
catalysts

Review

Recent Studies on Multifunctional Electrocatalysts for
Fuel Cell by Various Nanomaterials

Sanha Jang †, Kyeongmin Moon †, Youchang Park, Sujung Park and Kang Hyun Park *

Department of Chemistry, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu,
Busan 46241, Korea; jangs0522@naver.com (S.J.); moonkm205@naver.com (K.M.); changi3356@nate.com (Y.P.);
llopoby@gmail.com (S.P.)
* Correspondence: chemistry@pusan.ac.kr; Tel.: +82-51-510-2238
† These authors contributed equally to this work.

Received: 14 May 2020; Accepted: 2 June 2020; Published: 3 June 2020
����������
�������

Abstract: Based on nanotechnology, nanocomposites are synthesized using nanoparticles (NP), which
have some advantages in terms of multifunctional, economic, and environmental factors. In this
review, we discuss the inorganic applications as well as catalytic applications of NPs. Recently,
structural defects, heteroatomic doping, and heterostructures of such efficient ideal catalysts and their
application as multifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution
reaction (OER) in water splitting. It has been verified that the catalysts used in oxygen reduction
reaction and OER can be used effectively in metal/air batteries. Moreover, it has been reported that
high-efficiency catalysts are required to implement urea oxidation reaction (UOR), which involves a
six-electron reaction, as an electrochemical reaction. We expect that this review can be applied to
sustainable and diverse electrochemistry fields.

Keywords: multifunctional catalyst; water splitting; hybrid nanoparticle; electrochemistry; oxygen
reduction reaction; oxygen evolution reaction; hydrogen evolution reaction; urea oxidation reaction

1. Introduction

A material comprising two or more constituents is generally referred to as a hybrid material
(Scheme 1). Such a hybrid material not only has the unique characteristics of each individual component,
but also has additional synergistic characteristics [1–3]. Such synergistic characteristics allow their
application as catalysts and sensors, as well as for adsorption, desorption, etc., [4]. Because of properties
like high selectivity for a particular material, high catalytic efficiency, and high physical/chemical
stability compared to catalysts based on one metal, multimetallic fusion nanoparticles (NPs) have
been synthesized for use as catalysts in recent years [5–14]. The synthesis of such multicomponent
nanostructures with improved functionalities has been explored by many researchers [15–25].
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The realization of a hydrogen-based, renewable, and sustainable energy cycle offers a clear
vision to secure resources for our upcoming future. High-performance electrode catalysts for power
conversion systems like fuel cells and water splitting reactions are central to this thrust [26–29].

Hydrogen-producing electrochemical water splitting is a promising technique for renewable
energy production and storage [30,31]. In fact, owing to its potential for substituting fossil fuels, the
electrochemical conversion of H2O into hydrogen fuel (2H2O → 2H2 + O2) has been successfully
achieved (Scheme 2). The water splitting method usually involves two-half processes. One process is
the anodic oxygen evolution reaction (OER), and the other is the cathodic hydrogen evolution reaction
(HER) [32]. There are literature reviews that show that several electrocatalytic systems for water
splitting have been reported with many different elementary formulations and microstructures [33–36].
With the increased use of wide-throughput combinatorial methods for the development of new OER
and HER catalysts in various ternary and quaternary structure spaces, this number is likely to increase
rapidly in the future [37–43].
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HER and OER performance can be enhanced based on three aspects (Scheme 3):

• Defect sites
• Heteroatoms
• Heterostructures

Hitherto, surface defect development approaches appear promising for the achievement of
high-performance HER electrocatalysis owing to their tunable electrical properties [44–46]. Nonetheless,
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while the quantity of edge sites in the nanostructure increases the HER efficiency, the manufacturing
process limits the efficiency [47]. Edge sites enhance the activity by increasing the surface of the
catalyst. A common technique involves the design and development of porous, hollow micro, and
nanostructured electrocatalysts with a large number of catalytically active sites, reduced weight,
and load transportation diffusion [48,49]. This may also lead to the development of the reactivity
of the active sites by adding oxygen vacancies, resulting in major improvement in electrocatalytic
operations [45].

Over the past decades, a number of earth-abundant metal-based composite materials, including
oxides, chalcogenides, nitrides, borides, and phosphides, have been used to catalyze both the HER
and OER [50–59]. Because of their hydrogenase-like catalytic mechanism in the HER and partial
creation of active metal oxyhydroxides in the OER, transition metal phosphide (TMP)-based materials
demonstrate noteworthy HER and OER activities among these well-explored electrocatalysts [60–63].

Heteroatom-doping is an effective method for further electrocatalyst activity enhancing by
regulating the electronic structure, increasing the number of active sites, and maximizing intermediate
formation capacity. In addition, co-doping of binary or ternary heteroatom catalysts can optimize
catalytic activity with respect to their single-doped counterparts via synergistic coupling [64].

The heterostructured catalyst comprises two or more kinds of materials, typically bound
together physically or chemically. Recently, an attractive variety of heterostructured catalysts were
identified, demonstrating exceptional catalytic efficiency against electrochemical water splitting
equivalents [65–69]. Most heterostructured catalysts exhibit higher HER behavior than their
single-structured counterparts because of the many advantages of the former. Several heterostructured
catalysts demonstrate high-quality HER activity over a broad pH spectrum and/or multifunctional
HER and OER activity [70].
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The oxygen reduction reaction (ORR) and OER are emerging as highly relevant electrochemical
reactions owing to the growing emphasis on renewable power generation technologies (Scheme 4) [27,71].
Lithium-oxygen batteries (LOBs) having the extremely high theoretical energy capacity have drawn
significant attention in recent years [72,73].
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The international research community has recently reported that advanced manufacturing studies,
such as transformation from a coal-based system to a H2-based one for effective power storage
and sewage disposal will offset many emerging advances in energy and environmental pollutant
technologies (Scheme 5) [74,75]. Among the various recently established energy storage electrolysis
technologies, urea electrolysis is remarkably intriguing, allowing the simultaneous disposal of urea-rich
wastewater through the oxidation of the urea and a healthy, environmentally sustainable mass
processing of H2 fuel [76].
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In this review, we focus on multifunctional nanomaterials and nanocomposites and their
modifications in different fields:

• Interesting means to increase water splitting in hydrogen and oxygen evolution reactions, such as
defect sites, doping of heteroatoms, and heterostructures.

• Fuel cell technology using ORR and OER.
• Specific electronic processing with urea decomposition to address environmental problems.

2. Methods of Increasing Water Splitting in HER and OER

2.1. Defect Sites

In case of vacancy defects, one part of the lattice becomes deficient and unstable, thereby enhancing
activity with the reactive species [78]. Various defects have been established in NPs such as vacancies
and lattice defects. Thus, catalysts with defect sites in their lattice provide more active sites, and
consequently, greater reactivity than defect-less catalysts with the same surface area (Scheme 6). In
particular, catalysts that intentionally create coalesced defect sites can further enhance the rate of
chemical reactions, because the deficiency of the lattice effectively lowers the hydrogen adsorption
energy and hydrogen diffusion energy barriers in HER, which are significant for the overall rate
of water decomposition [79,80]. In addition, the electrochemical activity of the catalyst should be
enhanced by introducing chalcogen into the defective sites, as suggested by the increase in reactivity
of the active sites for HER and OER based on the defect sites of oxygen atom [81–84]. The existing
methods of composing defect sites are ball milling, plasma technology, etching, etc. Ball milling is
the process of grinding matter in ball mill and turning it into fine powder, and this is the relative
adjustment of anti-site defect and vacancies in crystal. The plasma technology is mainly carried out in
vacuum chamber, then is applied to gas or electric field to generate plasma after air enters the chamber.
From this plasma, the energy of ions often determines defect density. The plasma technology can obtain
vacancy defects on a constant basis. Li’s group explain making defect sites through etching method.

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 41 

 

In this review, we focus on multifunctional nanomaterials and nanocomposites and their 
modifications in different fields: 

 Interesting means to increase water splitting in hydrogen and oxygen evolution reactions, such 
as defect sites, doping of heteroatoms, and heterostructures. 

 Fuel cell technology using ORR and OER. 
 Specific electronic processing with urea decomposition to address environmental problems. 

2. Methods of Increasing Water Splitting in HER and OER 

2.1. Defect Sites 

In case of vacancy defects, one part of the lattice becomes deficient and unstable, thereby 
enhancing activity with the reactive species [78]. Various defects have been established in NPs such 
as vacancies and lattice defects. Thus, catalysts with defect sites in their lattice provide more active 
sites, and consequently, greater reactivity than defect-less catalysts with the same surface area 
(Scheme 6). In particular, catalysts that intentionally create coalesced defect sites can further enhance 
the rate of chemical reactions, because the deficiency of the lattice effectively lowers the hydrogen 
adsorption energy and hydrogen diffusion energy barriers in HER, which are significant for the 
overall rate of water decomposition [79,80]. In addition, the electrochemical activity of the catalyst 
should be enhanced by introducing chalcogen into the defective sites, as suggested by the increase in 
reactivity of the active sites for HER and OER based on the defect sites of oxygen atom [81–84]. The 
existing methods of composing defect sites are ball milling, plasma technology, etching, etc. Ball 
milling is the process of grinding matter in ball mill and turning it into fine powder, and this is the 
relative adjustment of anti-site defect and vacancies in crystal. The plasma technology is mainly 
carried out in vacuum chamber, then is applied to gas or electric field to generate plasma after air 
enters the chamber. From this plasma, the energy of ions often determines defect density. The plasma 
technology can obtain vacancy defects on a constant basis. Li’s group explain making defect sites 
through etching method. 

