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Abstract: The rapid growth of global biodiesel production requires simultaneous effective utilization
of glycerol obtained as a by-product of the transesterification process. Accumulation of the byproduct
glycerol from biodiesel industries can lead to considerable environment issues. Hence, there is
extensive research focus on the transformation of crude glycerol into value-added products. This paper
makes an overview of the nature of crude glycerol and ongoing research on its conversion
to value-added products. Both chemical and biological routes of glycerol valorization will be
presented. Details of crude glycerol conversion into microbial lipid and subsequent products will
also be highlighted.

Keywords: glycerol; valorization; purification; oxidative fuel additives; biological conversion;
animal feed

1. Introduction

Global energy demand will increase due to population growth, industrialization and humankind’s
desire for a better quality of life. However, due to the limited nature of fossil fuel resources,
and environmental and climate issues associated with its use, development of renewable energy
has become imperative [1,2]. Biodiesel is a renewable biofuel that has the additional advantage of
having lower levels of emission of Green House Gases (GHG) like carbon dioxide. It can thus help
in mitigation of climate change and improve energy security. Chemically, biodiesel is a methyl or
ethyl ester of fatty acid and is usually produced by transesterification of vegetable oils or animal
fats with short chain alcohols [3]. However, increase in biodiesel production can lead to increase
in the costs of edible vegetable oil. This leads to a debate of fuel versus food. In order to address
such issues, use of alternative resources such as oils from non-edible plants [4], microbial sources [5]
and use of waste-cooking oil [6] have been studied and even implemented. Even though the cost of
production of biodiesel is currently higher than fossil-based diesel, its production across the world has
increased due to the environmental benefits associated with it. One of the possible ways to improve the
biodiesel production capacity would be to reduce the production of waste by-products and valorize
the waste generated.

During the transesterification process, 1 mole of triglyceride produces 3 moles of biodiesel (ester)
and 1 mole of glycerol. On this basis, every batch of biodiesel produces approximately 10 wt% of
glycerol. The produced glycerol contains various impurities and is known as crude glycerol. Impurities
in crude glycerol includes mainly methanol, soap, free fatty acids and salt (inorganic salts residues
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from catalysts), unreacted mono-, di- and triglycerols and water [7]. Purification and refining of crude
glycerol are carried out to different grades for pharmaceutical, food and cosmetic sectors. Purification
techniques such as chemical pre-treatment, methanol removal, vacuum distillation, ion exchange,
activated carbon and membrane separation technology are costly and hence are seldom economically
feasible. The price of reformed glycerol is 40–50 cents/lb., which is 5- to 10-fold more than crude
glycerol [8].

Many biodiesel producers have started treating crude glycerol as a waste rather than purifying it
for commercial applications [9]. Crude oil is also directly used as an ingredient in animal feed [10].
While crude glycerol can seem like a liability for many biodiesel producers, from a biorefining
point of view, it holds great potential for use as a starting material for value-added bio-chemicals.
Such value-added chemicals can generate additional revenue for the existing biodiesel industries and
make the process more sustainable. Valorization of crude glycerol will also help meet the circular
bioeconomy guidelines by extending the value of every component in the chain as long as possible.
Utilizing crude glycerol to produce commercially valuable compounds will simultaneously help to
resolve the environmental issues associated with crude glycerol management [11,12].

Crude glycerol can serve as a low-cost and stable feedstock as the biodiesel market is estimated to
have significant (42%) annual growth [13]. The cost of crude glycerol, which depends on the type of
biodiesel feedstock, production process and location, varies between 3–20 cents/lb. [8,14]. Due to the
low cost and stable nature of crude glycerol, researchers are focusing on its chemical and biological
conversion into value-added products such as bioplastic, microbial oil, etc. Most of these conversion
processes are constrained by the negative effects of impurities in crude glycerol on the chemical reaction
or the microbial strains used for bioconversion. The use of robust microbes and processes can help
overcome these problems and make the use of partially-treated crude glycerol possible.

