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Abstract: An in-situ sol-gel method was used for the synthesis of boron-doped TiO2-CNT
nanocomposites with varied boron concentrations from 1 to 4 mol%. The synthesized nanocomposites
were characterized by various techniques, namely XRD, UV-DRS, TEM, PL, and XPS; all results
show that 3 mol% B-TiO2-CNT nanocomposites have superior properties to pure TiO2, 3B-TiO2

nanoparticles, and other nanocomposites. TEM images clearly show the B-TiO2 nanoparticles
decorated on the CNT surface. Photo-luminescence studies confirm that boron doping of up to 3 mol%
in TiO2-CNT nanocomposites reduces the electron-hole pair recombination rate. The photocatalytic
performance of the B-TiO2-CNT nanocomposites was tested against the photodegradation of toluene
gas and the photocatalytic inactivation of E. coli in the presence of UV and visible light respectively.
B-TiO2-CNT (3 mol%) nanocomposites show the highest photocatalytic activity.
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1. Introduction

The nonstop rise in environmental pollution is responsible for several critical and detrimental
global problems. For example, the release of large amounts of toxic dyes into wastewater, as well as
the release of toxic environmental gases such as volatile organic compounds (VOCs), are destroying
our ecosystem. Another worldwide problem arises from continuous and serious health issues due to
infections from microorganisms. Moreover, indoor air quality is increasingly deteriorating because
various industries are releasing unpurified VOCs into the environment [1]. It is well known that VOCs
are highly toxic and hazardous to human health. This category of compounds includes toluene, xylene,
ethylbenzene, and benzene, of which toluene is the most generally known [2,3]. The inhalation of
toluene can harm the central nervous system, causing loss of hearing and color vision, as well as the
loss of cognitive abilities and muscle memory [4,5]. Therefore, it is necessary to develop effective
technology to degrade and eliminate VOCs from the environment. In the literature, the photocatalytic
degradation of VOCs has recently attracted considerable attention, as it is considered to be one of the
most potent methods for environmental purification [6,7].
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Infectious diseases that are caused by pathogenic microorganisms may result in lifelong damage
if detection and medical treatment are not managed in a timely fashion [8]. and even death of a patient
can occur [9]. Pathogenic bacteria, including Staphylococcus aureus, Salmonella enterica, Streptococcus
pyogenes, Streptococcus pneumonia and Escherichia coli, cause serious diseases [10–14] and enjoy an
environmentally stable and high production rate. To control these types of infections, many strategies
are available, such as heat treatment, UV light irradiation, chemical agents, and a few biological agents,
but these strategies are expensive and produce toxic byproducts in the environment.

Photocatalytic inactivation of bacteria has attracted great attention [15]. In particular, TiO2

nanoparticles (NPs) are attractive photocatalysts due to features such as corrosion resistance, low cost,
structure, thermal stability, and environmental friendliness [16,17]. The large surface area of TiO2

NPs lends them to applications in various fields, such as degradation of various contaminants [16,18]
and oxidative reactions [19,20]. Recently, TiO2 NPs have been applied in water splitting, sensitized
solar cells, fuel cells, the paint industry, and cosmetics, as well as in biomedical applications [21,22].
Despite these advantages, TiO2 NPs suffer from some limitations: high bandgap energy pushes
photocatalytic activity into the UV region of the electromagnetic spectrum, and a high electron-hole
pair recombination rate limits the use of TiO2 NPs in large-scale applications [23].

To surmount these drawbacks, researchers are applying different strategies, like metal doping [24],
non-metal doping [25], nanocomposites with metal oxides, carbon nanostructures [26], and noble metal
loading [27]. Among these strategies, non-metal doping, using carbon, nitrogen, iodine, boron, sulfur,
surface treatment [28], and fabricated nanocomposites with carbon nanotubes (CNT) attracts grate
attention. CNTs have an extraordinary property such as charge transmission, electron-conducting,
high mechanical strength, hollow layered structure, and large surface. Due to this, it makes an
auspicious candidate as dopants and supports various photocatalysts [29]. With these advantages,
CNTs also have limitations, the strong van der Waals interactions and the hydrophobicity of CNTs lead
to poor dispersion in solvents and this inadequate chemical compatibility highly restricts the variety
of applications [30]. To overcome this limitation there is a way to covalent surface functionalization.
Surfaces functionalization improve the solubility of CNTs in various solvents to help make hybrid
composites with various materials [31,32]. Such as nanocomposites between TiO2 and CNTs improved
photocatalytic efficiency. Due to the formation of a heterojunction that reduces the e−−h+ pair
recombination, generates e−−h+ pairs in presence of a photon, and helps to easy transfer of an electron
to the conduction band of TiO2; CNTs play a role as an impurity by forming Ti−O−C or Ti−C defect
sites that permit visible light absorption [33]. Recently, boron doping in anatase TiO2 has shown
many advantages, since the presence of boron may help weaken the Ti–O bonds, making it easier to
replace the oxygen with boron [34,35]. Anatase TiO2 photocatalyst doped with boron exhibits a strong
absorption band in the visible region, as well as the separation of electron-hole pairs. Hong et al. [36]
doped with boron in an anatase TiO2 host lattice to maximize the visible-light photocatalytic activity.
Sopchenski et al. [37] prepared B-doped TiO2 and applied it to the photocatalytic inactivation of
Staphylococcus aureus and Pseudomonas aeruginosa.