 
Scheme 6. Schematic diagram for achieving defect sites of lattice. 

2.1.1. Tafel Reaction of MoSe2 through Coalesced Vacancies 

A recent study by Li et al. suggested that the sulfur vacancies and tensile strength in 
molybdenum disulfides can trigger the basal plane with optimization the free energy difference 
associated with HER [85]. The formation of defect sites has been proven to enhance the HER 
operation by electrochemical methods, hydrogen annealing, and etching by plasma [85–87]. Based on 
these findings, in this research, the in-situ defect site in MoSe2 has been established via hydrogen 
reactivity control during the chemical vapor deposition (CVD) process. The vacancy-controlled 
MoSe2 exhibited outstanding HER behavior, reflected by an unprecedented Tafel reaction. In addition, 
when MoSe2 has been synthesized in hydrogen and Ar atmospheres as carrier gases, the density of 
Se vacancies is significantly affected by the concentration of these carrier gases. They can serve either 
as a reactivity booster by promoting the substitution of MoO3 and Se or as an etching substance for 
Se atoms in MoSe2, leading to vacancy-controlled MoSe2 [88,89]. 

Scheme 6. Schematic diagram for achieving defect sites of lattice.

2.1.1. Tafel Reaction of MoSe2 through Coalesced Vacancies

A recent study by Li et al. suggested that the sulfur vacancies and tensile strength in molybdenum
disulfides can trigger the basal plane with optimization the free energy difference associated with
HER [85]. The formation of defect sites has been proven to enhance the HER operation by electrochemical
methods, hydrogen annealing, and etching by plasma [85–87]. Based on these findings, in this research,
the in-situ defect site in MoSe2 has been established via hydrogen reactivity control during the chemical
vapor deposition (CVD) process. The vacancy-controlled MoSe2 exhibited outstanding HER behavior,
reflected by an unprecedented Tafel reaction. In addition, when MoSe2 has been synthesized in
hydrogen and Ar atmospheres as carrier gases, the density of Se vacancies is significantly affected by
the concentration of these carrier gases. They can serve either as a reactivity booster by promoting
the substitution of MoO3 and Se or as an etching substance for Se atoms in MoSe2, leading to
vacancy-controlled MoSe2 [88,89].
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Scheme 7 illustrates a synthesis mechanism for MoSe2-X, in which X refers to the relative
concentration of H2 in the carrier gas (X = 0, 10, 20, 30, 40, and 50). During the growth process, the
vacancy of Se was controlled by regulating the concentration of H2 gas for CVD, as follows:

• Reducing stable MoO3 to reactive MoO3−x to improve the activity between Se and metal oxides
under hydrogen assistance.

• Selenization of MoO3−x to MoSe2 via the substitution reaction of Se and O.
• Use of the substrate for nucleation and growth of MoSe2.
• Etching of Se atoms in MoSe2 by generating H2Se gas under hydrogen assistance.
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Copyright (2019), Elsevier.

In the growth procedure for MoSe2, hydrogen has significant impact on the etching of Se atoms
in MoSe2 (increase in the density of Se vacancies) and on the reduction of MoO3 (reduction in the
density of Se vacancies) [88,89]. MoO3 is not completely reduced at low H2 concentration, and MoO3−x

impurities are produced by the low activity of Se and MoO3 (MoSe2-10). On the other hand, relatively
high concentrations of H2 gas (MoSe2-30 and MoSe2-50) facilitates the reaction between Se and MoO3,
which inhibits the accumulation of MoO3−x impurities.

In the presence of H2 gas, the creation of Se vacancies in MoSe2 from pristine MoSe2 are illustrated
in Figure 1a. Annular dark-field-scanning transmission electron microscopy (ADF-STEM) images
(Figure 1b) show that MoSe2-30 was synthesized as hexagonal MoSe2 with minimum Se vacancies.
However, in MoSe2-50, which was also synthesized as a hexagonal structure with high crystallinity,
vacant Se sites were observed more frequently than in MoSe2-30. Further, these vacancy sites were
generally formed close to each other, resulting in the formation of coalesced vacancies. The single-Se
vacancy sites of Se atoms were described using the mapping of the atomic location depicted in Figure 1c,
caused predominantly by the etching of hydrogen.

After dropping vacancy-controlled MoSe2-X materials onto a glassy carbon electrode without
using polymeric binding agents, the monolayer’s HER activities were investigated in 0.5 M H2SO4

electrolyte by using a three-electrode framework based on linear sweep voltammetry (LSV) curves
(Figure 2a) and Tafel slopes obtained from polarization curves (Figure 2b). The Pt/C polarization curve
indicates standard hydrogen production with an onset potential near approximately 0 V vs. RHE
and a significantly rising current density. As reported in previous literature, the Tafel slope of Pt/C
was 30 mV dec−1, which means that Pt/C follows a Volmer–Tafel mechanism in its HER pathway [90].
For the monolayer electrocatalysts MoSe2-X, the sum of Se vacancies in the MoSe2 lattice is nearly in
agreement with the HER activities. Owing to less number of vacancies, MoSe2-30 displayed the lowest
HER efficiency with an onset potential of −0.3 V and a gradually rising current density. Although
MoSe2-10 contains a large number of vacancies in the MoSe2 lattice, it demonstrates only modest
electrochemical performance, possibly owing to the large number of MoO3−x impurities present on
the surface of the catalyst, interfering with the transition of the carrier needed for the development of
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hydrogen. Conversely, a dramatic enhancement in HER behavior was observed for MoSe2-50, with a
more positive onset potential close to −0.16 V, and a rapidly increasing current density such as in Pt/C.
Interestingly, MoSe2-50 with the clean surface exhibited a quite low Tafel slope (33 mV dec−1), close to
the onset potential owing to the coalesced vacancies. Further, unlike the typical trend of Tafel plots in
transition metal dichalcogenide (TMDs), which increases significantly with increasing voltage, the Tafel
plot of MoSe2-50 was retained almost at the same level as 33 mV dec−1 in the high-overpotential area as
well. The slope of this Tafel plot is among the smallest recorded to date, including TMDs of the 1T and
2H level, quite similar to that for Pt/C [85–87,91–94]. The HER performance of intermediate samples
(MoSe2-20 and MoSe2-40) are also depicted in Figure 2c. By decline of MoO3−x group in MoSe2-20,
improved HER performance was triggered compared to MoSe2-10, leading to a lower Tafel slope. The
HER activity in MoSe2-40 suggests intermediates between MoSe2-30 and MoSe2-50, primarily owing
to less number of active sites than MoSe2-50.Catalysts 2020, 10, x FOR PEER REVIEW 7 of 41 
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Figure 1. (a) Schematic diagram of lattice structure change in vacancy-MoSe2. Atomic-resolution
annular dark-field-scanning transmission electron microscopy (ADF-STEM) position mapping image
of (b) MoSe2-30 and (c) MoSe2-50. The bars indicate (b) and (c) 1 nm. Reproduced and adapted from
Ref. [79]; Copyright (2019), Elsevier.

The typical HER in TMDs mostly follows the Heyrovsky mechanism, which requires an extra
electron transfer to adsorbed hydrogen on a catalytic surface (H*) to generate H2 (H* + H+ + e−→ H2).
In comparison, the extremely low and steady Tafel slope with a large overpotential for MoSe2-50 is
most likely caused by the Tafel reaction, in which only two H* must to be combined to generate H2

without any extra electron transfer (H* + H*→ H2). Thus, high HER performance in vacancy-induced
MoSe2 relates to the extra Tafel reaction because of the creation of coalesced Se vacancies, as depicted
in Figure 2c.
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Pt/C in 0.5 M H2SO4 aqueous solution. (c) Schematic explanation of HER in AV- and CV-MoSe2, which
exhibit process of Tafel reaction in the coalesced Se-vacancy for hydrogen evolution. Reproduced and
adapted from Ref. [79]; Copyright (2019), Elsevier.

