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Abstract: Novel bimetallic Pd-Mn/Al2O3 catalysts are designed by the decomposition of
cyclopentadienylmanganese tricarbonyl (cymantrene) on reduced Pd/Al2O3 in an H2 atmosphere.
The peculiarities of cymantrene decomposition on palladium and, thus, the formation of bimetallic
Pd-Mn catalysts are studied. The catalysts are characterized by N2 adsorption, H2 pulse chemisorption,
temperature-programmed desorption of hydrogen (TPD-H2), transmission electron microscopy (TEM),
energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and diffuse reflectance infrared
Fourier transform spectroscopy (DRIFTS). The modified catalysts show the changed hydrogen
chemisorption properties and the absence of weakly bonded hydrogen. Using an organomanganese
precursor provides an uniform Mn distribution on the catalyst surface. Tested in hydrogenation of
acetylene, the catalysts show both higher activity and selectivity to ethylene (20% higher) compared to
the non-modified Pd/Al2O3 catalyst. The influence of the addition of Mn and temperature treatment
on catalyst performance is studied. The optimal Mn content and treatment temperature are found.
It is established that modification with Mn changes the route of acetylene hydrogenation from
a consecutive scheme for Pd/Al2O3 to parallel one for the Pd-Mn samples. The reaction rate shows
zero overall order by reagents for all tested catalysts.

Keywords: acetylene hydrogenation; ethylene production; bimetallic catalysts; palladium;
manganese; cymantrene

1. Introduction

Ethylene is one of the commonly used monomers in the petrochemical industry worldwide and
is produced by the steam cracking of hydrocarbons. Ethylene cuts typically comprise 0.5%–2% of
acetylene, which is a poison for the polymerization catalysts and should be removed by selective
hydrogenation to ethylene [1]. A number of active metals (Pd, Ni, Au) modified with a wide range of
elements (Ag, Cu, Si, Ga, Sn, Pb, In, S, Fe) and supported on various carriers (Al2O3, SiO2, TiO2, ZnO)
were investigated [2–25].

Monometallic Pd catalysts show a high activity but low selectivity to ethylene, so Pd is typically
promoted with other metals. In industry, Pd-Ag/Al2O3 catalysts are widely used and much research is
devoted to Pd-Ag compositions supported on alumina or silica. It is supposed that the promotion
is based on an increased electronic density of the Pd d-band resulting in a decrease in ethylene [3]
or hydrogen adsorption with further spill over [4]. In addition, it is suggested that the promotion is
caused by not only an electronic but also a geometric effect [5], or just geometric [8]. Pd-Ag catalysts
expose not only a higher selectivity to ethylene, but also a lower yield of C6+ hydrocarbons (green oil)
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as compared to Pd/Al2O3, which is crucial for the cycle length of the catalysts [9]. However, problems
with the deactivation of Pd-Ag catalysts during the selective hydrogenation of acetylene are as actual
as before [8]. The main drawback of promotion with Ag is the significant reduction in catalyst
activity—about 20 times as low as pure Pd [12]. Pure nickel shows a lower selectivity than even pure
Pd, but the addition of Zn (such as Ni-Zn/MgAl2O4) increases the selectivity to the level of Pd-Ag
catalysts [17] and decreases oligomerization [26].

Besides Ag, a number of other metals were investigated as promotors. The addition of Ga leads to
an increased selectivity (71% at 99% conversion) compared to Pd catalysts, but also with Pd-Ag (49% at
83% conversion) [11–13]. The increased selectivity is explained by the isolation of the Pd sites [11,12]
and the additional modification of the Fermi level of palladium [13]. The activity of Pd-Ga catalysts is
similar to that of Pd-Ag.

Palladium modification with Cu shows a benefit in selectivity compared to Pd-Ag/Al2O3 [15,16]
only when it is provided by the surface redox method, which is explained by blocking low coordinated
Pd atoms (responsible for the low selectivity to ethylene) and by the hydrogenation properties of
copper. Pure copper, however, requires significantly higher operating temperatures and shows an
unacceptably high oligomer yield (up to 40%) [19].

A Pd-Zn catalyst supported on carbon or Al2O3 also shows a higher selectivity (+20%–50%)
compared to pure palladium [20,21]. It was previously proved that Pd and Zn form a nanoalloy [27].
Moreover, Zn decreases the acidity of support and, hence, green oil formation.

