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Abstract: Bioactive core–shell nanoparticles (CSNPs) offer the unique ability for protein/enzyme
functionality in non-native environments. For many decades, researchers have sought to develop
synthetic materials which mimic the efficiency and catalytic power of bioactive macromolecules such
as enzymes and proteins. This research studies a self-assembly method in which functionalized,
polymer-core/protein-shell nanoparticles are prepared in mild conditions. Transmission electron
microscopy (TEM) and dynamic light scattering (DLS) techniques were utilized to analyze the size and
distribution of the CSNPs. The methods outlined in this research demonstrate a mild, green chemistry
synthesis route for CSNPs which are highly tunable and allow for enzyme/protein functionality in
non-native conditions.
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1. Introduction

Biomolecules such as proteins and enzymes possess many unique features, the speed and
efficiency of which are difficult to match by synthetic materials. Proteins and enzymes are used in
a wide variety of applications, including use as a biocatalyst in organic synthesis, as well as in the
textile, starch, and detergent industries [1,2]. Unfortunately, many biomolecules lose their stability
and functionality outside of their native environment, which limits the scope of their applications.
A variety of approaches has been developed to improve their stability while maintaining their
functionality [3–5]. One widely used method is to design a core–shell nanoparticle (CSNP) with
proteins as its shell [6,7]. Recently, CSNP synthesis methods have been studied through electrostatic and
self-assembly [8–10], direct adsorption [11–13], and covalent bonding methods, among others [14,15].
Many studies have focused on the use of proteins in forming CSNPs through direct covalent coupling
methods [14–18]. The main drawback with these methods is the fact that covalent bonds are used
to adhere the protein/enzyme to the nanoparticle surface. This can often result in protein instability
and a loss of biological activity [11,19–24]. The loss of enzyme and protein activity has been noted in
electrostatic assembly, direct conjugation, and physical adsorption methods [25–27]. Recent research has
outlined an entropically driven assembly process utilizing hydrophobicity effects, similar to Pickering
emulsions [23,28–30]. These interactions, along with hydrogen bonding between the polymer–protein,
have been shown to result in the formation of stabilized polymer–protein CSNPs without the loss of
bioactivity [23,31].
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In this paper, we utilize a co-assembly method to fabricate polymer-green fluorescent protein
(GFP) based-CSNPs that can stabilize the GFP structure in non-native conditions without the loss of
functionality. The GFP is a 238 amino acid sequence, 26.9 kDa protein, which was discovered in the
jellyfish Aequorea Victoria [32,33]. Known for its vibrant fluorescent properties, GFP has applications
as a biosensor, physiological indicator, and gene expression tool [34–38]. Poly(4-vinylpyrine)
(P4VP) will be the polymer core, because the nitrogen atom in the pyridine group serves as an
efficient hydrogen-bonding acceptor [39,40]. P4VP is generally only soluble in organic solvents
(e.g., tetrahydrofuran (THF), dimethylformamide (DMF), ethanol), however the assembly occurs in
a solution which is roughly a 3:1 volume ratio of aqueous to organic solvent. The formation of the
protein-based corona stabilizes the polymer throughout the assembly process and during dialysis
in an aqueous solution [23,41,42]. The initial co-assembly process Figure 1) is driven by the highly
chemically active surface area of the nanoparticles, which is stabilized by the biomolecules, as well as
the hydrogen bonding interactions via the nitrogen atom present in P4VP [12,22,43,44].
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Figure 1. Schematic illustration of the formation of the polymer–protein core–shell nanoparticles
(CSNPs).

2. Results and Discussion

2.1. Synthesis and Purification

During the assembly process, visible changes could be observed within the solution. As P4VP was
added, the clear green solution began to become opaque. After thirty minutes, the solution containing
the CSNPs underwent dialysis in a buffer solution. After 48 h of dialysis, the assembly process was
completed, and the particles are formed. Past research has used dialysis as a method of removing the
organic solvent from the solution [23,30,42]. In this experiment, we employed a 300 kDa molecular
weight cut-off dialysis device to allow for any unbonded 26.9 kDa GFP to diffuse out of the reaction
mixture, as well as for the removal of the organic solvent. Removal of any excess, unbonded GFP
ensures that the only remaining protein in the solution is assembled with the polymer, which is crucial
for accurate protein activity testing. Figure 2, a dialysis control test, shows the fluorescence spectra of a
GFP solution initially after 24 h of dialysis, and again after 48 h of dialysis. The data show that no
significant amount of GFP remained in the solution after as little as 24 and 48 h of dialysis.