2.1.2. Hollow and Porous Structured Using NiS2(1−x)Se2x in Neutral Condition

In the recent past, neutral-pH overall water electrolysis has been considered the new efficient
energy conversion alternative, as it can lower the cost of electrolysis devices without requiring
costly membranes, and several electrolysis cells usually operate in neutral pH [95–97]. However,
owing to low ionic concentrations and significant ohmic loss, electrocatalysts exhibiting excellent
HER/OER performances in neutral pH are rare [98–101]. Only several Co- or Ni-based catalysts,
such as CoP, Co3S4, and Ni3Se4, have been known to exhibit moderate performance under neutral
media [102–105]. In addition, most of them exhibit less efficient catalytic performance than noble metals
such as Pt- and Ru/Ir-based catalysts and generally suffer major long-term stability losses [104–106].
Under such situations, optimizing the relatively low-cost bifunctional electrocatalysts for water
splitting with high performance and stability in neutral media is a crucial task, even though it
entails great challenges. In recent years, TMDs have drawn considerable interest in terms of their
ideal atomic structure, good electrochemical stability, and high electron transport, and many related
studies on water splitting have been published [28,107–109]. Among them, MS2(1−x)Se2x compounds,
referred to as metal (di)sulfoselenide, provide a fascinating promise, enabling accurate customizable
electrocatalytic and other physiochemical characteristics. Zhuo et al. reported that ternary MS2(1−x)Se2x
can accomplish a relatively low HER overpotential (69 mV at 10 mA cm−2) through customizable
HER electrical properties under acidic conditions [110]. Similarly, improved catalytic efficiency was
also reported for ternary Mo(Se0.85S0.15)2, WS2(1−x)Se2x, and Co(SxSe1-x) [111–114]. Although these
indicated electrocatalysts can exhibit high HER/OER performances under acid or alkaline conditions,
few of them show neutral-pH reactivity.

In this study, Ni-based catalysts, NiS2(1-x)Se2x, were fabricated and investigated to confirm
HER/OER activities owing to their advantages such as eco-friendly features and low cost of Ni.
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Further, Ni dichalcogenides have exhibited relatively high activities for either HER or OER under
neutral-pH conditions [97,115]. Furthermore, to obtain a large number of catalytic active sites
and decrease diffusion of charge and mass transport, one common strategy is to model and
develop porous/hollow micro/nanostructured catalysts [48,49]. With these discussions, ternary
nickel sulfoselenides (NiS2(1−x)Se2x) porous/hollow spheres were synthesized via a facile hydrothermal
using the L-cysteine and selenization method.

Scheme 8 depicts the fabrication process for the ternary NiS2(1−x)Se2x porous/hollow spheres.
Ni(NO3)2·6H2O, urea, and L-cysteine were used to synthesize the NiS2 hollow spheres precursor via
heating at 140 ◦C for 12 h, and the as-synthesized precursors were dried in a vacuum oven at 60 ◦C for
6 h. Thereafter, for selenization, three different mass ratios of NiS2 and Se powder were used (1:2, 1:5,
and 1:10), which were heated to 450 ◦C in a furnace for 2–5 h.
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Reproduced and adapted from Ref. [116]; Copyright (2019), The Royal Society of Chemistry.

Figure 3a exhibits the morphological aspects of the as-prepared NiS2 precursor by transmission
electron microscopy (TEM), minimizing the interfacial energy of hollow spheres based on the Ostwald
ripening process. Subsequently, NiS2(1−x)Se2x porous/hollow spheres were synthesized by thermal
selenization using the NiS2 precursor and Se powder in Ar gas. In this process, the Se/S atomic ratio was
adjusted by varying the amount of Se powder and the reaction time (Figure 3b). Figure 3c, exhibiting
the high-resolution TEM (HRTEM) image and the corresponding line scan outlined in a white rectangle,
indicates the well-matched lattice fringes of the (200) plane with a lattice distance of 0.291 nm, slightly
larger than that of standard NiS2 (0.284 nm). The HAADF image and the corresponding EDX mapping
of Ni(S0.5Se0.5)2 demonstrate the presence and homogeneous distribution of Ni, S, and Se element
around the whole hollow structure (Figure 3d).

The powder X-ray diffraction (PXRD) patterns exhibit the NiS2 hollow spheres before and after
the thermal selenization process of a Pa3, corresponding to JCPDS no. 88-1709 (Figure 4a). However,
the diffraction peaks of Ni(S0.5Se0.5)2 shift to a small angle compared to those of pure NiS2 because of
the larger atomic sizes of Se than S (inset of Figure 4a). The ternary NiS2(1−x)Se2x compound is shown
to have combined effects. Atoms of the transition metal Ni are offered as superior water splitting sites
and have a strong electrostatic affinity with the hydroxide group in neutral media owing to plenty of
unfilled d orbitals. In addition, the morphology modified by selenization offers a lough surface area,
and the highly porous structure not only provides additional exposed catalytically active sites but also
facilitates more active species to access the active sites. In addition, intrinsic catalytic activity can be
improved by generating electrolytic diffusion/penetration and mass/electron diffusion systems more
effectively. The results have been indicated using the N2 sorption isotherm (Figure 4b). The unusual
hierarchical hollow spheres were found to have a wide Brunauer-Emmett-Teller (BET) surface area of
91 m2 g−1 with a pore diameter distribution primarily within the range 4–10 nm. Furthermore, anion
doping efficiently modifies the electronic Ni structure, which is helpful in maximizing the adsorption
free energy of process intermediates and improving the catalytic ability intrinsic to them. Therefore,
this ternary NiS2(1−x)Se2x material was considered to be a highly efficient and stable electrocatalyst for
overall water splitting in neutral media.
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Figure 5a indicates that, among the samples, Ni(S0.5Se0.5)2 has the highest HER activity. It also
displays the lowest Tafel slope (Figure 5b). The lowest charge transfer resistance was demonstrated
by electrochemical impedance spectroscopy, performed to investigate more detailed electron-transfer
kinetics (Figure 5c). Under neutral conditions, the HER pathway may be identical to that in alkaline
conditions via the Volmer–Heyrovsky cycle. As indicated by the abovementioned results, the Ni
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atom has a strong electrostatic affinity with the hydroxide group for water dissociation ability to
produce H atoms for the primary Volmer step. However, in Heyrovsky’s process, the free energy of
H adsorption, when H atoms on the layer of catalysts are formed into H2, is such that the disulfided
Ni site is too strong, whereas the diselenided Ni site is too weak. Therefore, by changing the Se/S
ratio, the free energy of H adsorption, which can increase the HER operation, is optimized. In the
chronoamperometry (CA) performed to demonstrate long-term durability, a significant property in
electrocatalysts, it remained without degradation for 20 h, and the HER performance was mostly
unchanged after 2000 continuous cyclic voltammetry (CV) cycles (Figure 5d).

Catalysts 2020, 10, x FOR PEER REVIEW 11 of 41 

 

 
Figure 4. (a) X-ray diffraction (XRD) pattern of NiS2(1−x)Se2x (red line) and NiS2 (blue line). The inset of 
(a) is crystal structure. (b) N2 sorption isotherm and measured pore size (the inset of (b)) of NiS2(1−x)Se2x. 
Reproduced and adapted from Ref. [116]; Copyright (2019), The Royal Society of Chemistry. 

Figure 5a indicates that, among the samples, Ni(S0.5Se0.5)2 has the highest HER activity. It also 
displays the lowest Tafel slope (Figure 5b). The lowest charge transfer resistance was demonstrated 
by electrochemical impedance spectroscopy, performed to investigate more detailed electron-transfer 
kinetics (Figure 5c). Under neutral conditions, the HER pathway may be identical to that in alkaline 
conditions via the Volmer–Heyrovsky cycle. As indicated by the abovementioned results, the Ni 
atom has a strong electrostatic affinity with the hydroxide group for water dissociation ability to 
produce H atoms for the primary Volmer step. However, in Heyrovsky’s process, the free energy of 
H adsorption, when H atoms on the layer of catalysts are formed into H2, is such that the disulfided 
Ni site is too strong, whereas the diselenided Ni site is too weak. Therefore, by changing the Se/S 
ratio, the free energy of H adsorption, which can increase the HER operation, is optimized. In the 
chronoamperometry (CA) performed to demonstrate long-term durability, a significant property in 
electrocatalysts, it remained without degradation for 20 h, and the HER performance was mostly 
unchanged after 2000 continuous cyclic voltammetry (CV) cycles (Figure 5d). 

 
Figure 5. HER electrocatalytic performance in neutral condition. (a) Polarization curves and (b) the 
corresponding Tafel plots for the catalysts. (c) Nyquist plots scanned at −0.25 V (vs. RHE) and (d) 
time-dependent current density curve of the Ni(S0.5Se0.5)2 at overpotential 125 mV. The inset exhibits 
linear sweep voltammetry (LSV) curves before and after 2000 cyclic voltammetry (CV) cycles to 

Figure 5. HER electrocatalytic performance in neutral condition. (a) Polarization curves and (b) the
corresponding Tafel plots for the catalysts. (c) Nyquist plots scanned at −0.25 V (vs. RHE) and
(d) time-dependent current density curve of the Ni(S0.5Se0.5)2 at overpotential 125 mV. The inset exhibits
linear sweep voltammetry (LSV) curves before and after 2000 cyclic voltammetry (CV) cycles to confirm
stability. Reproduced and adapted from Ref. [116]; Copyright (2019), The Royal Society of Chemistry.