Various methods have been developed to minimize the residual impurity present in crude
glycerol [15]. These include development of heterogeneous catalysts used for the conversion of
triglycerides to biodiesel. Interestingly, recent developments in bioconversion of crude glycerol to
various value-added products show that certain microbial strains could take advantage of impurities
present in crude glycerol [16]. Therefore, both pure, partially purified and non-purified glycerol
could play a significant role in “waste to value” scenarios. Though conversion of glycerol to
value-added biochemicals and biofuels has been widely investigated, these techniques are not
extensively commercialized as yet. In this review, we will discuss the nature of crude glycerol and
ongoing research of its conversion to value-added products. Both chemical and biological routes
of glycerol valorization will be presented. Details of crude glycerol conversion into microbial lipid
and subsequent products will also be highlighted. Figure 1. summarizes the routes for crude
glycerol valorization.
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2. Impurities in Crude Glycerol and Hurdles to Use

The composition of glycerol and level of impurities present in it depends on the type of vegetable
oil, catalysts and alcohol used and process conditions etc. [17,18]. However, various impurities that are
generally present in crude glycerol include un-reacted triglycerides and alcohol (commonly methanol),
residual fatty acid methyl esters (FAMEs), water, soap, free fatty acids (FFA), salts and catalyst [16,19,20].
The type of catalyst used for biodiesel production plays a significant role in determining the type
of impurities in crude glycerol. Use of homogeneous catalysts (such as sodium hydroxide) for
biodiesel production results in the formation of higher levels of salts which eventually deposit into a
crude glycerol layer. Lesser salts are formed when heterogeneous catalysts (e.g., calcium oxide) are
used instead [19]. Additionally, homogeneous catalysts also lead to the generation of soap and gel,
which leads to phase separation problems at the end of the biodiesel production process and during the
conversion of crude glycerol into value-added products. Thus, to make the crude glycerol valorization
process efficient and economically feasible, heterogeneous catalysts should be used, as they can result
in glycerol with higher purity [15].

The end product of the transesterification processes comprises of two phases which differ in
density and polarity. The upper phase is made up of biodiesel, while the lower phase is rich in crude
glycerol and other impurities. The obtained crude glycerol must be purified further into technical
or food grade for its commercial application. This purification of glycerol comprises a combination
of both chemical and physical treatment. Generally, crude glycerol refining involves a three-step
process. This starts with neutralization for the removal of soaps and salts followed by vacuum
evaporation to eliminate the excess methanol and water. Finally, other unit operations are used to
get purer form of glycerol. Neutralization of crude glycerol can be carried out by adding strong acids
(such as sulfuric acid, phosphoric or hydrochloric acid) into crude glycerol. The acid converts the
soap present in crude glycerol into free fatty acids. Strong acids like sulfuric acid, phosphoric acid
and hydrochloric acid have been used for neutralization. In a second stage, alcohols are removed
by vacuum distillation due to their lower boiling point. At commercial level, advanced heat transfer
technologies, i.e., a falling film evaporator and rising film evaporator, ensure the prevention of glycerol
decomposition [21]. Physical deep separation technologies like vacuum distillation, activated carbon
adsorption, membrane separation and ion exchange chromatography have been employed in the final
stage to obtain glycerol with higher purity [3,22]. Ismail et al. [23] refined glycerol using neutralization
followed by microfiltration and ion exchange resin adsorption. Glycerol purity to a level of 86 wt%
has been reported without a distillation operation [24]. A higher purity of 95.7 wt% was obtained
by Manosak et al. [24] using acidification and polar solvent extraction followed by activated carbon
adsorption. Commonly, vacuum distillation at higher temperature (150–200 ◦C) must be employed to
obtain technical grade glycerol (99.5 wt %). In terms of process economy, thermal separation processes,
i.e., distillation, accounts for 50% of plant operation costs due to its higher energy consumption.
However, new distillation technologies using cyclic distillation columns and dividing wall column
distillation (DWC) systems help process economy criteria without compromising the quality of the
final product [25–27]. However, due to the slump in the price of glycerol, purification of crude glycerol
to higher grade glycerol has become uneconomical. Due to this, crude glycerol is being treated as
a waste by-product by various biodiesel producers. This has necessitated the conversion of crude
glycerol into value-added products rather than purifying it into a higher grade.

A lot of research has been carried out to valorize crude glycerol. However, the impurities
in crude glycerol have always deterred the success of such conversion processes. For instance,
Payle et al. [28] reported that the presence of methanol impurities negatively affects the algal production
of docosahexaenoic acid (DHA) from crude glycerol. Similarly, during biogas generation from crude
glycerol via anaerobic co-digestion, impurities such as salts (Na or K) have been shown to inhibit
the growth of microbes [29]. Shengjun Hu et al. [30] carried out a characterization of crude glycerol
samples generated from a biodiesel production unit and reported that the crude glycerol was made up
of eight components, namely, methanol, free glycerol, water, soap, fatty acids methyl esters, free fatty
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acids, glycerides and ash. The results show that 85% of the mass of crude glycerol is accounted for by
glycerol, methanol, FAMEs, soap and water. On the other hand, glycerides, FFAs and ash make up less
than 15%.