Besides, researchers have prepared nanocomposites of TiO2 NPs with CNTs for photodegradation
of organic pollutants [38,39]. CNTs improve the optical properties of TiO2 NPs under irradiation with
UV and visible light: the non-metal doping enhances the photocatalytic efficiency of TiO2 by shifting
the absorption band into the visible light region, and the CNTs provide strong, stable support that
reduces nanoparticle agglomeration. Therefore, the present work focuses upon a one-pot synthesis
of boron-doped TiO2-CNT nanocomposites and studies their structural, morphological properties,
then applies them toward the photocatalytic degradation of toluene gas and the photocatalytic
inhibition of Escherichia coli (E. coli.)
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2. Results and Discussion

2.1. X-ray Diffraction Studies

Figure 1 shows the X-ray diffraction (XRD) patterns of TiO2 NPs, 3B-TiO2, and B-TiO2-CNT
nanocomposites. The characteristic peak at 25.3◦ of anatase TiO2 was observed in pure TiO2 NPs as
well as in B-TiO2-CNT nanocomposites, as other peaks at 37.07◦, 48.24◦, 54.62◦, 55.58◦, 62.8◦, 68.76◦,
70.31◦, and 75.03◦. All peaks matched JCPDS card 21-1272 for anatase TiO2 [40]. Doping with boron
and forming nanocomposites with CNT, increases the intensity of XRD diffraction peaks, confirming
heterogeneous nucleation between the TiO2 and CNT [41]. The absence of peaks for brookite and rutile
TiO2 confirmed the boron doping, and the presence of CNTs did not affect the anatase TiO2 phase.
Moreover, the absence of peaks for boron or boron-containing phases confirmed that the boron dopants
in TiO2 were highly dispersed [42]. In the doping process, boron replaces the oxygen in the TiO2

lattice, and in calculations at 450 ◦C, boron occupies interstitial positions in the TiO2 lattice. Due to
the very low concentration of CNT, it not showing any peak in the XRD patterns of nanocomposites.
The crystallite size of the synthesized nanomaterials was calculated by Scherrer’s formula and is listed
in Table 1.
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Table 1. Crystallite size and optical bandgap of synthesized nanomaterials.

Samples Crystallite Size (D) in nm Optical Band Gap (Eg) eV

TiO2 10 3.2
3B-TiO2 17 2.7

1B-TiO2-CNT 12 3.0
2B-TiO2-CNT 14 2.8
3B-TiO2-CNT 17 2.6
4B-TiO2-CNT 18 2.6

2.2. UV-Vis Diffuse Reflectance Spectroscopy

The influence of boron doping and the presence of CNT on the optical properties of TiO2 NPs
is shown in Figure 2a. 3B-TiO2 and B-TiO2-CNT nanocomposite samples show higher absorbance
than pure TiO2 NPs in the UV range, and also exhibit an absorption band in the visible range, above
400 nm. Moreover, the significant shift in the absorption edge of the nanocomposites towards higher
wavelength confirmed a reduction in the bandgap [43]. A Tauc plot was used to determine the bandgap,
as shown in Figure 2b, and values are listed in Table 1. B-TiO2 shows a redshift compared to undoped
TiO2 since the p orbital of B is mixed with the 2p orbital of O [44–46]. The literature also reveals that
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non-metal doped TiO2 shows enhanced activity toward visible light by the formation of stable oxygen
vacancies on the TiO2 surface [45]. Also, the presence of CNT in nanocomposites helps enhance the
photocatalytic efficiency of B-TiO2. Due to the lower Fermi level of CNT as compared to TiO2 NPs,
CNT may accept and store photogenerated electrons, as well as enhance the separation of electron-hole
pairs [47].
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2.3. Photoluminescence Analysis