As the carriers for hydrogenation catalysts, natural clay nanotubes such as halloysite are of
particular interest [28–30]. Halloysite has the appropriate surface area (50–300 m2.g−1), a high
ion-exchange capacity, and a micro-mesoporous structure that enables the synthesis of highly active
catalysts and new materials applied for heterogeneous catalytic systems. Thus, a new approach was
developed—a self-assembling synthesis of structured mesoporous silica on clay nanotubes (HNT),
which was applied to create the highly porous material MCM-41-HNT with an enhanced thermal and
mechanical stability [31].

Hard reducible oxides, such as Ce, Ti, and Nb, are also investigated as promotors [32,33].
The most efficient was TiO2, however the catalyst selectivity did not exceed 50% at 90% conversion.
The promotion effect is explained by the geometric and electronic modification of the Pd surface.

Supported on glass nanofibers, Pd also shows a high selectivity (up to ~56% at total conversion) [34,35].
The high selectivity is explained by: 1) the stabilized small Pd particles (~1 nm) in the subsurface of
the glass fibers and 2) the much higher adsorption ability of acetylene compared to ethylene on Pd
inside a glass matrix. As a result, the hydrogenation of ethylene from the gas phase is actually absent.
Besides palladium, another interesting active metal in acetylene hydrogenation is gold. It is reported
that Au/Al2O3 shows 100% selectivity at temperatures of 313–523 K, because ethylene hydrogenation
only starts at temperatures above 573 K [23]. A lower selectivity was achieved on Au/TiO2 (90% at 88%
conversion). Au-Pd/TiO2 catalysts show a higher activity compared to Au/TiO2, but their selectivity is
lower [24].

The addition of iron in the form of Fe0 to Pd increases the selectivity to the olefin in the
hydrogenation of both acetylene (88% at 87% conversion) [22] and phenylacetylene (90% at 99%
conversion) [36,37].

The preparation of bimetallic catalysts (BMC) comprising VIII group metals by the decomposition
of organometallic compounds has been patented [38–40] and reviewed in [41]. The decomposition of
organometallic species under reduction conditions enables an easy formation of bimetallic catalysts
with a zero valence state of the second metal. Some examples of BMC having unusual properties are as
follows: Rh-Sn (butyl) [42], Pd-Pb (butyl) [43], Ni-Cr (arene) [44], and Pd-Fe (ferrocene) [22].

In this study, a number of Pd-Mn/Al2O3 catalysts were prepared by the decomposition of
cymantrene on a reduced Pd/Al2O3 precursor. The use of cymantrene has some peculiarities as the
molecule contains two types of ligands: CO and cyclopentadienyl. The catalysts were tested in
a selective hydrogenation of acetylene. In all cases, Mn increases the catalyst’s selectivity to ethylene as



Catalysts 2020, 10, 624 3 of 14

compared with the Pd/Al2O3 sample. Moreover, the Mn-modified samples have shown higher activity.
It is found that the addition of Mn suppresses the hydrogen chemisorption on Pd catalysts.

2. Results and Discussion

2.1. Cymantrene Decomposition on Pd/Al2O3

To investigate the formation of Pd-Mn/Al2O3 catalysts, the decomposition of cymantrene on
Pd/Al2O3 was performed in a temperature-programmed regime in an H2 flow with a mass spectrometry
analysis of effluent gas. Figure 1 shows the mass-spectra of cymantrene decomposition products in the
range of 40–400 ◦C.
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Figure 1. Decomposition of cymantrene on 0.068%Pd/Al2O3 in H2 flow at temperatures of 40–400 ◦C.

As shown, at the initial step (temperatures of 80–150 ◦C) there are peaks with m/z 28 (carbon monoxide),
42 (cyclopentane), and 67 (cyclopentene) [45]. In the temperature range of 270–400 ◦C, one can
observe two peaks with m/z 16 (methane) and 28 (carbon monoxide). The peaks corresponding to
cyclopentadiene (m/z 65, 66) are absent. More details about the mass spectra interpretation are shown in
the Supplementary Materials.

We may conclude, therefore, that the cyclopentadienyl ligand of cymantrene is removed after
hydrogenation, mainly as cyclopentane at 80–150 ◦C. As for carbon monoxide, it is strongly bonded with
metals, and may be removed as methane at temperatures above 270 ◦C [46]. However, as evidenced by
the mass-spectrometric analysis of the effluent gas, to complete a CO removal a treatment in an H2

flow at 400 ◦C for 10 min is necessary.