2.2. Size and Surface Characterization

TEM was employed to characterize the formed assembly structures. A bright field TEM micrograph
in Figure 3a shows the P4VP-GFP as smooth, uniformly spherical particles. Although TEM provides
useful information about the overall structure of the CSNPs, the surface coverage of the GFP in the
CSNPs is another key aspect that needs to be investigated. Past research has reported polymer–protein
structures in which the polymer serves as a “chaperone-like” shell wrapped around the protein [45].
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In order to image the proteins on the nanoparticle surface, N-hydroxysuccinimide (NHS)-activated
15 nm gold nanoparticles were reacted with the GFP, forming covalently bonded conjugates. The high
density of the gold nanoparticles provides a much higher contrast in TEM imaging [46,47]. Since they
are covalently bonded to the GFP, it will allow the indirect visualization of the GFP in the CSNPs.
The gold–GFP particles were then assembled with P4VP before being analyzed via TEM. Figure 3b
shows a TEM image in which the gold nanoparticles are uniformly distributed on the surface of the
polymer core, indicating that the GFP has good surface coverage on the P4VP sphere. To test whether
the GFP is completely on the surface of the P4VP sphere or partially inside the sphere, TEM electron
tomography (ET) was used to image the CSNPs. TEM ET utilizes a series of tilted TEM images that
can be reconstructed to reveal a three-dimensional object [48,49]. A series of ET images of a P4VP +

GFP–gold conjugate particle at different tilted angles are displayed in Figure 3c–h. It is worth noting
that the dark circular region present in Figure 3c–h is the result of free P4VP + GFP–gold conjugate
particles in the solution that settled at the CSNP–TEM grid interface during TEM sample preparation.
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Another key aspect of these polymer–protein CSNPs is the ability to control their relative size
distribution. By adjusting the polymer–protein reaction ratio, varying unimodal size distributions
can be synthesized. Figure 4 shows the TEM images of reactions G1, G2, and G3. As the polymer to
protein ratio was increased, the data show that the average particle size increased as well. For each
reaction, the concentration of reagents was set constant. The varying polymer–GFP ratios of 0.25,
0.60, and 1.0 were calculated by changing the total volume of the P4VP solution added to the mixture.
As the P4VP–GFP ratios increased from 0.25 to 1.0 (Figure 4a–c), the particle size obtained from
TEM became larger. Without the presence of the GFP, the P4VP precipitates out from the solution
(data not shown). Although traditional TEM is a valuable tool for the characterization of nanoparticles,
sample preparation requires samples to be dried out, which is not ideal for the characterization of
colloidal systems.
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Figure 3. (a) Transmission electron microscopy (TEM) image of Poly(4-vinylpyrine) (P4VP) + GFP CSNP.
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shows the distribution of GFP on the surface of the particle. (c–h) TEM tomography images as the
P4VP + GFP–gold conjugated particle is rotated. All scale bars are 200 nm.

To analyze the samples in the solution state, dynamic light scattering (DLS) was used to statistically
determine the average particle size and size distribution of each of the CSNP samples, as seen in
Figure 4d. Analysis of the DLS size distribution data showed distinct unimodal peaks for each sample.
The data also showed the direct effect that the polymer–protein ratio had on the overall particle size,
i.e., the average particle size increased as the P4VP concentration increased, similar to what was
observed from the TEM results. Reactions G1, G2, and G3 generated average particles sizes of roughly
500, 750, and 900 nm, respectively. Once the size distribution of the CSNPs was determined, it was
important to determine if the GFP on the surface of the P4VP was present/active. The fluorescence
profile of the GFP and the various CSNPs can be seen in Figure 5. The data are consistent with known
values, corresponding to an emission spectrum that contains λmax around 509 nm followed by a
shoulder peak at 545 nm [50]. The smaller peak around 425 nm present in the spectra of the CSNPs is
characteristic of the P4VP fluorescence profile, as seen in Figure 5. The presence of fluorescence suggests
the GFP still remains in its native structure, since unfolding leads to the loss of fluorescence [51].
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3. Experimental Section

3.1. Chemicals and Materials

Poly(4-vinylpyridine) (P4VP; Mw 60,000) and N,N-Dimethylformamide (DMF; anhydrous,
99.8%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES; 99%) was purchased from Acros Organics (Fair Lawn, NJ, USA).
Sodium chloride was purchased from Fisher Scientific (Hamptons, NH, USA). Sodium hydroxide
pellets were purchased from the Ricca Chemical Company (Arlington, TX, USA). The GFP was prepared
(4 mg/mL) in a 20mM tris(hydroxymethyl)aminomethane (Tris) pH 7.0, 80mM NaCl, and 2mM EDTA
buffer solution. All reagents were used as received. All water used in this experiment was of ultrapure
type I purity (18.2 MΩ·cm) obtained via an Elga Purelab Flex2 system. Float-A-Lyzer®G2 dialysis
devices (300 kDa) used for dialysis were purchased from Spectrum Labs (Cincinnati, OH, USA). All
dialysis devices were pre-treated via a 10% ethanol bath for ten minutes before being thoroughly rinsed
in DI H2O, as per manufacturer’s instructions. The 15 nm NHS-activated gold nanoparticles were
purchased from Cytodiagnostics Inc (Burlington, Canada).