Figure 3 shows the photoluminescence (PL) emission spectra of TiO2, 3B-TiO2, and B-TiO2-CNT
nanocomposites. PL analysis yields important information regarding the separation and recombination
of electron-hole pairs [48]. For an excitation wavelength of 285 nm, the spectra showed two emission
peaks at 400 nm and 464 nm, which can be attributed to emission by free TiO2 excitons and surface
Ti–OH bonds, respectively [49]. As shown in Figure 3, the TiO2, 3B-TiO2, 1B-TiO2-CNT, 2B-TiO2-CNT,
and 4B-TiO2-CNT samples exhibited high-intensity peaks, while 3B-TiO2-CNT exhibited a low-intensity
peak, confirming that 3B-TiO2-CNT has reduced recombination of photogenerated electron-hole pairs
and high photocatalytic activity. The peak for 3B-TiO2 NPs shows lower intensity as compared to
1B-TiO2-CNT it confirms the boron doping, as well as CNT, plays an important role in reducing
the recombination rate of electron-hole pair and enhancing photocatalytic activity. UV-DRS data
Figure 2b shows that the excess doping of boron in TiO2 does not reduce the bandgap of TiO2. Similar
phenomena were observed by other researchers and it may be due to excess doping of boron in TiO2
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2.4. Transmission Electron Microscopy Analysis

Figure 4 shows transmission electron microscopy (TEM) images of bare TiO2, 3B-TiO2 NPs,
1B-TiO2-CNT, and 3B-TiO2-CNT nanocomposites. From Figure 4a, it is clear that the morphology of
the pure TiO2 NPs is spherical, with sizes ranging from 10 to 20 nm and slight agglomeration. Figure 4c
shows the same morphologies as TiO2 with slight increases in particle size due to 3 mole% boron
doping TiO2, the particle sizes observed in the range from 10 to 30 nm. Figure 4e,g shows TEM images
of 1B-TiO2-CNTs and 3B-TiO2-CNT respectively. Images clearly show the B-TiO2 NPs decorated on
the CNT surface. confirming that CNT provide support to B-TiO2 NPs, reduces the agglomeration of
nanoparticle, and increases the reactive surface area of the nanoparticles to photocatalytic activity [51].
Also, CNT are highly conductive, they permit easy movement of photogenerated electrons within
the nanocomposites, improving the optical properties of TiO2 NPs [52,53]. Figure 4b,d,f,h shows
lattice fringes for TiO2, 3B-TiO2 NPs, 1B-TiO2-CNT, and 3B-TiO2-CNT nanocomposites respectively.
The interplanar distance for TiO2 NPs is 0.35 nm while in the 1B-TiO2-CNT is 0.36 and 3B-TiO2 0.37 nm
it confirms the as the dopant concentration increasers particles size increases this may be due to
the atomic radius of boron (87 pm) replaces the oxygen (48 pm atomic radius) in the TiO2 lattice.
Boron present in TiO2 distorts the lattice and thereby increases the interplanar distance. This same
phenomenon was observed in earlier reports [54,55].
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2.5. X-ray Photoelectron Spectroscopy Studies

Figure 5 shows the X-ray photoelectron spectroscopy (XPS) spectra of 3B-TiO2-CNT
nanocomposites. Figure 5a shows the survey spectrum which confirms the presence of Ti, O, C,
and B elements in the synthesized nanocomposites. Figure 5b, Ti2p configuration, the spectra contain
two symmetrical peaks centered at 458.20 eV and 464.01 eV, corresponding to Ti 2p3/2 and Ti 2p1/2,
respectively, with a binding energy difference of 5.81 eV. It is recognized that the Ti element of
nanocomposites exists in the Ti4+ oxidation state [34,56]. It is generally found that non-metal doping
in TiO2 may be responsible for a change in the oxidation state from Ti4+ to Ti3+, but in the present
research investigation, there is no Ti3+ peak, as shown in Figure 5b. The deconvoluted C 1s spectra are
shown in Figure 5c. The three intense peaks at 284.64 eV, 286.34 eV, and 288.66 eV are attributed to
graphitic carbon (C=C bonds), the C-C bonds of CNT, C-O bonds, and COO- bonds, respectively [57].
The O 1 s spectrum, shown in Figure 5d, contains two main peaks at 529.73 eV and 530.70 eV,
which are respectively due to the oxygen in TiO2 and the surface hydroxyl groups present on the
surface of TiO2 NPs [58]. Figure 5e shows the deconvoluted B 1s XPS spectrum of 3B-TiO2-CNT
nanocomposites, which mainly includes peaks for B-O-B and B-Ti-O bonds, located at 192.14 eV and
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189.66 eV, respectively [59–61]. The peak observed at 192.14 eV confirms that the boron dopant creates
a band between the conduction and valence bands of pure TiO2, and the doped boron interacts with
O2p orbitals of the TiO2 valence band. Therefore, Ti-O-B may have formed, which would confirm the
doping of boron in the TiO2 host lattice [60].
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2.6. Photodegradation of Toluene Gas