The electrocatalytic oxygen generation was performed under the same conditions (Figure 6a).
Similarly, the polarization curve had an overpotential of 501 mV to reach the current density of
10 mA cm−2 of Ni(S0.5Se0.5)2 among samples, compared to the standard IrO2 catalyst, and the lowest
Tafel slope of 94 mV dec−1 (Figure 6b). This resulted in a desirable electronic configuration and
specific active sites for adsorption through the anion-doping activity of oxygen-rich groups. Similar to
previously reported mechanisms for other metal chalcogenide electrocatalysts, the Ni cation exists as
an actual active species with the oxide species (NiOx) on the surface of the OER catalyst and forms the
shell/core NiOx/Ni(S0.5Se0.5)2. Similar to the tendency of HER, the Ni(S0.5Se0.5)2 electrode with the
smallest Tafel slope indicates the lowest resistance for charge transfer (Figure 6c). Performing CA to
demonstrate long-term durability, Ni(S0.5Se0.5)2 electrode demonstrated good durability at a constant
applied voltage value of 1.73 V without degradation for 20 h (Figure 6d). The OER performance was
almost unchanged after 2000 continuous CV cycles (inset of Figure 6d).

Based on the above mentioned results, the ternary NiS2(1−x)Se2x electrocatalysts were superior
to other catalysts in terms of electrocatalytic efficiency under neutral conditions. Ni(S0.5Se0.5)2

hollow/porous spheres were used for both the cathode and the anode to perform the overall water
splitting. As depicted in Figure 7a, the Ni(S0.5Se0.5)2‖Ni(S0.5Se0.5)2 electrode requires 1.87 V at a current
density of 10 mA cm−2, whereas a typical Pt/C‖IrO2 couple electrode requires 1.94 V at the same
current density. In comparison, the Ni-assembled electrolyzer could sustain current density at a steady
voltage of 1.87 V for 12 h under neutral conditions, in contrast to the rapid decline in current density
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for the Pt/C‖IrO2 couple-catalyzed cell under CA (Figure 7b). These results demonstrated that the
latest method involving bifunctional electrocatalyst under neutral conditions is a successful practical
application for the complete splitting of water.
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2.2. Doping of Heteroatoms

Doping of heteroatoms, such as N, O, S, and P, is effective for increasing electrocatalyst activity
by optimizing the electronic structure, increasing the number of active sites, and optimizing the
intermediate formation regime (Scheme 9). Also, heteroatom doping can give graphene a variety of
new or improved electromagnetic, physicochemical, optical, and structural properties. This greatly
increases the arsenal of graphene materials and their potential for a wide range of applications. For
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example, Lee et al. reported that MoP dual-doped with S and N exhibited a current density of
10 mA cm−2 for HER at an overpotential of 104 mV in 0.5 M H2SO4 [117]. Zang et al. recorded excellent
catalytic efficiency for the HER with an overpotential of just 89 mV to give 10 mA cm−2 in 0.5 M H2SO4

for the Cu3P NPs coated by an N, P-codoped carbon layer [118]. Furthermore, they reported that
MOF-derived N, S, O-C@Co/Co9S8 NPs acted as a multifunctional catalyst producing a current density
of 10 mA cm−2 at 216 and 373 mV for HER and OER, respectively, in 1 M KOH [119]. Du’s group
reported Ir-doped NiV(OH)2 for overall water splitting [120].
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2.2.1. Ir-O-V Group Effect

The overall splitting of water in Ni-based layered double hydroxides (LDHs) occurs at quite high
applied voltages, usually greater than 1.55 V [121–123]. NiV LDH was the initiating material, and
doped Ir to create Ir-O-V and Ir atoms helped dissociate water and adjust the V atom and bridge O
adsorption energies. The resulting NiVIr LDH exhibited superior HER and OER performances at
overpotentials of 41 and 203 mV, respectively, at 10 mA cm−2. The new NiVIr LDH achieved a total
water electrolysis current density of 10 mA cm−2 at an approximate voltage of 1.49 V (as both cathode
and anode), far lower than that of the Pt/C-IR/C catalytic complexes (1.60 V at 10 mA cm−2) and seemed
to set a new value for the overall water electrolysis cycle.

Figure 8a,b indicates that OER and HER are supposed to occur on V and bridge O, respectively, in
the NiV LDH material. As seen in Figure 8b, after one Ni atom had been substituted by Ir, a simple
decrease in the charge intensity was determined on the bridge oxygen atom located between the atoms
V and Ir. The excessive adsorption of the hydrogen intermediates on the NiV LDH bridge oxygen
could be reduced. Doping with Ir, however, seems to enhance charge density on V atoms, thereafter,
decreasing upon excess adsorption of OER intermediates. In short, the Ir dopant is supposed to
improve both OER and HER performance in the NiVIr LDH simultaneously. Morphologically, all
three materials were identical, consisting of vertically grown nanosheet arrays on nickel foam (NF),
as illustrated by scanning electron microscopy (SEM) images (Figure 8c). XRD patterns (Figure 8d)
indicate that the NiV LDH and NiVIr LDH materials had phase compositions similar to that of
α-Ni(OH)2, and no additional diffraction peaks are found, indicating that the structure of the three
materials were in one phase [124–126]. The (003) and (006) peaks of NiVIr LDH (Figure 8d) were
shifted to lower diffractions angles by ~0.3◦ relative to NiV LDH, which suggests that the insertion of
large Ir ions into NiV LDH induced lattice expansion.

The HER and OER performances of the catalysts were analyzed with 1 M KOH in N2- and
O2-saturated solutions, respectively. Two reactions were practiced in the three-electrode system—the
counter-electrode of the HER is the graphite rod and that of the OER is the platinum electrode [127–129].
The LSVs of the OER presented in Figure 9a indicate that the Ir-doped LDH demonstrates a lower
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overpotential of 203 mV to fulfill a current density of 10 mA cm−2, which is better than those of the
Ni(OH)2, NiV LDH, and commercial Ir/C. The Ir-doped LDH material indicated an excellent HER
activity, which has been proven by a low overpotential of 41 mV at 10 mA cm−2 (Figure 9b). To
compare, the overpotential of the Ir-free LDH depicted at 10 mA cm−2 was 148 mV. Table 1 indicates
the effects of the OER and HER performance calculated by Du’s group [120].
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Figure 8. Active sites (top) in the overall water splitting process and differential-charge densities
(down) of (a) NiV LDH and (b) NiVIr LDH. The isosurface value is 0.018 Å−3. (c) Scanning electron
microscopy (SEM) image of surface morphology of NiVIr catalyst. (d) XRD spectrums of Ni(OH)2,
NiV LDH, and NiVIr LDH, respectively. The bars indicate (c) 250 nm. Reproduced and adapted from
Ref. [120]; Copyright (2019), American Chemical Society.

Du’s group developed a new bifunctional catalyst comprising surface Ir-O-V catalytic groups,
which were very effective for overall water electrolysis. The NiVIr LDH displays good catalytic
attributes with an OER overpotential of 203 mV and an HER overpotential 41 mV at 10 mA cm−2.
The NiVIr LDH required 1.493 V at 10 mA cm−2, performing better than the noble metallic Pt/C-Ir/C
complex. More precisely, Ir, O, and V atoms of NiVIr LDH change the adsorption energy and electronic
structure of the reaction course to acceptable values, which remarkably decrease the OER and HER
overpotentials. Du’s experiment demonstrates that doping with noble metals is an efficient way
for improving the catalytic role of LDHs, which improves their ability and decreases expensive
metal consumption.
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Table 1. Catalytic performance in OER and HER activity [120].

NiVIr-LDH NiV-LDH Ni(OH)2 Ir/C Pt/C

OER
Overpotential (mV) 203 319 337 284 -

Tafel slope (mA dec−1) 55.3 119.2 214.1 86.8 -

HER
Overpotential (mV) 41 148 - - -

Tafel slope (mA dec−1) 35.9 119.2 - - 32.8

Both OER and HER activity for overpotential are performed at 10 mA cm−2.

2.2.2. Effect of Multiplane Ni3S2 Superstructures

Liu’s group suggested a new simple method for the synthesis of 3D Ni3S2 superstructures grown
in situ on NFs using a one-step method of chemical etching (Scheme 10). Only the controlling solvent
of the reaction allows the superstructures to be transformed into both nanoforest patterns and rod-like
arrays. The technique is facile, economical, low-temperature, and has good commercial application
prospects. Scheme 10 illustrates Ni3S2 superstructures formed on NF in disparate solvents (DI water,
EDA). Arranged from disparate solvents, the 3D superstructures of the two species can be derived
from the diverse kinetics of crystallization in disparate solvents. Thus, the product superstructures
could be handled by regulating the chemical etching elements.Catalysts 2020, 10, x FOR PEER REVIEW 16 of 41 
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Scheme 10. Design of synthesizing Ni3S2 superstructures on nickel foam (NF). Reproduced and
adapted from Ref. [130]; Copyright (2018), The Royal Society of Chemistry.