3. Technologies Studied for Value Addition of Glycerol

3.1. Chemo Catalytic Conversion

Due to its unique structure, properties, availability and renewability, a number of value-added
products can be derived from glycerol via catalytic transformation. Different reaction pathways, namely,
selective oxidation, selective dehydration, reforming, thermal reduction and selective etherification,
have been attempted for value addition of glycerol. The major catalyst-assisted, glycerol-derived
production processes are discussed below.

3.1.1. Oxidative Conversion of Glycerol to Fuel Additives

Gasoline, diesel and biodiesel blended with fuel additives shows better performance due to
important changes in fuel properties. It can also reduce the emission of greenhouse gases (GHG).
Improvement in the fuel viscosity, octane and cetane number ensures stability, ease of cleanliness and
prevention of engine corrosion [31–33]. Petroleum-derived fuel additives like ethanol, methyl tert-butyl
ether (MTBE) and ethyl tert-butyl ether (ETBE) can be replaced with glycerol-derived additives,
more specifically by glycerol esters, glycerol ethers and glycerol formals [34]. Major reactions for the
production of fuel additives are acetylation [35–39] and ketalisation [40], in which glycerol interacts
with chemical groups like carbonyl compounds [26].

1. Glycerol Esters (Acetin)

Esters of glycerol or acetin are produced using esterification with carboxylic acid in the presence
of catalysts [32,33]. Acetylation of glycerol with acetic anhydride is also a potential route for the
acetin synthesis [41,42]. Mono, di and tri acetin glycerol (MAG, DAG and TAG) are derived via a
three-step esterification process of glycerol with acetic acid (Scheme 1) or acetic anhydride (Scheme 2).
Mixed catalysts of Zr phosphate–sulphate and Amberlyst-15 show the best catalytic performance
in terms of complete conversion of glycerol and better selectivity of triacetin [35,43]. Information
related to recent development of catalysts is presented in Table 1. Acetic anhydride is also a potential
acetylating agent with higher selectivity of TAG due to the generation of an acetic acid molecule,
which further reacts with the MAG and DAG produced in the first and second step, resulting in
TAG [44]. Gonzalves et al. [35] reported the use of Amberlyst-15 as a catalyst for the esterification of
glycerol with acetic acid. This resulted in excellent catalyst activity with 97% glycerol conversion and
90% selectivity of TAG obtained. Complete glycerol conversion is possible with 100% selectivity of
TAG by performing the reaction in two steps: first, a reaction of glycerol with acetic acid and, second,
a reaction with acetic anhydride [37]. Jinyan Sun et al. [45] prepared Fe-Sn-Ti (SO4 2−)-400 catalyst and
tested it at 80 ◦C for 30 min for glycerol esterification in the presence of acetic anhydride. It resulted in
99% selectivity of TAG with 100% conversion of glycerol.
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2. Glycerol Ethers

Highly branched materials can be derived via etherification of glycerol with alkenes
(mainly isobutene) (Scheme 3) and alcohols like tert-butyl alcohol (TBA) (Scheme 4) in the presence
of homogeneous or heterogeneous catalysts [35]. A blend of 1, 3-di, 1, 2-di and 1, 2, 3 tri-tert-butyl
glycerol and aromatic diesel fuel drastically reduces the emission of particulate matter, hydrocarbons
and carbon monoxide [46,47]. The low boiling point (−6.9 ◦C) of isobutene demands high pressure
during the etherification reaction to keep it in a liquid stage for the reaction. Despite this, the reaction
performance is governed by mass transfer between the two reactants [48]. However, the reaction
conditions are mild with etherification of glycerol with TBA in the presence of an acid catalysts.
In comparison with isobutene, TBA is more attractive for the production of glycerol tertiary butyl
ethers (GTBEs) [49]. Behr and Obendorf [50] studied the reaction between isobutene and glycerol in the
presence of p-toulene sulfonic acid and phosphorus tungstic acid. They observed low conversion of
glycerol levels of 89% and 79%, respectively, with these homogeneous catalysts. Huang and Kim [51]
reported that that Amberlyst-15 exhibits the best efficiency with 97% conversion of glycerol and 33%
selectivity of TTBGs (tri-tert-butyl glycerol) and DTBGs with TBA. Amorphous carbon-based catalysts
obtained using sulfonation of peanut shells shows very good catalytic performance, achieving complete
glycerol conversion and 92% selectivity of GTBE at 70 ◦C [52]. The effectiveness of silica-based sulfonic
catalyst that exhibits 78% conversion of glycerol in 30 min of reaction time has also been reported [52].
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3. Glycerol Formal