The photocatalytic degradation of toluene gas, under UV radiation in the presence of TiO2, 3B-TiO2

NPs, and B-doped TiO2-CNT nanocomposites, over a 120 min interval, is shown in Figure 6. Pure TiO2

NPs show less photocatalytic activity as compared to 3B-TiO2 and B-TiO2-CNT nanocomposites.
The highest photocatalytic degradation efficiency, obtained for 3B-TiO2-CNT nanocomposites, was
96%, while pure TiO2 NPs, 3B-TiO2, 1B-TiO2-CNT, 2B-TiO2-CNT, and 4B-TiO2-CNT, showed
photodegradation efficiencies of 37%, 51%, 76%, 83%, and 93% respectively. The impact of UV
light on the photodegradation of toluene gas was studied in an experiment with no catalyst; UV light
alone showed photodegradation efficiency of approximately 12%. In synthesized nanocomposites,
optimized boron doping, as well as the addition of CNTs, playing a very important role in enhancing
photocatalytic efficiency [62].

Pseudo-first-order reaction kinetics were observed for the photodegradation of toluene, as shown
in Figure 7. 3B-TiO2-CNT nanocomposites showed the fastest photodegradation of toluene gas,
having a rate constant k = 0.02528 min−1, while TiO2, 3B-TiO2 NPs, 1B-TiO2-CNT, 2B-TiO2-CNT, and
4B-TiO2-CNT had rate constants of k = 0.01950 min−1, k = 0.02250 min−1, k = 0.02130 min−1, k = 0.02170
and, k = 0.02370 respectively. The photodegradation reaction with UV light alone had a rate constant k
= 0.01490 min−1.
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In the photodegradation of toluene gas using B-TiO2-CNT nanocomposites, when UV light
irradiated the sample, CNT and boron absorb light and electron excited from CNT goes to the
conduction band (CB) of TiO2 while electron excited from valance band (VB) of TiO2 goes to the hole
of CNT and boron band [63]. The hole formed in VB of TiO2 reacts with moisture to form hydroxyl
radical and electron in CB of TiO2 reacts with oxygen to form superoxide. From the generated ROS,
hydroxyl radical reacts with the phenyl ring of toluene to form various intermediates such as phenol,
benzaldehyde, benzoic acid, and are finally converted into CO2 and H2O [64]. A possible photocatalytic
degradation mechanism is shown in Figure 8.Catalysts 2020, 10, x FOR PEER REVIEW 8 of 16 
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To determine the stability of the photocatalyst, a recyclability test was performed with the
same experimental setup used for the photodegradation of toluene. In this recyclability test, the
3B-TiO2-CNT nanocomposites were used as photocatalysts and irradiated with UV light for 120 min.
After every cycle, the catalyst was removed from the Teflon bag and regenerated with heat treatment
at 100 ◦C for 2 h. Then the regenerated catalyst was used again for the photodegradation of toluene.
The catalyst was recycled four times, and the results are shown in Figure 9. Only a 4%–5% reduction in
photodegradation efficiency was observed. This reduction in photodegradation efficiency may be due
to the loss of catalyst in the regeneration process as well as in the transfer of catalyst powder from
one place to another place. Overall, the experimental results show that the synthesized 3B-TiO2-CNT
photocatalyst was highly stable and exhibited the best photocatalytic activity of all tested compounds
up to four cycles.
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2.7. Photocatalytic Inactivation of Bacteria

The photocatalytic inactivation activity of TiO2, 3B-TiO2, and B-TiO2-CNT nanocomposites was
exhibited in the photocatalytic killing effect of E. coli, which was determined through a reduction in the
number of colonies formed on Mueller–Hinton agar plates. As shown in Figure 10, the E. coli were
almost entirely inactivated within 240 min by 3B-TiO2-CNT nanocomposites under visible radiation.
Neither the photocatalyst by itself nor visible light alone affected the E. coli growth, therefore confirming
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that the observed inactivation is attributed to the photocatalytic reaction. The digital photographs of
photoinactivation of E.coli with 3B-TiO2-CNT nanocomposite under visible light shown in Figure 11.

