated. The
residue was purified by chromatography to afford desired product 4c (88 mg, 88%) as yellow liquid. Rf

0.35 (EtOAc/Hex = 1/1); [α]26
D +109.5 (c 1.0, DCM); IR (NaCl) ν 3474, 2919, 2871, 1747, 1452, 1371 cm−1;
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1H NMR (400 MHz, CDCl3) δ 7.35–7.25 (m, 5H), 5.28 (t, J = 9.4 Hz, 1H), 4.88 (d, J = 3.6 Hz, 1H), 4.83
(dd, J = 10.6, 3.6 Hz, 1H), 4.57 (q, J = 12.0 Hz, 2H), 3.81–3.67 (m, 4H), 3.37 (s, 3H), 2.06 (s, 3H), 2.05 (s,
3H); 13C NMR (100 MHz, CDCl3) δ 176.8, 171.3, 170.2, 137.7, 128.3, 127.6, 127.5, 96.6, 73.5, 72.9, 70.7,
70.1, 70.0, 69.2, 55.1, 20.8, 20.6; HRMS (ESI, M + Na+) calcd for C18H24O8Na 391.1369, found 391.1362.

4-Methylphenyl 2,3-di-O-acetyl-6-O-benzyl-1-thio-β-d-galacopyrano-side (4d). To a solution of compound
3d (100 mg, 0.22 mmol) and acetonitrile (1 mL), were added triethylsilane (352 µL, 2.2 mmol) and ionic
liquid Ia (37 mg, 0.11 mmol) in the sealed tube. After stirring for eight hours at 25 ◦C, the reaction
mixture was added 1 M tetra-n-butylammonium fluoride (TBAF, 2.4 mL, 2.4 mmol) and acetic acid
(137 µL, 2.4 mmol) for one hour. The mixture was diluted with water (30 mL) and extracted with ethyl
acetate (3 × 30 mL). The combined organic layers were dried over anhydrous MgSO4, filtered, and
concentrated. The residue was purified by chromatography to afford desired product 4d (73 mg, 72%)
as white solid. Rf 0.50 (EtOAc/Hex = 1/1); mp 114–115 ◦C; [α]26

D +1.8 (c 0.8, DCM); IR (NaCl) ν 3478,
3030, 2922, 1750, 1494, 1369 cm–1; 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 8.0 Hz, 2H), 7.37–7.26 (m,
5H), 7.05 (d, J = 8.0 Hz, 2H), 5.26 (t, J = 10.0 Hz, 1H), 4.94 (dd, J = 9.8, 3.0 Hz, 1H), 4.62 (d, J = 10.0 Hz,
1H), 4.59–4.48 (m, 2H), 4.15 (d, J = 2.4 Hz, 1H), 3.81–3.74 (m, 2H), 3.73–3.67 (m, 1H), 2.77 (s, 1H), 2.29
(s, 3H), 2.07 (s, 3H), 2.05 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.2, 169.5, 164.8, 155.2, 138.3, 137.5,
133.3, 129.6, 128.5, 128.3, 127.9, 127.8, 86.5, 76.7, 74.5, 73.8, 69.5, 68.3, 67.6, 29.7, 21.2, 20.9; HRMS (ESI,
M + Na+) calcd for C24H28O7SNa 483.1453, found 483.1458.

4-Methylphenyl 3-O-Acetyl-6-O-benzyl-2-deoxyl-2-pht-halimido-1-thio-β-d-gluco-pyranoside (4e). To a
solution of compound 3e (100 mg, 0.18 mmol) and acetonitrile (1 mL), were added triethylsilane
(287 µL, 1.8 mmol) and ionic liquid Ia (31 mg, 0.09 mmol) within the sealed tube. Once stirred for one
hour at 25 ◦C, the reaction mixture was added to 1 M tetra-n-butylammonium fluoride (TBAF, 2 mL,
2 mmol) and acetic acid (114 µL, 2 mmol) for one hour. The mixture was diluted with water (30 mL)
and extracted with ethyl acetate (3 × 30 mL). The combined organic layers were dried over anhydrous
MgSO4, filtered, and concentrated. The residue was refined by chromatography to afford desired
product 4e (81 mg, 82%) as white solid. Rf 0.38 (EtOAc /Hex = 1/1); mp 54–56 ◦C; [α]23

D +17.0 (c 1.0,
DCM); IR (NaCl) ν 3478, 3030, 2922, 2855, 1750, 1494, 1430, 1369 cm−1; 1H NMR (400 MHz, CDCl3) δ
7.83 (t, J = 7.6 Hz, 2H), 7.72–7.66 (m, 2H), 7.41–7.27 (m, 7H), 7.00 (d, J = 8.0 Hz, 2H), 5.72–5.64 (m, 2H),
4.65–4.52 (m, 2H), 4.26 (t, J = 10.4 Hz, 1H), 3.83–3.76 (m, 4H), 3.05 (s, 1H), 2.26 (s, 3H), 1.88 (s, 3H); 13C
NMR (100 MHz, CDCl3) δ 171.1, 167.8, 167.3, 138.4, 137.7, 134.3, 134.1, 133.5, 131.6, 131.2, 129.6, 128.4,
127.8, 127.7, 127.5, 123.6, 123.5, 83.2, 78.3, 74.3, 73.7, 71.0, 70.2, 53.6, 52.6, 21.1, 20.7, 20.5, 13.9; HRMS
(ESI, M + Na+) calcd for C30H29NO7SNa 570.1562, found 570.1561.

4. Conclusions

In summary, the Brønsted–Lowry acidic ionic liquid is a particularly economical catalyst for
per-O-acetylation and ring-opening reactions of sugars. This approached lacks the completely catalytic
amount of the least costly accessible ionic liquid that is water-stable. However, the per-O-acetylation
reactions were conducted under solvent-free conditions, employing a ratio load of acetic anhydride
that grants an efficient per-O-acetylation reaction of hexoses, and also allows reductive ring opening
of benzylidene acetals reactions to take place very evenly. We are still working on the reusability of
the reductive ring opening of benzylidene acetals. The reaction conditions are mild, convenient, and
nonhazardous for the above reactions.
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