Glycerol formal is a mixture of acetal and solketals and is derived via a condensation reaction
of glycerol with aldehydes or ketones over homogeneous or heterogeneous catalysts (Scheme 5).
The product composition of solketal and acetal is affected by reaction condition and type of
catalyst [52,53]. Suriyaprapadilok and Kitiyanan [54] studied the reaction between glycerol and
acetone in the presence of p-toluene sulfonic acid. The results revealed that excess of acetone leads
to higher levels of solketal, rather than acetals at the end of the 12 h reaction time. Malaya et al. [55]
reported that Amberlyst-36 catalyst show good efficiency with 96% selectivity of solketal. Silva et al. [56]
reported that longer aldehyde chains prevent its interaction with glycerol, and the pore size of the
catalyst does not impact the conversion of acetone. More details about catalysts are summarized in
Table 1 below.
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80 ◦C, 15 bar >95 97 2 [59]

15 Isobutene (IB) Sulfonated
peanut shell

Catalyst 6 wt%, IB/glycerol = 4 mol/mol,
2 h, 70 ◦C, 15 bar 100 92 2 [60]

16 Acetone Amberlyst-36 Acetone to glycerol ratio 4:1,
25 ◦C, 500 psi 100 96 3 [55]

17 Acetone catalyst free Reaction at super critical condition,
508 K, 8 MPa, 240 min 28 80 3 [61]

18 Acetone SnCl2 Catalyst: 1 wt%, acetone/glycerol = 8:1 78 76 3 [62]

19 Acetone DT-851 sulfonic
acid resin

Catalyst: 5%, acetone/glycerol: 20:1,
58 ◦C, 10 bar 95 99 3 [63]
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montmorillonite Benzaldehyde/glycerol: 1.1:1, 40 ◦C, 6 h 83 99 3 [63]

1 Tri acetin glycerol, NA not available, 2 glycerol tertiary butyl ethers, 3 solketal.

3.1.2. Hydrogen or Syngas Production from Glycerol

Hydrogen is a promising potential ecofriendly fuel as its combustion leads to the production
of only water molecules as a by-product. Currently most hydrogen production processes (95%) use
fossil fuel as the raw material. Similarly, syngas, a mixture of hydrogen and carbon monoxide, is also
considered as a valuable intermediate for the production of methanol and hydrocarbons through
Fischer–Tropsch synthesis [64,65]. The production of hydrogen and syngas is another promising use
of glycerol (Scheme 6). Conversion techniques like pyrolysis, steam reforming, partial oxidation,
auto thermal reforming and aqueous phase reforming can be used for the production of hydrogen and
syngas from glycerol. Pyrolysis of glycerol is a thermal decomposition process in the absence of oxygen.
Glycerol is converted to hydroxyacetone, 3-hydroxypropenal and glyceraldehyde by dehydration
and dehydrogenation reactions and then transformed into syngas at higher temperature [66].
Higher heat inputs and unstable product distribution facilitates glycerol pyrolysis [34]. Steam reforming,
a combination of pyrolysis and a water gas shift reaction, is a common technology applied for hydrogen
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and syngas production from glycerol. Pre-vaporization of reactants demands higher heat input
and process heat. However, the reaction is carried out at ambient condition of pressure [67,68].
Aqueous phase reforming, a process developed by Dumesic et al. [69], transforms glycerol in an
aqueous phase without pre-vaporization under a moderate temperature (470–525 K) and pressure
(16–40 bar). The automobile industry uses the high purity hydrogen synthesized by aqueous phase
reforming for PEM fuel cells [70]. Partial oxidative reforming is an exothermic process in which glycerol
conversion efficiency relies on controlling the amount of oxygen that enters into the reaction mixture.
Partial oxidation reforming processes have high energy efficiency and also allow the production of
syngas with control of the added amount of oxygen [71]. Supercritical water reforming is an innovative
route for the production of hydrogen at higher pressure and lower temperature. Water takes part in
the reaction at its critical point (374 ◦C, 218 atm) [72]. Table 2 includes a summary of the performance
of some catalysts in the conversion of crude glycerol to hydrogen and syngas, as recently reported in
the literature.
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Technology

System of
Operation Glycerol/Water Catalyst Temp (◦C) Pressure H2 Yield

(%) XG (%) Ref.