Catalysts 2020, 10, x FOR PEER REVIEW 10 of 16 

 

bacterial membrane and DNA strand, leading to cell lysis (release of metabolites, protein, and RNA 
from the cell and at the cell death occurs) [65,66]. 

 
Figure 9. Recyclability of photocatalyst 3B-TiO2-CNT nanocomposites. 

 
Figure 10. % survival of E. coli with of TiO2, 3B-TiO2 and B-TiO2-CNT nanocomposites as a function 

of time. 

  

Figure 10. % survival of E. coli with of TiO2, 3B-TiO2 and B-TiO2-CNT nanocomposites as a function
of time.

Catalysts 2020, 10, x FOR PEER REVIEW 11 of 16 

 

Control 
 

3B-TiO2-CNT 

 

Figure 11. Photographs of photo-inactivation of E. coli under visible light exposure. 

3. Materials and Methods 

3.1. Materials 

Titanium (IV) butoxide and multi-wall carbon nanotubes (MWCNTs) were purchased from 
(Sigma-Aldrich, Saint Louis, MO, USA). Acetylacetone, boric acid, ethanol, extra pure sodium lauryl 
sulfate, were purchased from (Duksan, Gyeonggi-do, South Korea), and 10 ppm toluene gas 
purchased from (Korea Petrochemical Ind Co LTD, Seoul, South Korea). 
  

Figure 11. Photographs of photo-inactivation of E. coli under visible light exposure.

A possible mechanism of photocatalytic inactivation of E. coli is as follows when visible light
irritated on B-TiO2-CNT nanocomposites. An electron from the CNT and boron band near to valance
band of TiO2 get excited and transferred to the conduction band of TiO2. A hole formed on CNT
attracts an electron from the valance band of TiO2 and the hole formed in TiO2 VB reacts with H2O to
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form hydroxyl radical. While electron present in CB of TiO2 reacts with oxygen to form superoxide.
These formed ROS, especially hydroxyl radicals react with the E. coli cell wall and destruct the bacterial
membrane and DNA strand, leading to cell lysis (release of metabolites, protein, and RNA from the
cell and at the cell death occurs) [65,66].

3. Materials and Methods

3.1. Materials

Titanium (IV) butoxide and multi-wall carbon nanotubes (MWCNTs) were purchased from
(Sigma-Aldrich, Saint Louis, MO, USA). Acetylacetone, boric acid, ethanol, extra pure sodium lauryl
sulfate, were purchased from (Duksan, Gyeonggi-do, South Korea), and 10 ppm toluene gas purchased
from (Korea Petrochemical Ind Co LTD, Seoul, South Korea).

3.2. Preparation of Boron-Doped TiO2-CNT Nanocomposites

A previously reported sol-gel method [49], with slight modifications, was used to prepare
boron-doped TiO2-CNT nanocomposites with varying concentrations of boron from 1 mol% to 4 mol%.
A 1:1 proportion of titanium (IV) butoxide to acetylacetone was added to a beaker. To this solution, an
aqueous solution of sodium lauryl sulfate (capping agent; 2 wt.%) and excess distilled water were
added with continuous stirring. Afterward, a stoichiometric concentration of boron (1 to 4 mol%),
as an aqueous boric acid solution, was added, and the solution was vigorously stirred for 1 h at room
temperature. Then 0.5 wt. % of CNT in aqueous solution were added. Afterward, the pH was adjusted
to 8 with an ammonia solution, and the reaction mixture was stirred at 60 ◦C for 3 h, then allowed
to cool to room temperature. The solution was filtered with Whatman filter paper, and the obtained
precipitate was washed with ethanol and distilled water. The precipitate was dried in the oven and
calcinated at 450 ◦C for 3 h. Pure TiO2 NPs and 3B-TiO2 were synthesized using the same method,
omitting the boric acid and CNT respectively. The synthesized nanocomposites were denoted as TiO2,
3B-TiO2 NPs, 1B-TiO2-CNT, 2B-TiO2-CNT, 3B-TiO2-CNT, and 4B-TiO2-CNT, where the number before
the B denotes the mol% of B present in the nanocomposites.