2.2. Catalysts Characterization

Table 1 summarizes the properties of the prepared catalysts. The designation of the samples
shows the atomic Mn/Pd ratio and the treatment temperature, which is the final temperature of the
cymantrene decomposition. As Table 1 shows, the Brunauer–Emmett–Teller (BET) surface area of
the samples is the same within the margin of error, which indicates that the addition of Mn has no
significant effect on the surface area of the catalysts. However, the samples show quite a different
behavior in H2 chemisorption.
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Table 1. Physicochemical data of alumina supported catalysts.

Sample Catalyst
Composition 1

Hydrogen
Treatment

Temperature, ◦C

BET Surface
Area, m2/g

H2 Adsorption,
µmol/g cat

Selectivity to
Ethylene 2 at

40 ◦C, %

Pd-250 0.068%Pd 250 133 1.20 70
PdMn-1-250 0.068%Pd-0.029%Mn 250 133 0.18 91
PdMn-1-330 0.068%Pd-0.029%Mn 330 131 1.10 80
PdMn-2-300 0.068%Pd-0.063%Mn 300 129 0.03 92
PdMn-2-350 0.068%Pd-0.063%Mn 350 128 0.04 89

1 Hereafter, all catalyst compositions are in wt. %, 2 Acetylene conversion is 60%.

The non-promoted Pd/Al2O3 catalyst uptakes a significant amount of H2 (1.2 µmol/g), but any
addition of Mn decreases the H2 adsorption. For example, an addition of 0.029% Mn (PdMn-1-250
and PdMn-1-330) decreases the H2 adsorption to 1.1 µmol/g (for the sample treated at 330 ◦C) and to
0.18 µmol/g (for the sample treated at 250 ◦C). This trend is enhanced by a further addition of Mn:
both PdMn-2-300 and PdMn-2-350 uptake significantly less H2 (0.03 and 0.04 µmol/g). It should be
noted that there are two possible reasons for the decreasing H2 adsorption: the shielding of Pd with
Mn atoms and the blocking of H2 adsorption sites by residual CO ligands. Moreover, the selectivity of
Pd-Mn catalysts to ethylene is correlated with their H2 adsorption, as shown in Table 1.

As depicted in Figure 2, the non-modified Pd-250 desorbs H2 in the range of 80–250 ◦C, indicating
a desorption of weakly bonded hydrogen at low temperatures and strongly bonded hydrogen
(or Pd hydride decomposition) at a temperature ramp.
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The samples with a low Mn content (PdMn-1-250 and PdMn-1-330) do not desorb H2 at
temperatures below 230 ◦C, which indicates the presence of strongly bonded hydrogen (or Pd
hydride). The samples (PdMn-2-300 and PdMn-2-350) with a high Mn content demonstrate only
an insignificant H2 desorption at a temperature of 250 ◦C, and these findings correlate with the
chemisorption data (Table 1). Decreasing strongly chemisorbed hydrogen is recommended for
acetylene selective hydrogenation as reported in [4,25,47].

As depicted on the TEM images of the PdMn-2-300, Pd nanoparticles (NP) with a lattice spacing
of about 0.228 nm are found, which are indexed as the (111) plane for cubic palladium doped with
clusters from single Mn atoms (Figure 3a) and Mn crystallites (Figure 3b) [48,49]. Depending on the
lattice spacing, the fringes on the TEM images could be assigned to Pd nanoparticles or Mn crystallites
and in some cases to manganese oxides with a lattice spacing of about 0.47–0.49 nm [49,50]. Due to
the overlapping of Mn crystallites on Pd NPs, it is difficult to measure accurately the palladium
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nanoparticles’ size and their distributions [51], but TEM images show Pd NPs in the range of 5–10 nm
with a mean particle size of about 6.7 ± 0.2 nm (Figure 3c), in agreement with the literature data [48].
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Figure 3. TEM imaging of the sample 4: (a,b) TEM image; (c) particle size distribution; (d) STEM image;
(e) Pd mapping (L line); (f) Mn mapping (K line); (g) Pd (L) + Mn (K) mapping overlay.
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Figure 3d–f show a STEM image and its EDX mapping of PdMn-2-300. It is clear that Pd and
Mn are uniformly distributed over the alumina support with high dispersion. As shown in Figure 3g,
both metals are in close contact.