1 Steam
reforming

Fixed bed
reactor 1:16 Ni/Al2O3 600–700 atm 75–100 100 [57]

2 Steam
reforming

Fixed bed
reactor 1:9

Ni, Pt, Pt–Ni
with γ-

and La2O3

500–600 0.4 MPa 90 100 [73]

3 Steam
reforming

Fixed bed
reactor 1:3 Ni/Al2O3 400–700 atm 80 100 [74]

4
Partial

oxidation
reforming

Fixed bed
reactor 1:3, 1:6, 1:9 Ni/CeZrO2/Al2O3 550–650 atm 67–69 40–70 [75]

5
Aqueous

phase
reforming
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reactor 1:3 AP Ni,

Raney Ni 225 2.76 MPa 50–100 100 [72]

6
Aqueous

phase
reforming

Fixed bed
reactor 1:3 Ni, Ni5Cu, Ni10

Cu, Ni20Cu 250–270 38–52 atm 80–90 60 [76]

7 Auto thermal
Reforming

Fixed bed
reactor

80 wt%
glycerol and
20 wt% D.I.

water

BASF Pt.
and Rh/Pt.

double-layer
monolith

600–700 atm 75 100 [77]

8 Auto thermal
Reforming

Fixed bed
reactor 1:3 Rh Ce/γ-Al2O3 900–1200 atm 79 100 [78]

9
Super critical

water
reforming

Fixed bed
reactor 1:3 Na2CO3 380–500 25 MPa 60 100 [79]

3.2. Direct Use or Minimal Treatment Products

Glycogenic amino acid and adipose triglycerides are valuable sources for glucose synthesis for
animals that produce milk. Ketosis is a metabolic disorder that commonly takes place during the
calving of an animal. Glycerol drenching is an effective treatment for the prevention of ketosis as
the metabolic pathway of glycerol is pretty similar to glucose [80]. Cotrill et al. [81] reported high
and rapid availability of net (2.27 Mcal/kg) and gross energy (4.32 Mcal/kg) from glycerol used as a
lactation energy supplement. The possible use of glycerol as an animal food supplement depends on
various parameters like the supply of glycerol, fuel demands and the price of the other feeds like oil
seeds or fats which that are used for the production of biodiesel [82]. Bodarski et al. [83] showed that
glycerol increases the blood insulin concentration in cows, which in turn improves the milk protein
content and yield. In dairy cows, body weight (BW), body condition score (BCS), ruminal volatile fatty
acids (VFA) and feed intake increases on glycerol administration in feed [10]. When added as feed
to laying hens, egg quality, nutrient retention, metabolic energy and egg performance is unaffected
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by incorporation of 6% glycerol in their diet [84]. Growth performance and nutrient digestibility is
not affected by increasing the glycerol intake level in broiler diets [85]. Hampy et al. [86] indicates
that 5% crude glycerol in a meat goat’s diet is beneficial. Presence of impurities in crude glycerol is
an important consideration while using crude glycerol as an animal feed supplement as it directly
affects nutritive value and health. Drackley [82] reported the effect of methanol impurities in glycerol
on pre-ruminant calves. Energy rich grain such as corn could be replaced by glycerol after removing
the impurities of methanol [87]. While use of crude glycerol in this manner is possible, the conversion
of glycerol to value-added products could lead to higher benefits.

3.3. Biological Conversion of Glycerol to Value-Added Chemicals

Most of the chemical routes for conversion of glycerol to value-added products discussed above
make use of harsh and toxic chemicals. On the one hand, exposure to such chemicals can be detrimental
to individual health. On the other, release of effluents containing such chemicals can seriously impact
the existing eco-system. Furthermore, chemical conversions are quite energy intensive [88,89]. Thus,
biological conversion of glycerol into different useful chemicals and compounds has been extensively
explored. Like other biological conversions, glycerol conversion via the biological route is gaining
popularity due to its use of enzymes and microbes, which have practically no negative impact upon
the human population and environment. Some of the conversion processes (reactions) which are
generally complex and infeasible via the chemical route can also be accomplished easily by using
biological routes. However, the main drawbacks of the bioconversion process are its costs due to low
productivity [90,91]. As both the conversion processes (chemical or biological) have certain drawbacks,
a combination of these conversion processes has also been explored in order to increase the productivity
of the overall process [92,93].

The carbon source which serves as the essential nutrient for microbes accounts for approximately
60% of the annual operation cost of fermentation systems. Thus, replacing the conventional carbon
sources such as glucose with cheap substrates (e.g., crude glycerol, lignocellulose hydrolysate, effluents
from pulp and paper industries, etc.) can reduce the overall production cost [90,94,95]. Use of
such cheap substrates makes the biological conversion process economically feasible and sustainable.
Additionally, from an environmental point of view, recycling of such waste by-products is desirable.
Due to these reasons, crude glycerol has been extensively explored as an alternative carbon source for
various biological conversion processes [96]. Glycerol also holds biochemical advantages over other
sugars [97]. The amount of reducing equivalents produced from bioconversion of glycerol to pyruvate
or phosphoenolpyruvate is twice more as compared with hexose and pentose [96,98].