The Ni3S2 nanoforest and nanorod superstructures were further investigated using TEM and an
analysis of the SAED patterns (Figure 10a–d). Figure 10a depicts a diameter of 200 nm and a length
of approximately 1.5 µm, which corresponds with the SEM images. The rod tip amplification image
(Figure 10b) clearly indicates a lattice at a distance of 0.28 nm, which can be related with the (110)
crystal plane of the Ni3S2. Similarly, each nanoforest image (Figure 10c,d) is checked, and the branched
structure is surrounded by an ultrathin nanosheets layer, synthesizing 3D hierarchical nanostructures.
Since the electroactive sites are abundant, these ultrathin nanosheets offer outstanding electrochemical
catalytic efficiencies.
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Figure 10. (a,b) TEM images of RA-Ni3S2/NF and (c,d) those of NA-Ni3S2/NF. The bars indicate 100 nm
(a), 10 nm (b), 500 nm (c), and 100 nm (d). Reproduced and adapted from Ref. [130]; Copyright (2018),
The Royal Society of Chemistry.

Ni3S2 was commonly used as water electrolysis catalysts because of its remarkable conductivity
and activity [131–133]. To assess the electrocatalytic reactivity toward HER, tests were conducted on
the synthesized 3D Ni3S2/NF superstructures in a 1.0 M KOH solution using a standard three-electrode
system, in which the working electrode used the 2.0 cm2 NF. The electrocatalytic reactivities of Pt/C on
NF and bare NF were analyzed for comparison. Figure 11a displays their LSV curves. The synthesized
superstructures of Ni3S2/NF display exceptional HER performance, in which the current densities
are intensified at the used voltage. Rod-like array (RA)-Ni3S2/NF demands overpotentials of 0.146
and 0.255 V to provide current densities of 10 and 100 mA cm−2, whereas NF-Ni3S2/NF demands
those of 0.135 and 0.225 V. The NF-Ni3S2/NF has ultrathin leaflets, which decrease the overpotentials
because leaflets provide more active sites for HER. Durability is also a significant criteria with respect
to the electrocatalyst of the HER reaction. The long-period durability of the electrocatalysts was
tested continuously in 1.0 M KOH over 5000 cycles (Figure 11b). Notably, both NF-Ni3S2/NF and
RA-Ni3S2/NF exhibited a small loss of the current density of the cathode after 5000 CV cycles confirming
the excellent durability. RA-Ni3S2/NF and NF-Ni3S2/NF were maintained at 15 and 20 mA cm−2,
respectively, when CA was measured for 50 h at a constant 150 mV vs. RHE (inset of Figure 11b).

Further research was carried out on the 3D Ni3S2 superstructures to assess the OER output in
1.0 M KOH. Figure 11c presents the LSV curves. All the 3D Ni3S2 superstructures demonstrated still
higher efficiencies than bare NF. The 100-mA cm−2 current densities of NF-Ni3S2/NF and RA-Ni3S2/NF
exhibited 0.32 and 0.34 V overpotentials, respectively. Bare NF, in contrast, provided 100 mA cm−2

at an overpotential of 0.51 V. Similar to the HER results, in OER, NF-Ni3S2/NF displayed a lower
overpotential than RA-Ni3S2/NF. The Liu group found that NF-Ni3S2/NF could display better OER
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performance relative to RA-Ni3S2/NF because of the abundance of particular surface areas of ultrathin
nanosheets in NF-Ni3S2/NF, resulting in further active sites toward OER. Both NF-Ni3S2/NF and
RA-Ni3S2/NF exhibited overpotentials of 0.23 and 0.27 V at 20 mA cm−2, respectively, which displayed
lower overpotential than other existing non-noble metal electrocatalysts [130,134–142]. To obtain the
long-period durability of NF-Ni3S2/NF and RA-Ni3S2/NF toward OER, a long-period water oxidation
was performed at 300 mV value of overpotential, and the OER reactions remained almost unchanged
for 50 h (Figure 11d).
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Figure 11. (a) HER polarization curves of bare NF, RA-Ni3S2/NF, NF-Ni3S2, Pt/C on NF. (b) Initial
HER polarization curves and after 5000 cycles HER polarization curves of RA-Ni3S2/NF, NF-Ni3S2/NF
in 1.0 M KOH. (c) OER polarization curves of bare NF, RA-Ni3S2/NF, NF-Ni3S2/NF in 1.0 M KOH.
(d) Chronoamperometry of NF-Ni3S2/NF and RA-Ni3S2/NF for OER at 300 mV value of overpotential
1.0 M KOH. Reproduced and adapted from Ref. [130]; Copyright (2018), The Royal Society of Chemistry.

The Liu group further constructed an electrolyzer whose cathode and anode were both composed
of the synthesized catalysts in a solution of 1.0 M KOH. NF-Ni3S2/NF and RA-Ni3S2/NF impressively
produced current densities of 10 mA cm−2 at 1.59 and 1.62 V and combined overpotentials of
approximately 360 and 390 mV, respectively (Figure 12a). The 3D Ni3S2/NF performed better than
the IrO2/C-Pt/C commercial couple (1.68 V at 10 mA cm−2) and the newly reported overall water
splitting electrocatalysts [125,141,143–148]. In addition, when the experiments were executed at 1.63 V,
the electrolyzer supplied steady current densities (RA-Ni3S2/NF is approximately 20 mA cm−2 and
NF-Ni3S2/NF is approximately 30 mA cm−2) and maintained then for more than 50 h (Figure 12b).

The 3D Ni3S2 superstructures of nanorod arrays and nanoforest patterns were well grown in NF
through a simple one-step method of chemical etching. The synthesized 3D Ni3S2 superstructures
demonstrated considerable efficiency in HER, and the stability remained for more than 50 h. In
addition, the 3D Ni3S2 superstructures consisted of a cathode and an anode for bifunctional water
electrolysis with outstanding activity and notable long-time duration.
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Figure 12. (a) OER polarization curves and (b) CA of RA-Ni3S2/NF, NF-Ni3S2/NF at 1.63 V in 1.0 M KOH.
Reproduced and adapted from Ref. [130]; Copyright (2018), The Royal Society of Chemistry.

2.3. Heterostructure

The heterostructure idea originates from the physics of semiconductors (Scheme 11). In general,
heterostructures can be characterized as hybrid structures consisting of interfaces formed using various
solid-state materials, such as conductors, insulators, and semiconductors [70]. Heterostructures provide
an ability to produce effective solar cells from highly absorbing thin-film materials without major
losses by electron-hole recombination on the front side. Normally, heterostructures of 2D materials
offer a way to study different phenomena and open up unprecedented possibilities to combine them
for technological use. Such layers are very different from previous 3D semiconductor heterostructures,
as each layer acts simultaneously as a bulk material and an interface, reducing the amount of load
displacement within each layer. Nevertheless, the movement of charges between the layers may
be very large, producing huge electrical fields and providing intriguing possibilities in the field of
band-structure engineering. However, the key problem with hetero junctions is the lattice mismatch
caused defect, which usually degrades the output of the system. It is normal for two different materials
to have specific lattice parameters. If these components are put on top of each other.Catalysts 2020, 10, x FOR PEER REVIEW 19 of 41 
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2.3.1. Components as the Ni-Based Heterostructure

In general, Ni-based composites are attractive catalysts in water splitting reactions because of
the earth-abundance and low cost of Ni, and the components can affect their performance [149–156].
In addition, it has been revealed that Ni-based compounds can be used as catalysts for OER only
by controlling counter-ion forms. The integration of the active OER (Ni3N) and HER (NiMoN)
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catalysts as heterostructures was stated by Fu’s group through a well-designed path for efficient water
splitting [156].

Figure 13 demonstrates the protocol for the synthesis of Ni3N-NiMoN heterostructures. Ni-Mo-O
nanosheets were synthesized on carbon cloth (CC) by hydrothermal reaction, and then the Ni3N-NiMoN
heterostructure was synthesized in the presence of ammonia gas by nitridation with Ni-Mo-O
nanosheets. Bonding between Ni3N and NiMoN can be easily formed owing to Ni-Mo-O precursor
containing Ni and Mo.
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The Ni3N-NiMoN nanosheet structures on CC are well maintained without any apparent collapse
(Figure 14a,b). The lattice distances in the HRTEM images are 0.21 and 0.25 nm, which exhibit a good
match with the (111) plane of Ni3N and the (100) plane of Ni0.2Mo0.8N, respectively. We have already
mentioned that presence of Ni3N and NiMoN can make both the catalysts perform good OER and
HER activity. The elemental mapping of Mo (yellow), Ni (cyan), and N (green) demonstrated uniform
dispersion on the CC (Figure 14c–f) because Ni-N and Ni-Mo-N were successfully synthesized by
controlling the reaction in the presence of ammonia gas.