3.2. Sample Preparation

The preparation methods for the GFP have been published [52]. The synthesis of the CSNPs was
as follows: For sample G1, a solution containing P4VP (Mw 60 kDa) in DMF (2.0 mg/mL, 0.05 mL) was
added dropwise, in 40 µL increments, to a 3.7 mL glass vial containing the GFP (0.8 mg/mL, 0.5 mL)
in a 20 mM tris(hydroxymethyl)aminomethane (Tris) pH 7.0, 80 mM NaCl, and 2 mM EDTA buffer
solution. The solution was constantly stirred during the addition of the P4VP. The vial was then sealed
for thirty minutes before undergoing dialysis. Dialysis was done in a 1.0 L 10 mM HEPES and 250 mM
NaCl solution. The dialysis solution was replaced by a fresh solution after 4, 6, 10, and 12 h. Once
dialysis was complete, the solution containing the CSNPs was then retrieved from the dialysis tube
using a pipette. All samples in this research were synthesized using the above procedure, with only
variations in the amount of P4VP that was added. P4VP volumes of 0.12 and 0.20 mL were used for G2
and G3, respectively.

3.3. Characterization

Dynamic light scattering (DLS) and zeta potential measurements were performed using a
Nanobrook Omni particle size and zeta potential analyzer by Brookhaven Instruments. Typically,
100 µL of concentrated sample was diluted to 2 mL and loaded into a polystyrene cuvette. The samples
underwent a five-minute equilibration time before undergoing five five-minute scans. All data were
collected at a 90◦ scattering angle.

Transmission electron microscopy (TEM) was performed using a JEOL JEM2100F field emission
transmission electron microscope. The samples were prepared on 400 mesh carbon-coated copper
grids by submerging the grids in 100 µL droplets containing a 50:50 mixture of sample and ultra-pure
water. The grids were allowed to soak for twenty minutes before being transferred to a 100 µL droplet
of ultra-pure water to rinse. The rinsing process was repeated an additional time before being allowed
to dry.

The fluorescence profiles were measured using a NanoDrop™ 3300 fluorospectrometer
(ThermoFisher Scientific). For fluorescence measurements, the samples were placed directly, in
2 µL aliquots, onto the microvolume pedestal. No sample preparation was required.

3.4. Gold–GFP Conjugation

Covalent conjugation of the gold–GFP particles was performed in accordance with the
manufacturer’s instructions. In short, all reagents were allowed to warm up to room temperature
before the supplied protein re-suspension buffer was added to the lyophilized GFP to create a 2 mg/mL
solution. In a microcentrifuge tube, the supplied reaction buffer (600 µL) was combined with the
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GFP solution (480 µL). An amount of 900 µL of the new mixture was then transferred to a glass
vial containing the lyophilized NHS-activated gold nanoparticles. The resulting solution was mixed
thoroughly using a pipette. The vial was then allowed to incubate at room temperature for two hours
before the supplied quencher solution (10 µL) was added to the vial to stop the reaction. The solution
was then centrifuged at 15,000 RPM for 30 min. The supernatant containing any unbound protein was
then discarded. An amount of 1 mL of a 10 mM HEPES and 250 mM NaCl buffer was added to the vial
to re-suspend the conjugate. The centrifugation process was then repeated two additional times to
remove any unreacted free protein.

4. Conclusions

This research outlines a direct, stepwise assembly process for the synthesis of bio-active GFP-P4VP
CSNPs. GFP has been shown to be present and stable on the surface of the polymer nanoparticles. The
non-covalent bonding interaction provides a secure, non-hindering interaction between the GFP and
the polymer. We have shown that the size range of the CSNPs can be easily controlled by adjusting the
polymer–protein ratio as confirmed by the DLS and TEM images [53]. This procedure demonstrates
a method for the stabilization of bio-active molecules via polymer-core CSNPs. These particles will
allow for a variety of applications, from industrial to biomedical, to utilize the power and efficiency of
bio-active molecules outside of their native environment.
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