Additionally, utilization of glycerol reduces concerns associated with the diauxic growth
which often adversely affect the productivity of the conversion. For instance, when lignocellulosic
hydrolysate/pre-hydrolysates are used as the carbon source for microbial growth, the microorganisms
under study selectively consume preferred hexose sugars over the other types of sugar [97]. The problem
of catabolic repression can be avoided by using glycerol. These characteristics of glycerol makes crude
glycerol a potentially suitable substrate for its efficient biological conversion to commercially valuable
products. Some of the important value-added biochemicals that have been studied for their production
using crude glycerol via the biological route are discussed below.

3.3.1. Microbial Lipids

Microbial lipids, also known as single-cell oils (SCO), are obtained from a group of microbes known
as oleaginous microorganisms. Oleaginous microbes are microorganisms that can accumulate lipids as
more than 20% of their dried cell biomass. These microbes can fall into the categories of yeasts, fungus,
bacteria or microalgae [99,100]. Most of the oleaginous yeasts and fungi (mainly molds) accumulate
lipids in the range of 40%–70% [5,101,102]. Lipid accumulation in microalgae can vary between 1% and
70% [103] with some of them capable of accumulating up to 90% under certain conditions [104]. Lipids in
yeast, fungus and microalgae are mostly neutral lipids, mainly triglycerides (TAG). The lipid also
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contains free fatty acids, phospholipids, etc., but in much lower levels. Very few bacterial species can
accumulate large quantities of lipids. Most of the lipids from bacteria are mostly complex lipoids such
as polyhydroxyalkanoic acids (PHA). However, few bacterial strains belonging to the actinomycetes
group seems to accumulate a high amount of lipids (up to 70%). Additionally, unlike other bacteria,
the lipids from actinomycetes genera are of the TAG form [5,100,102]. Lipid accumulation in oleaginous
microorganisms takes places under stress environments, such as a shortage of major nutrients in the
media. Under nutrient-limited conditions (usually nitrogen or phosphorus) and enough or excess
amount of carbon sources, in oleaginous microbes (fungus and microalgae) the carbon flux is directed
towards the accumulation of lipids [100,105]. Lipids obtained from oleaginous yeast, fungi and
microalgae are in the form of neutral lipids and their fatty acids profiles are quite similar to the oils
from plants and animals [100,102]. Thus, such lipids can potentially be used as an alternative to
conventional oils in food, pharmaceutical and biofuel industries.

In recent decades, potential use of microbes to produce oils or oleo-chemical products is gaining
popularity. This is because use of microbial lipids addresses some of the issues associated with the
production of vegetable oils via a conventional route. Unlike conventional vegetable oil production,
microbial lipid production does not make use of large amount of arable lands. In addition, the production
process is less dependent on weather conditions, requires a lower amount of water and manpower,
is easier to scale up and has a shorter life cycle compared to conventional vegetable oils [16,106].
Two types of microbial oil production pathways exist in oleaginous microbes: (i) the de novo pathway
and (ii) ex novo pathway. Conventional sugar sources (such as glucose and glycerol) or organic
acids present in the fermentation media are catabolized and converted into storage lipids via the de
novo pathway.

Most of the hydrophobic compounds (e.g., fatty acids or oils) present in the media are taken
up with the aid of active transport inside the microbial cell via the ex-novo pathway for growth or
accumulation as lipids [100,107,108]. Compared to the ex- novo pathway, when microbial growth
takes place on hydrophilic substrate, such as glycerol, lipids with higher quantities of triglycerides
(TGA) are produced [109]. The biochemistry of lipid metabolism of oleaginous microbes differs from
that of non-oleaginous microbes mainly in two ways. Firstly, in oleaginous microbes, citric acid is
continuously converted to acetyl Coenzyme A (CoA) (a precursor for the fatty acid pathway) by
adenosine triphosphate (ATP): citrase lyase (ACL).

Presence of such mechanism ensures the availability of enough precursor for the fatty
acid biosynthesis. Secondly, nicotinamide adenine dinucleotide phosphate (NADPH; coenzyme),
an essential reductant used in fatty acid biosynthesis, is generated sufficiently from malic acid or
similar alternative NADPH-generating sources [100,109]. Generally, molds accumulate a large amount
of lipids richer in polyunsaturated fatty acids (PUFA). Lipids with high levels of PUFAs such as gamma
linoleic acid (GLA), eicosapentaenoic acid (EPA), arachidonic acid (ARA), and docosahexaenoic acid
(DHA) have a number of health benefits and thus find a lot of food and medicine applications [108,110].