One of the significant factors in the catalyst is long-term stability. A durability experiment is
carried out in 5000 cycles using the Ni3N-NiMoN-5 catalyst for 20 h (Figure 15b). The results indicate
that the Ni3N-NiMoN-5 catalyst exhibits excellent stability under alkaline conditions in a long-term
electrochemical system (Ni3N-NiMoN-5: 277 mV at 10 mA cm−2, Ni3N-NiMoN-4, Ni3N-NiMoN-6,
RuO2, and NiMoO-1 are about 300 mV, 343 mV, 325 mV, and 356 mV at 10 mA cm−2, respectively).
These results of the excellent HER activity observed in an alkaline system imply that the catalyst
can easily cooperate without most noble metals such as Ru, Pt, and Ir OER catalysts, which typically
exhibit good behavior in alkaline media. Figure 15c presents the polarization curves without the
iR-corrections. The Ni3N-NiMoN-5 catalyst exhibits the high-performance OER output and needs
a modest overpotential of 277 mV to reach the current densities of 10 mA cm−2, whereas those
for RuO2 and NiMoO-1 are approximately 325 and 356 mV. Fu’s group has already demonstrated
Ni3N-based materials to be active for OER in several earlier studies [152,153,157]. Therefore, earlier
reports have suggested that Ni3N is an effective catalyst for OER. Further, the long-term durability of
Ni3N-NiMoN-5 for OER was implemented based on its relevance for scientific basis (Figure 15d). The
Ni3N-NiMoN-5 catalyst’s polarization curve exhibits a slight change in current density compared to
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the original. In addition, the time–current density curve indicated that after 20 h of OER activity, the
operation degrades only marginally.
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In this study, Ni3N-NiMoN could be specifically applied to the anode (HER) and cathode (OER),
as the overall water splitting catalysts demonstrate high performance under the same alkaline state.
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2.3.2. Co and β-Mo2C NPs Composed of N-Doped CNTs 

Recently, it has been reported that complexes of Co-based hybrid materials such as Co-N, Co-Pi, 
NiCo2O4, NiCo alloy, and others can improve catalytic performance in the OER [158–162]. Moreover, 
M-Cx, M-Sx, M-Px, and M-Sex (M = transition metal) exhibit optimal catalytic activity for HER [163–
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Figure 15. HER activity property of (a) polarization curves for Pt/C, various Ni3N-NiMoN-X (X = 4, 5,
6; 400, 500, and 600 ◦C), (b) durability of Ni3N-NiMoN-5 performed with a scan rate of 100 mV s−1

initial and after 5 K cycles. Inset of (b) current depends on time curves. OER activity property
of (c) polarization curves for RuO2, various Ni3N-NiMoN-X, and (d) durability of Ni3N-NiMoN-5
performed with a scan rate of 100 mV s−1 initial and after 5 K cycles. Inset of (d) current depends on
time curves. Reproduced and adapted from Ref. [156]; Copyright (2018), Elsevier.

2.3.2. Co and β-Mo2C NPs Composed of N-Doped CNTs

Recently, it has been reported that complexes of Co-based hybrid materials such as Co-N, Co-Pi,
NiCo2O4, NiCo alloy, and others can improve catalytic performance in the OER [158–162]. Moreover,
M-Cx, M-Sx, M-Px, and M-Sex (M = transition metal) exhibit optimal catalytic activity for HER [163–166].
In particular, molybdenum carbide (Mo2C) exhibits brilliant HER activity in both alkaline and acidic
systems because the electronic d-band model of molybdenum is similar to that of platinum [167–169].
Therefore, it has exhibited effective catalytic activity by combining the secondary phase/structure of Co
and Mo-base as catalysts for the overall splitting of water in Ref. [170].

Melamine, which is commonly used as a precursor of nitrogen and carbon, has been used in this
study. It was synthesized by mixing Mo and Co salt with facile heat treatment (Figure 16a). Figure 16b,c
exhibits the tubular shape of Co/β-Mo2C@CNTs, in which nanotubes were encapsulated with Mo2C
and Co. The HRTEM image indicates that the lattice distance of 0.23 and 0.20 nm corresponds to the
plane (101) of β-Mo2C NPs and the plane (111) of Co NPs, respectively.

In the XRD patterns of Co/β-Mo2C@N-CNTs, Co, and β-Mo2C peaks were mainly observed at
2θ = 34.3◦, 37.7◦, 51.9◦, 61.5◦, 69.1◦, 72.4◦, and 74.5◦ well-matched with β-Mo2C (JCPDS No. 35-0787),
and peaks at around 2θ= 44.2◦, 51.7◦, and 75.8◦well-matched with Co (JCPDS No. 15-0787), respectively
(Figure 17).
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Further, in this study, the efficiencies of HER and OER were measured using a standard
three-electrode device. Table 2 presents the performance of each catalyst, such as overpotential,
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Tafel plot, current density, and double-layer capacitance (Cdl). The performance of the three catalysts
used in the HER activity was significantly inferior to that of Pt/C [170]. However, the heterostructure that
used Co/β-Mo2C@N-CNTs as a catalyst displayed higher activity than others. The Co/β-Mo2C@N-CNTs
still exhibited the highest current density when the geometric current density was further normalized to
the corresponding Cdl value, thus suggesting that the hybrid is intrinsically most involved. Therefore,
the HER performance of Co/β-Mo2C@N-CNTs compares favorably with the actions of many recorded
Co- and Mo2C-based representative electrocatalysts. These results indicate that the OER activity is
impaired by Co doping. Moreover, the overpotential of IrO2 as a reference catalyst was significantly
higher than the Co/β-Mo2@N-CNTs. Both OER and HER activity were tested in 1 M KOH.

Table 2. HER and OER activity in 1 M KOH electrolyte [170].

Co/β-Mo2@N-CNTs Co@N-CNTs Mo2C@N-CNTs Pt/C IrO2

HER

η10 (mV) 170 275 452 36 -
Tafel plot (mV dec−1) 92 115 171 - -

Current density (mA cm−2) 0.14 0.020 0.053 - -
Cdl (mF cm−2) 2.1 1.3 0.7 -

OER
η10 (mV) 356 - - - 377

Tafel plot (mV dec−1) 67 90 188 - -
Cdl (mF cm−2) 2.6 1.2 0.4 - -

3. Redox-Mediated OER and ORR for LOBs with Soluble Redox Catalysts

3.1. Introduction

Although LOBs have attracted significant attention on account of high energy density, they still have
certain limits such as uncertainty of electrolyte at high voltage, large overpotentials, and subsequent
low cycling stability [72,73,171–175]. Researchers have focused on developing and modifying cathodes
and electrocatalysts to promote the ORR and OER to address these problems. However, another
problem—the deposition of byproducts such as Li2O2, Li2CO3, and LiOH on the catalysts—impedes the
transfer of electrons, causing the overcrowding of electrolyte and oxygen mass transport [176–184]. As a
solution of these issues, soluble redox catalysts, which enhance the ORR or OER and prevent deposition
of byproducts to some degree, have been introduced recently [185–192]. In addition, Wang et al. have
designed a new redox-flow lithium battery (RFLB) using redox mediators, which helps the current
collector of the electrodes to be changed to separated energy storage tanks [193–196]. This idea has
been successfully applied to address the abovementioned pressing problems with a non-aqueous LOB,
resulting in a new device, the redox-flow LOB (RFLOB) [197]. Figure 18a presents the schematic of a
couple of ORR and OER electrocatalysts and other components. In fact, the creation and decomposition
of byproducts happen in the gas diffusion tank (GDT), spatially isolated from the cathode of the cell,
which seamlessly eliminates pore-clogging problems and surface passivation. Furthermore, compared
to the traditional enclosed battery, such a decoupled structure as an independent power source and
energy storage gives an RFLOB great advantages such as optimization and versatility of operation of
redox flow batteries [193–195]. In this study, tris{4-[2-(2-methoxyethoxy)ethoxy]phenyl}amine (TMPPA)
and 2,5-di-tert-butyl-p-benzoquinone (DTBBQ) are used as OER and ORR catalysts, respectively, to
address issues like corrosion, large overpotential owing to oxidation of Li2O2, and instability after
long-term cycling (Figure 18b).
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Li/Li+), respectively, crossing the Li2O2 equilibrium potential at 2.96 V (vs. Li/Li+). 
Thermodynamically, this indicates that DTBBQ•− may be reduced to O2 and act as an ORR mediator 
that enhances Li2O2 production during the discharge step, whereas TMPPA•+ oxidizes Li2O2 and 
works as an OER transmitter substance that promotes Li2O2 decomposition during the charge step. 
A schematic displaying the redox-targeting reactions of TMPPA and DTBBQ with Li2O2 (Figure 19b) 
demonstrates the working mechanism of the RFLOB. The discharging potential of the RFLOB is 
determined by the discharging process, which includes the process through which the reduction of 
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the GDT, the generated DTBBQ•− reduces O2, where the gas is supplied, and produces Li2O2. The 

Figure 18. (a) Schematic diagram of the redox-flow lithium-oxygen batteries (RFLOB). (b) Molecular
structure of the two redox mediator, 2,5-di-tert-butyl-p-benzoquinone (DTBBQ) and tris{4-[2-(2-
methoxyethoxy)ethoxy]phenyl}amine (TMPPA). Reproduced and adapted from Ref. [198]; Copyright
(2016), American Chemical Society.