XRD found no reflections, which could be related to Pd and Mn due to the low metal content,
as Figure 4 shows.
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Additional information about the chemisorption properties of the catalysts is obtained using
DRIFT spectroscopy of PdMn-1-330. Figure 5 shows two spectra of the catalyst samples. For the first
measurement, one sample is just treated in a vacuum for 2 h. For the second measurement, another
sample is preliminarily treated with H2 at 250 ◦C (30 min), acetylene at 20 ◦C (10 min), and H2 at 20 ◦C
(10 min) with a final purge with Ar at 20 ◦C (10 min) and treated in a vacuum for 2 h.
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Figure 5. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra of PdMn-1-330
without pretreatment (red line) and treated with C2H2 and H2 (black line).

As the spectra show, there are two regions: 2500–3800 cm−1, which corresponds to the vibrational
spectra of O–H and C–H bonds, and 700–2400 cm−1, ascribed to the vibrational spectra of Al2O3,
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adsorbed water, carbonyls, and others [52]. After the pretreatment, seven additional bands are
observed: 2962, 2932, 2872, 1483, 1252, 1220, and 1002 cm−1. The bands 2962, 2932, and 2872 cm−1 may
be ascribed to C–H stretching in the C2H6 molecule [53] and the bands 1220 and 1252 cm−1 to vibrations
of C–C bonds in the C2H2 molecule [54]. The band 1002 cm−1 may be assigned to C=C bending in
the C2H4 [53]. It should be stressed that all bands above are observed only after the treatment of
PdMn-1-330 with C2H2. After vacuum treatment of the sample (2 h, 200 ◦C), the intensity of the spectra
in the region of 2962–2872 cm−1 decreases slightly, which points out the strong chemisorption of the
species above.

The DRIFT spectra of adsorbed CO are considered in the Supplementary Materials.
As shown by the DRIFT, the CO adsorption over the Pd-Mn catalysts was weak and negligible

(at most 0.015 units Kubelka-Munk). After the vacuum treatment at room temperature, all peaks in the
range of 2195–1871 cm−1 disappeared. So, one may conclude that there is an absence of strong CO
chemisorption on the catalysts.

2.3. Catalytic Tests

Figure 6a shows the conversion of acetylene (X) as a function of the contact time (t) for the samples
at 40 ◦C. For all of the Mn-promoted catalysts, the conversion values are at the same level (within the
margin of error), regardless of the Mn addition and treating temperature. Moreover, at a given contact
time, the Mn-promoted samples provide a significantly higher conversion (~20%) compared to that of
Pd-250. The linear form of X(t) lines indicates the overall zero order by reagents.
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Based on these experimental data and taking into account the selectivity obtained (Figure 7),
we may consider a mass ratio of Mn/Pd ~ 1 (atomic ratio Mn/Pd ~ 2) and a treatment temperature of
300 ◦C for 30 min as optimal, corresponding to the PdMn-2-300 sample.
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Figure 7. Ethylene selectivity vs. conversion at 40 ◦C for alumina-supported Pd-Mn catalysts: (a) effect
of treatment temperature and Mn content; (b) PdMn-2-300 at 40 and 50 ◦C.

Figure 6b shows the conversion vs. contact time for PdMn-2-300 at 30, 40, and 50 ◦C. At all
temperatures, the X(t) lines are straight, so the zero order by reagents is kept.

Figure 7 shows the selectivity to ethylene on the conversion for all samples at 40 ◦C. For Pd-250,
the selectivity is the lowest and the curve has a maximum, which is typical in the case of a consecutive
scheme of acetylene hydrogenation to ethylene and ethane:

C2H2→ C2H4→ C2H6 (1)

in accordance with [55].
However, Mn-containing samples maintain a selectivity at a level of 80%–92% up to acetylene

conversions of more than 70%, which implies the parallel scheme of acetylene hydrogenation to
ethylene and ethane:

C2H6← C2H2→ C2H4 (2)

as previously observed on Pd-Fe/Al2O3 catalysts [22]. The PdMn-1-250 sample shows a selectivity
of ~ 91% at a conversion of below 70%. Increasing the treating temperature to 330 ◦C (PdMn-1-330),
and thus eliminating the strongly chemisorbed CO ligands, decreases the selectivity to ~80% at the
same conversions.
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Both samples with high Mn contents show a better selectivity at high conversions. The most
selective is PdMn-2-300, of which the selectivity is ~92% in the conversion range of below 70%.
The result is in accordance with the data published [56], where a catalyst having an Mn/Pd atomic ratio
of two provides the highest selectivity to 1,3-butadiene in vinylacetylene hydrogenation.