Microbial lipids obtained from yeasts have a high amount of monounsaturated fatty acids (MUFA)
and thus can be used as suitable feedstock to produce biodiesel. We have demonstrated the use of oils
rich in MUFA for the production of other compounds such as bioplastics [16,93,111,112]. The chemical
composition of lipids obtained from oleaginous microbes also depends on factors such as the type of
species or strain, media composition and growth conditions. We also grew Rhodosporidium toruloides
ATCC 10788 in media with different concentrations of essential oil from orange. Microbial oils with
different fatty acids profiles were obtained. Similarly, growth parameters such as temperature also have
a direct effect on the chemical composition of the lipids obtained [111,112]. When oleaginous yeast
Lipomyces starkeyi was grown under different temperature conditions (i.e., 15 ◦C to 28 ◦C), the lipids
obtained were quite different in their fatty acids profiles. At a lower accumulation phase temperature
(15 to 18 ◦C), the lipids obtained had a higher degree of unsaturation compared to that at 28 ◦C [113].
Though microbial lipids have a huge potential to replace conventional oils, they are currently still very
expensive compared to vegetable oils. To make it cost competitive, cheap substrates, such as crude
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glycerol from biodiesel industries, should be used for their production [110]. This will significantly
reduce the overall production cost of microbial lipids. Due to this reason, recent studies have focused
on utilization of crude glycerol to produce microbial lipids. However, like in other bioconversion
processes, impurities present in the crude glycerol have posed a huge problem for such conversion.
Methanol, salt and soap are three major impurities that have been found to hinder the production
of microbial oils from crude glycerol [114–117]. Pyle et al. [28] found that the presence of methanol
and soap in crude glycerol reduces the biomass and DHA production of Schizochytrium limacinum
SR-21. Similarly, Gao et al. [118] reported that methanol can significantly reduce the lipid production
of oleaginous yeast Rhodosporidium toruloides 32489. Compared to the control experiment, the presence
of methanol in the media reduced the lipid production by 17.7%.

In another instance, salt (5.5% NaCl) present in crude glycerol was found to have a detrimental
effect on the growth and poly(3-hydroxybutyrate) (PHB) content (reduced by 48%) of P. denitrificans [119].
It is due to these reasons that many researchers have focused on pre-treating crude glycerol before
its utilization as a carbon substrate for the growth of these microbes. Purification of crude glycerol
to a certain degree before its biological conversion requires an additional unit of operation in the
overall production of microbial lipids. With the addition of such a unit of operation, the overall
operational cost for the production of microbial lipids will increase. This will make conversion of
crude glycerol to microbial oil production economically unattractive. Thus, from a commercial point of
view, direct conversion of crude glycerol into microbial lipids is desirable. Thus, a robust strain that
can withstand the harsh environment of crude glycerol has to be found. In this regard, we recently
reported the robust oleaginous yeast, Rhodosporidium toruloides ATCC 10788, which grew well in crude
glycerol with high levels of impurities [16].

When crude glycerol with 44.56 wt% glycerol, 13.86 wt% methanol, 10.74 wt% of ash and 32.97 wt%
of soap was used as a carbon source for Rhodosporidium toruloides ATCC 10788, double the biomass
(21.16 g/L) and triple the lipid content (11.27 g/L) were obtained. Similarly, oleaginous microorganisms
such as Mortierella isabelline, Yarrowia lipolytica [120], Trichosporon fermentans CICC 1368 and Trichosporon
cutaneum [121] have also been shown to grow well and accumulate lipids in the presence of impurities
present in crude glycerol. In our lab, besides crude glycerol, we have also explored the potential
use of hemicellulose hydrolysate, a waste by-product from a lignocellulose processing plant, as a
cheap carbon substrate for the production of microbial lipid. The hemicellulose prehydrolysates
from lignocellulosic biomass have similar issues with the presence of toxic compounds present in
them. We reported that under optimum growth conditions, Cryptococcus curvatus ATCC 20509 can
successfully grow in hemicellulose hydrolysate and produce 16.54 g/L of cell biomass and 6.97 g/L of
lipid concentration at the end of 164 h without detoxification in a batch bioreactor [122].