3.2. Application of TMPPA and DTBBQ as Redox Mediators to RFLOB

CV analyses were implemented to confirm the redox peak of TMPPA and DTBBQ (Figure 19a). The
reversible redox peaks of DTBBQ and TMPPA are depicted at approximately 2.63 and 3.63 V (vs. Li/Li+),
respectively, crossing the Li2O2 equilibrium potential at 2.96 V (vs. Li/Li+). Thermodynamically,
this indicates that DTBBQ•− may be reduced to O2 and act as an ORR mediator that enhances
Li2O2 production during the discharge step, whereas TMPPA•+ oxidizes Li2O2 and works as an
OER transmitter substance that promotes Li2O2 decomposition during the charge step. A schematic
displaying the redox-targeting reactions of TMPPA and DTBBQ with Li2O2 (Figure 19b) demonstrates
the working mechanism of the RFLOB. The discharging potential of the RFLOB is determined by
the discharging process, which includes the process through which the reduction of molecules in
the catholyte flows into the cathodic section in the cell. After the catholyte flows back to the GDT,
the generated DTBBQ•− reduces O2, where the gas is supplied, and produces Li2O2. The reaction
of DTBBQ•− with the oxygen molecules in this procedure includes only charge transfer at the tank’s
interface between the liquid and gas. The two reactions of discharging process are expressed as follows:

Electrochemical reaction in cell: DTBBQ + e−→ DTBBQ•− (r1)

Chemical reaction in GDT: 2DTBBQ•− + 2Li+ + O2→ DTBBQ + Li2O2 (r2)
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Similarly, the charging potential of the cell is determined by the charging process, which implies
the oxidation process of both the molecules in the cell. Thereafter, the generated TMPPA•+ oxidizes
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Li2O2, producing O2 back into the GDT when the catholyte circulates. The detailed reactions of the
charging step are explained as follows:

Electrochemical reaction in cell: TMPPA − e−→ TMPPA•+ (r3)

Chemical reaction in GDT: 2TMPPA•+ + Li2O2→ 2TMPPA + 2Li+ + O2 (r4)

Further, as the reaction between redox mediators cannot occur during the charge and discharge
steps, the mediators maintain stability with each other.

The OER and ORR reactions of the TMPPA and DTBBQ were analyzed using rotating disc
electrode spectrometry (Figure 20a,b, respectively). In the case of the OER performance of TMPPA,
despite the presence of Li2O2 in the electrolyte, no current was observed in the OER potential range.
However, a steady-stage current of at least 0.26 mA cm−2 emerged at a potential above 3.70 V vs. Li/Li+,
equivalent to the TMPPA oxidization, after 2 mM TMPPA was transferred to the above-mentioned
electrolyte. This current density is considerably higher than the value of TMPPA alone (~0.16 mA
cm−2), suggesting that the reaction of TMPPA•+ with Li2O2 contributes to the increased current.
Furthermore, the reaction is resistant to an N2- and O2-saturated solution, suggesting that the TMPPA
may be impervious to O2 during the measurement process. As illustrated in Figure 20b, DTBBQ’s ORR
efficiency in an O2-saturated electrolyte is significantly greater than that in an N2-saturated electrolyte,
with the assumption that DTBBQ•− can effectively minimize oxygen molecules. This phenomenon is
similar to the catalytic effect of TMPPA.Catalysts 2020, 10, x FOR PEER REVIEW 26 of 41 
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Figure 20. (a) RDE test of the OER reaction between 2 mM TMPPA and Li2O2 and (b) ORR reaction
between 2 mM DTBBQ and O2 gas in 0.10 M LiTFSI in TEGDME. Galvanostatic tests of (c) 20 mM TMPPA
and (d) 20 mM DTBBQ analyzed in static lithium half-cells under an Ar atmosphere. Reproduced and
adapted from Ref. [198]; Copyright (2016), American Chemical Society.

To scrutinize the stability of the redox mediators with long-term cycling, galvanostatic tests
were conducted by employing TMPPA and DTBBQ as liquid cathodes in half-cells (Figure 20c,d,
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respectively). The two redox mediators exhibit outstanding electrochemical stabilities under Ar
atmosphere. In particular, it is confirmed that the polymerization of molecules is effectively hindered
and the development of the TMPPA radical cation and dication is also significantly stabilized because
of the alkoxyl group on TMPPA’s phenyl rings. The capacities of TMPPA and DTBBQ were maintained
at 87.4% and 89.4%, respectively, after 100 cycles.

In this study, new redox catalysts TMPPA and DTBBQ have been introduced as a solution of
pore-clogging issues and the passivation of the cathode surface. This novel device provides several
benefits for large and high-density energy storage in terms of flexibility and scalability. However,
TMPPA and DTBBQ need further improvement to be powerful enough for the RFLOB. For example,
the degradation of mediators, particularly DTBBQ, after prolonged cycling induces a change in the
voltage profiles, posing the main hurdle for pragmatic use. Moreover, the redox potentials of Li2O2 are
slightly different from those of the redox mediators, which could cause overpotential losses during
the discharge and charge processes. Therefore, additional research is needed to address the side
reactions of the redox mediators in an O2 atmosphere and the control redox potentials more accurately
to alleviate voltage hysteresis.

4. Application of Hydrogen Production via HER and UOR Activities

4.1. Introduction

Among the numerous recently developed energy-saving electrolysis methods, urea electrolysis
is extraordinarily interesting, allowing for the treatment of urea-rich sewage by reducing the urea
in it to produce a clean, eco-friendly mass of H2 energy [76,199]. In particular, the use of the UOR
in ordinary water splitting potentially replaces the OER with a significant thermodynamic potential
change from 1.23 V vs. RHE to a mere 0.37 V (Scheme 12). Urea is a suitable and promising storage
medium for H2 and CO2 owing to it being highly dense, relatively nontoxic, inexpensive, robust, safe,
and easy to carry and store. Nevertheless, the key problem is the existence of UOR, which experiences
sluggish kinetics owing to a six-electron transfer cycle composed of gas evolution phases; thus, highly
effective and inexpensive electrocatalysts are required to implement this outstanding model of energy
conversion [200].Catalysts 2020, 10, x FOR PEER REVIEW 27 of 41 
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4.2. The Application of Electrocatalyst via Synthesis of Facile Melt-Infiltration

Figure 21 illustrates a simple Ni-Pd alloy NPs preparation strategy integrated into ordered
mesoporous carbon (OMC) support with optimized nanostructures through necessary steps. First,
Ni and Pd salts were melt-infiltrated on the OMC, and then Ni-Pd bimetallic salts were heat-treated
under H2 gas flow.
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Figure 21. Schematic illustration for preparation of the bimetallic NiPd/OMC catalyst.

Consequently, the Ni-Pd salt is formed from the tiny Ni-Pd alloy NPs that are well dispersed on
the OMC (Table 3). Further, this study illustrates the metal content, surface area, pore volume, and
pore diameter of NiPd/OMC, Ni/OMC, Pd/OMC, and bare OMC.

Table 3. Characterization of each electrocatalysts.

NiPd/OMC Ni/OMC Pd/OMC Bare-OMC

Ni (wt%) 10 10 - -
Pd (wt%) 10 - 10 -

Pore volume (cm3 g−1) 0.91 1.17 1.26 1.45
Poer diameter (nm) a 5.3 5.3 5.2 5.3

Surface area (m2 g−1) b 862 1243 1078 1434
a The pore diameters were calculated from desorption branches using BJH method. b The surface areas were
obtained by the BET method.

The operating electrode was constructed by drop-coating the slurry mixture for electrochemical
measurements. The arrangement of the electrochemical cells and the method of potential conversion
from Ag/AgCl to RHE are the same as described elsewhere (Equation (1)):

ERHE = EAg/AgCl + 0.059 · pH + E◦Ag/AgCl (1)

The CV and LSV measurements were performed with 0.33 M urea in N2 saturated 1 M KOH at
the scanning frequencies 10 and 5 mV s−1, respectively.

4.3. Results

XRD analysis was used to explore the crystalline structure of the NiPd/OMC, Pd/OMC, and
Ni/OMC electrocatalysts (Figure 22a). The NiPd/OMC XRD pattern reflects that the two major
characteristic peaks of the bimetallic NiPd alloy’s fcc crystalline structures were clearly displayed
and assigned (JCPDS no 01-072-2515). Furthermore, the scale of the bimetallic NiPd alloy NPs was
measured to be as small as 1.6 nm using the Scherrer method. TEM and HRTEM produced NiPd alloy
NPs found in OMC scale and distribution (Figure 22b,c). Figure 22b reveals the effective loading of flat,
widely dispersed, and very low bimetallic NiPd NPs onto the OMC supply. The parallel lattice fringe
corresponds to the (111) plane of large crystalline LiPid NPs, with a calculated spacing gap of 0.22 nm,
as presented in Figure 22c.