Figure 7b shows the influence of the reaction temperature on the S(X) curve for PdMn-2-300 at
40 and 50 ◦C. It is obvious that the selectivity is the same (~90%) up to a conversion of ~70% irrespective
of the temperature, which indicates that the activation energies of both reaction routes in scheme two
are very close.

Our catalyst advantages are illustrated in Table 2, comprising the characteristics of the best
Pd-containing catalysts in acetylene hydrogenation.

Table 2. Comparative characteristics of the best Pd-containing catalysts in acetylene hydrogenation.

Article Catalyst T, K P, bar X, % S, % Activity,
mol/g Pd/h

TOF (Turnover
Frequency), s−1

[12] Pd30Ga70 473 1 99 71 0.012 1 -
[24] Pd-Au/TiO2 343 1 100 45 ~0.283 2 -
[25] Pd-In/Al2O3 333 21 ~85 ~40 - 0.8
[35] Pd/Fiberglass 328 1 80 60 - 0.55
[8] Pd20Ag80/Al2O3 303 10 67 72 - 0.5

[22] Pd-Fe/Al2O3 318 1 87 88 1.67 0.31
This work PdMn-2-300 313 1 87 81 4.22 0.74

1 Recalculated from g/g cat/h, 2 Calculated by authors using data [24]: acetylene concentration and conversion,
GHSV, Pd content and Pd density.

As Table 2 shows, the catalysts developed are of the same order of activity (in terms of turnover
frequency (TOF)) but exceed the known one in ethylene yield (the product of X and S, calculated by
acetylene (defficiency) conversion without hydrogen (excess)) and molar activity under mild conditions.

One may conclude, therefore, that modification with manganese improves both the activity
(in terms of mol/gPd/h) and selectivity of palladium catalysts in acetylene hydrogenation.

For qualitative evaluation of the catalyst stability on a laboratory scale, the selectivity to the C4

compound (namely, 1,3-butadiene as an initial dimerization product of the acetylenic species [9]) is
used, which is a fundamental indicator of the palladium-containing catalyst stability in the selective
hydrogenation of acetylene [8]. The absence of C4 hydrocarbons is confirmed by GC and MS-analyses
for all set experiments performed. More details about the analyses and the stability of the catalysts are
shown in the Supplementary Materials. Based on the evidence above, we consider the Pd-Mn/Al2O3

catalysts to be stable for at least 5 h.

3. Materials and Methods

3.1. Chemical Reagents

Microspherical γ-Al2O3—SKTB Katalizator (Novosibirsk, Russia); cymantrene-
cyclopentadienylmanganese tricarbonyl or (CO)3Mn-(cyclo-C5H5) (Sigma-Aldrich, St. Louis,
MO, USA); PdCl2—Aurat (Moscow, Russia); Ar (99,993%), H2 (99,99%), He (99,995%), C2H2 (99,1%),
C2H4 (99,9%)—NII KM (Moscow, Russia); NH3·H2O (~25%)—ECOS-1 (Moscow, Russia).

3.2. Catalysts Preparation

The initial catalyst 0.068% Pd/Al2O3 was prepared by a wet impregnation of γ-Al2O3 (preliminary
calcined for 3 h at 600 ◦C) with an aqueous ammonia solution of PdCl2 at pH = 12 (24 h). After a vacuum
evaporation of the solvent, the catalyst was dried out at 70 ◦C for 12 h. Then, the catalyst was reduced
with H2 (20 mL/min) at 250 ◦C for 1 h.

Pd-Mn/Al2O3 samples were prepared by a wet impregnation of the reduced Pd/Al2O3 sample
with a cymantrene solution in n-hexane. After the vacuum evaporation of the solvent, the samples
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were treated in an H2 flow (20 mL/min) at 250–350 ◦C for 1 h. The effluent gas was analyzed with
a quadrupole mass spectrometer QMS-200 (Stanford Research Systems, Sunnyvale, CA, USA).

3.3. Catalyst Characterization

The BET surface area was measured using Gemini VII (Micromeritics Instrument Corp.; Norcross,
GA, USA). The samples were degassed at 150 ◦C for 3 h. The specific surface area was calculated using
the BET model for adsorption data in the range of relative pressures P/P0 = 0.05–0.30.

The metal content of the samples was measured by atomic absorption spectrometry
(Perkin-Elmer-AAS, Waltham, MA, USA).