3.3. Photodegradation of Toluene Gas

Toluene gas was photodegraded by following a previously reported experimental method [67,68].
In this method, catalyst powder is uniformly spread in a polycarbonate petri dish and this petri dish is
inserted into a 2 L Teflon film bag. Afterward, toluene gas with 10 ppm concentration was filled into
the bag. adsorption-desorption equilibrium is created by keeping the experimental setup in the dark
for 30 min. Then two 6 W UV light tubes, providing a total incident intensity of 2 mW/cm2 were used to
irradiate the setup for a fixed time interval, after which 1 mL of toluene gas was withdrawn by syringe.
The change in toluene gas concentration was examined using a gas chromatography (GC) system.

3.4. Photo-Inactivation of E. coli

The photocatalytic inhibition of E. coli was studied using a previously reported method [26], as
follows. All glassware and samples were sterilized before use. E. coli (NCIM 2066) was cultured
on a nutrient agar plate at 37 ◦C for 24 h. A 5 mL saline solution was used to prepare a bacterial
suspension with a concentration of 106 CFU mL-1, and the photocatalyst concentration was 2 mg mL-1.
Photocatalytic inhibition was carried out using TiO2, 3B-TiO2, and B-TiO2-CNT nanocomposites in the
dark and under visible light. For visible light studies, a borosilicate glass reactor was illuminated with
eight fluorescent tubes (Philips, 8 W, λ > 400 nm, light intensity ~0.5 mW cm−2) [48,69]. At specific
time intervals, 100 µL aliquots of the irradiated bacterial suspension were withdrawn and spread on
Mueller-Hinton agar plates. These plates were incubated at 37 ◦C for 24 h. The standard plate count
method was used to determine viable numbers of cells in units of CFU mL−1 [69].
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3.5. Characterization

The synthesized pure nanoparticles and nanocomposites were characterized using various
techniques. A Bruker D8 Advance X-ray diffractometer (XRD) with a Cu K-alpha source (λ = 1.5406 Å)
(Bruker, Aubrey, TX, USA) was used to study the phase and various structural parameters of
the synthesized nanomaterials. A UV-3600 UV-vis spectrophotometer (Shimadzu, Kyoto, Japan)
was used to measure the optical properties of the nanomaterials. The effect of the boron doping
concentration on the recombination rate of electron-hole pairs was studied by photoluminescence (PL)
with a Hitachi F-4500 fluorescence spectrophotometer (Hitachi, Tokyo, Japan). Transmission electron
microscopy (TEM, Tecnai G2 Spirit TWIN, 120 kV, from FEI, Hillsboro, OR, USA) was used to study
the morphological properties of the synthesized nanomaterials. The physical, chemical bonding, and
elemental analyses of the nanocomposites were performed using X-ray photoelectron spectroscopy
(XPS, Thermo Scientific K-Alpha, Waltham, MA, USA). The change in toluene gas concentration was
determined by gas chromatography (GC, Agilent Technology 7890A, Santa Clara, CA, USA).

4. Conclusions

Boron-doped TiO2-CNT nanocomposites were synthesized successfully by the sol-gel method.
It was observed that the fabrication of nanocomposites with CNT, coupled with boron doping in
TiO2, positively affected the photocatalytic activity. XRD analysis confirmed that the anatase phase
was present in the nanocomposites and yielded a calculated crystallite size of around 10–20 nm for
B-TiO2-CNT nanocomposites. The uniform decoration of B-TiO2 nanoparticles on the CNT surface was
confirmed by TEM. The slight increase in interplanar spacing confirms the presence of boron in the TiO2

host lattice. UV-DRS studies show red-shifted absorption bands for the nanocomposites. A qualitative
XPS analysis recognized the Ti4+ oxidation state of the elemental Ti in the nanocomposites, as well as
the boron doping, which created an intermediate band between the valence and conduction bands of
TiO2. PL study shows that boron doping, as well as CNTs, plays an important role in reducing the
recombination rate of electron-hole pair and enhancing photocatalytic efficiency. The photocatalytic
activity was tested using toluene gas degradation and photoinactivation of E. coli; the results confirmed
that the 3B-TiO2-CNT nanocomposites had superior photocatalytic efficiency to bare TiO2, 3B-TiO2 NPs,
1B-TiO2-CNT, 2B-TiO2-CNT, and 4B-TiO2-CNT. Recyclability studies confirmed that the 3B-TiO2-CNT
nanocomposites were highly stable after four cycles. Therefore 3B-TiO2-CNT well suited for removing
organic pollutants from the environment.
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