In a tri-electrode system, all the experiments were performed to verify the electrocatalytic behavior
of catalytic activity for CV, LSV, and CA in a 1 M KOH solution. The electrocatalytic activities for UOR
of electrocatalysts like NiPd/OMC, Ni/OMC, Pd/OMC, and bare OMC were detected and compared
with the IrO/C catalyst standard in the existence of 0.33 M urea in N2-saturated 1 M KOH solution at a
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scanning frequency of 5 mV s−1 (Figure 23a). In addition, their Tafel plots have often compared the UOR
kinetics with the prepared electrocatalysts (Figure 23b). Therefore, the Tafel slope displayed the lowest
NiPd/OMC of 31 mV dec−1 and Ni/OMC, Pd/OMC, and OMC of 36, 59, and 64 mV dec−1, respectively,
in the UOR and little lower than the IrO/C electrocatalyst. This result suggests that a smaller slope
value of the Tafel NiPd/OMC electrocatalyst will result in better and faster catalytic kinetics on UOR.
The essential factor in the catalytic activity is durability (Figure 23c). The NiPd/OMC electrocatalytic
UOR performance displays an overpotential of 1.346 V vs. RHE required to achieve the current density.
These remarkably strong catalytic activities, such as high current intensity, good conductivity, low
overpotential, low Tafel performance, and good longevity of NiPd/OMC electrocatalysts, may be
attributed to the following significant factors:

1. The existence of Ni3+ cationic active material at NiOOH enables effortless electron jumping
mechanism and can also induce electrocatalytic reaction transmission.

2. OMC has very large surface area, pore volume, and pore diameters that may indicate higher UOR
electroactive interfacial sites and ion/e− transfer speeds.
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Figure 22. (a) XRD spectra of NiPd/OMC, Ni/OMC, and Pd/OMC. (b) TEM image, and (c) HRTEM
image of NiPd/OMC nanocatalyst. The bars indicate 20 nm (b) and 2 nm (c). Reproduced and adapted
from Ref. [200]; Copyright (2019), American Chemical Society.

In this review, the as-prepared electrocatalysts were also explored for observations of the HER in
the N2-saturated 1 M KOH aqueous solution with and without 0.33 M urea solution. As depicted in
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Figure 23d,e, the values of NiPd/OMC material electrocatalyst with respect to overpotential (−0.117 V
vs. RHE) and Tafel slope suggests the extremely efficient and rapid HER kinetics. The Tafel slope
value of 37 mV dec−1 for the NiPd/OMC electrocatalyst is based on familiar mechanisms for the
electrocatalytic HER operation and suggests a Volmer–Heyrovsky mechanism [199]. The Tafel slopes
of the electrocatalysts depicted in Figure 23e derived from the LSV polarization curves are estimated
to be 29, 37, 65, 76, and 210 mV dec−1 for Pt@C, NiPd/OMC, Ni/OMC, Pd/OMC, and bare OMC,
respectively. In fact, in the LSV polarization curves, a large decay of its HER behavior was not
detected in between 5000 cycles, even after the 5000 period of CV operation (Figure 23f). Apart
from the extremely good HER behavior in the N2-saturated 1 M KOH electrolyte with 0.33 M urea
solution, the NiPd/OMC electrocatalyst was operated in the empty N2-saturated 1 M KOH electrolyte.
Fortunately, no significant shifts in the intensity of cathodic current are seen in Figure 23f, indicating
that the NiPd/OMC electrocatalyst has superior catalytic efficiency in both general water and urea
electrolysis applications.
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Figure 23. Urea oxidation reaction (UOR) electrocatalytic properties of IrO@C, NiPd/OMC, Ni/OMC,
Pd/OMC, and OMC. (a) LSV plots, (b) respective Tafel plots derived from (a), (c) durability and OER
analysis of NiPd/OMC performed without urea. HER electrocatalytic properties of Pt@C, NiPd/OMC,
Ni/OMC, Pd/OMC, and OMC. (d) LSV plots, (e) respective Tafel plots derived from (d), and durability
and HER analysis of NiPd/OMC. (f) durability and HER analysis of NiPd/OMC performed without
and with 0.33 M urea in N2 saturated 1 M KOH at scan rate = 5 mV s−1. All of reaction performed
in N2 saturated 1 M KOH with 0.33 M urea at scan rate = 5 mV s−1. Reproduced and adapted from
Ref. [200]; Copyright (2019), American Chemical Society.

5. Conclusions

Herein we have reviewed effective catalysts in terms of their overall reaction to water splitting.
In other words, the advantages that dictate the application of these materials as both cathodes and
anodes indicate the direction in which hybrid materials are developed. The addition of defect sites,
heterostructures, and heteroatom doping, which can be applied to such hybrid materials, indicates
their potential for water splitting. Also, transition metal pnictides and chalcogenides using these
strategies have displayed positive potentials toward HER and OER because of high conductivity and
activity. In HER, heterostructure like Ni and Co hydroxides with 2D nanostructure like MoS2 can show
outstanding performance through efficient electron/mass transfer and optimized catalytic sites. In
OER, transition metal pnictides and chalcogenides can display excellent catalytic activity with thin
oxide layer on the catalysts surface. But there are several things to overcome despite much studies
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and efforts. For example, it is significant to resist corrosion in electrolytes under high anodic potential
without any phase transformation in OER, which is a problem directly related to the durability of
the OER catalysts. In HER, even though electrocatalysts-based platinum or platinum alloys exhibit
superior activity to Pt/C in alkaline solution, there was no noticeable decrease in Pt loading.

For a fundamental solution of these issues, understanding the mechanism of the reactions must
be involved in order to perform synthesis of perfect electrocatalyst toward HER and OER. Catalysts
development of in situ methods have many advantages in terms of easy understanding of the reaction
mechanism and high stability. Substrates like metal foam such as Ni foam and NiCrAl foam or carbon
cloth (CC) can be example of this approaches. Consequently, more methods which display enhanced
activity for overall water splitting will be developed to synthesis heterostructure and transition metal
complex with doping heteroatoms or defect sites for high conductivity on the substrate. Also, single
atom nanocatalysts on substrates can suggest direction of lowering Pt loading toward HER and
for minimizing phase transformation in OER, mixing the nanocompounds with other elements or
depositing buffer layer can be solution to improve stability of catalysts on substrates. As a recent trend,
beyond the limits of only electrochemical water splitting, photoelectrolysis can be considered as one of
the environmental methods that exploits solar energy. This strategy will contribute to future energy field
because it can present the synergistic effect of water splitting by smoothly moving electrons using solar
energy which is unlimited energy. Notably, researches with theoretical calculations or computational
results should be performed by processing fabrication electrocatalysts, which can accelerate provision
of intrinsic knowledge of HER and OER. Furthermore, UOR, the method of generating electricity
by decomposing materials such as urea, can also be implemented to solve environmental problems
like air pollution and greenhouse effect. Our previous catalysts, e.g., NiPd/CMK-3 nanocatalyst
for the electrocatalyst of UOR and HER activities, also exhibited good catalytic activities. It can be
applied to HER because of the efficiency of Mo, Ni, and Co, but we can expect to apply it to different
electrochemical reactions like ORR and OER in our next work. We also expect that our approach can
be adapted in the near future for other catalytic syntheses.
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Abbreviations

NPs nanoparticles
OER oxygen evolution reaction
HER hydrogen evolution reaction
ORR oxygen reduction reaction
TMP transition metal phosphide
LOB lithium−oxygen batteries
CVD chemical vapor deposition
ADF-STEM atomic-resolution annular dark field-scanning transmission electron microscope
HAADF high angle annular dark field
EDX energy dispersive X-ray
PXRD powder X-ray diffraction
Pa3 cubic pyrite-type phase
BET Brunauer-Emmett-Teller
PBS phosphate-buffered saline
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NF nickel foam
RHE reversible hydrogen electrode
EIS electrochemical impedance spectroscopy
CV cyclic voltammetry
CA chronoamperometry
LSV linear sweep voltammetry
TMD transition metal dichalcogenide
LDH layered double hydroxide
DI deionized
EDA ethylene diamine
CC carbon cloth
HRTEM high-resolution transmission electron microscope
Pi inorganic phosphate
XRD X-ray diffraction
Cdl double-layer capacitance
RFLB rechargeable redox flow lithium battery
RFLOB lithium-oxygen redox flow battery
GDT gas diffusion tank
TMPPA tris{4-[2-(2-methoxyethoxy)ethoxy]phenyl}amine
DTBBQ 2,5-di-tert-butyl-p-benzoquinone
RDE rotating disk electrode
UOR urea electro-oxidation reaction
OMC ordered mesoporous carbon
BJH Barrett-Joyner-Haldenda
fcc face centered cubic
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