Pulse chemisorption of H2 and TPD-H2 was performed by AutoChem 2950HP (Micromeritics
Instrument Corp.; Norcross, GA, USA). The samples were preliminarily reduced with H2 at 250 ◦C for
1 h, purged with Ar for 30 min and cooled down to 35 ◦C. The pulse chemisorption was performed
with a mixture 10% H2 + Ar (balance), with a pulse volume of 0.5 mL, in an Ar flow (40 mL/min).
TPD-H2 was performed in an Ar flow (40 mL/min) at a heating rate of 30 K/min to 250 ◦C.

Transmission electron microscopy (TEM) analysis was carried out using a JEOL JEM-2100
microscope (Jeol Ltd.; Tokyo, Japan) with a 200 kV electron beam energy-dispersive X-ray analyzer
(EDX). The mapping of the elements was carried out by scanning transmission electron microscopy
(STEM). The samples were milled in an Eppendorf with a glass rod and ultrasonically suspended
in isopropanol.

Phase analysis was performed using X-ray powder diffractometer BrukerD2 (Billerica, MA, USA),
Cu Kα (λ = 1.5406 Å), 2θ values varied from 5◦ to 80◦.

Diffuse reflectance infrared Fourier transform spectroscopy was done using a NICOLET Protégé
460 (Nicolet, Madison, WI, USA) in the range of 6000–400 cm−1 at a resolution of 4 cm−1. For each
sample, 500 spectra were recorded to get a good signal-noise ratio. CaF2 was used as a standard.
The spectra were processed with OMNIC software.

3.4. Catalystic Tests

Acetylene hydrogenation was performed in a quartz reactor at atmospheric pressure using
AutoChem 2950HP (Micromeritics Instrument Corp.; Norcross, GA, USA). At a given temperature,
the flow rate of the reaction mixture was changed to get various values of conversion and selectivity.
The contact time was in the range of 0.26–1.81 s−1, the reaction temperature was in the range of 30–50 ºC.

A mixture of 1.94%H2 + 1.05%C2H2 + 5.01%C2H4 + Ar (balance) was used as a modeling feed
preliminarily prepared in a cylinder. The effluent gas was analyzed online using a quadrupole mass
spectrometer QMS-200 (Stanford Research Systems, Sunnyvale, CA, USA) and off-line using FID and
TCD detectors in a GC experimental laboratory chromatograph (Gubkin University—Chromos, on the
basis of GC-1000 model, Moscow—Dzerjinsk, Russia) using a packed column with HyeSep N. At given
operating conditions (temperature, flow rate), the effluent gas was analyzed three times and the final
concentration was calculated as the mean value of the three analyses. The carbon balance was closed
within 4%.

The acetylene conversion was calculated by the equation:

X =
Cin

C2H2 −Cout
C2H2

Cin
C2H2

× 100% (3)

and ethylene selectivity by:

SC2H4 =
Cout

C2H4 −Cin
C2H4

Cin
C2H2 −Cout

C2H2

× 100% (4)
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4. Conclusions

A number of Pd-Mn/Al2O3 catalysts were designed by the decomposition of cymantrene on
reduced Pd/Al2O3 in an H2 atmosphere. The formation of bimetallic catalysts was studied by
mass spectrometry analysis of the decomposition products. It was found that the decomposition
of cymantrene takes place with hydrogenation of cyclopentadienyl ligands to cyclopentene and
cyclopentane, and CO ligands are partially removed by conversion to methane. The catalysts are
characterized using N2 adsorption, H2 pulse chemisorption, TPD-H2, TEM, EDX, XRD, and DRIFT
spectroscopy. Using the organic precursor—cymantrene provides a high and uniform distribution of
Mn over Pd. The addition of manganese changes the H2 chemisorption and desorption properties of the
catalyst: the Pd-Mn/Al2O3 samples have shown either a strong chemisorption of H2 or an insignificant
H2 chemisorption. At the same time, unsaturated C2 hydrocarbons are strongly chemisorbed on
Pd-Mn/Al2O3 samples and cannot be removed even under vacuum treatment at elevated temperature.
Catalytic tests of the novel Pd-Mn/Al2O3 catalysts in hydrogenation of acetylene have shown a higher
activity and selectivity thereof to ethylene (up to 20% higher) compared to the non-promoted Pd/Al2O3

catalyst. The optimal Mn/Pd ratio and treatment temperature are found. The overall reaction order by
reagents is zero for all catalysts, but modification with Mn changes the reaction route from a consecutive
pathway for Pd/Al2O3 to a parallel one for Pd-Mn/Al2O3 catalysts.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/6/624/s1,
Figure S1: Peaks of m/z in decomposition of cymantrene in H2.
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