3.3.2. Constraints for the Commercial Production of Microbial Lipid from Crude Glycerol

Even though various new approaches (screening robust screen, genetic modification, novel feeding
strategies, pretreatment, etc.) have been explored for the valorization of waste by-products such as crude
glycerol and lignocellulose hydrolysate, most of them have been limited to the research levels [100].
This is mainly because of variations in composition of these waste by-products, which have a direct
impact on the bioconversion process. While this statement holds true in most of the biorefining processes,
here we will limit our discussion to crude glycerol from biodiesel industries. The impurities present in
crude glycerol are directly dependent on the type of substrate used for biodiesel production, production
processes and the degree of downstream separation involved. All three factors vary considerably
between industries and even between batches from the same production facility. A systematic study is
required to determine the exact reason for such variations. There are also some additional reasons
for these processes not to be easily scaled up to commercial levels. Currently, most of the biodiesel
production processes are mainly designed focusing on the quantity and quality of biodiesel produced
but overlook the quality of glycerol produced. To make the biodiesel more cost competitive and
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enhance the company’s revenue, biodiesel producers often use cheaper feedstock, catalysts (such as
sodium hydroxide) and downstream processes.

Cheaper feedstock used for biodiesel industries varies from plant-based oil to waste cooking oil.
Most commonly, sodium hydroxide is used as a catalyst. While use of such feedstock and catalyst
might help in the production of biodiesel that meets the specifications for commercial applications,
the glycerol obtained is quite low in quality and even inconsistent from batch to batch. Such low-quality
glycerol needs to be purified to a certain degree before use. However, due to the glut of glycerol,
even purified glycerol prices have slumped [100]. Due to this, crude glycerol is currently treated
as waste. Such waste glycerol has very few applications, and for its bioconversion, we need its
composition to be consistent throughout. This leaves biodiesel producers in a dilemma of using
improved biodiesel processes which would be costly or sticking to the conventional process and treat
glycerol as waste. In this regard, we recently reported a comparative study between different types of
biodiesel production catalysts.

We also provided a recommendation on what type of catalyst to use if a company wants to reduce
the generation of crude glycerol waste without compromising on their current biodiesel production
cost [15]. We found that even though the use of homogeneous catalyst (such as sodium hydroxide)
can generate biodiesel that meets the commercial specification, it can generate low grade glycerol.
To generate high quality biodiesel and glycerol, we recommended the use of a heterogeneous catalyst
in an anchored or unanchored form. Use of such heterogeneous catalyst can produce commercial grade
biodiesel and simultaneously a purer form of glycerol for its direct bioconversion into the value-added
products. Integration of such a production process into existing biodiesel production plants can
reduce the generation of glycerol waste and improve a company’s revenue. To address the cost
constraints involved with the use of heterogeneous catalyst, we have also demonstrated the potential
use of ash as heterogeneous catalyst for biodiesel production. Even though biodiesel a production
process simultaneously focusing on the quality of glycerol for its valorization and subsequently the
revenue generation of a company is recommended, it will take a while before this is implemented by
biodiesel producers. A major constraint to research in the use of crude glycerol valorization is the
use of samples from a single batch. Such samples cannot be good enough to represent crude glycerol
whose composition varies from batch to batch in real case scenarios. With so much variation in the
composition of crude glycerol, it is even hard to prepare a representative synthetic crude glycerol in
the lab to conduct any research. Hence, a comprehensive investigation of the effect of impurities and
their interactions has to be carried out to overcome the stated constraints.

3.3.3. Production of 1, 3-Propanediol

1, 3-Propanediol (1, 3-PD) is perhaps the most investigated biochemical via bioconversion of
glycerol. 1, 3-PD is a colorless viscous liquid belonging to the group of diols. It is one of the main
precursors in the synthesis of polytrimethylene terephthalate (PTT) and other polymers. Furthermore,
it has a variety of applications in cosmetics, foods, lubricants, and medicines [123,124]. Bacteria of
the genera clostridium, klebsiella, citrobacter, hafnia, and lactobacillus are mainly reported for production
of 1, 3-PD from glycerol [123,125,126]. Among these, Clostridium butyricum and Klebsiella pneumoniae
are well-studied bacteria. Even though Klebsiella pneumoniae produces a high level of 1, 3-PD,
Clostridium strains such as C. butyricum and C. pasteurianum have attracted more attention as they are
non-pathogenic and also have a vitamin B12 independent glycerol dehydratase enzyme, as opposed
to Klebsiella pneumoniae, which is a pathogen and requires medium with exogenously-provided
B12 [127,128].

Bioconversion of glycerol to 1, 3-PD takes place in a two-step enzymatic reaction sequence. Firstly,
glycerol is converted to 3 hydroxypropionaldehyde (3-HPA) and water by glycerol dehydratase, and
then, NADH dependent 1, 3-PD dehydrogenase reduces 3 hydroxypropionaldehyde to 1, 3-PD [129].
Both pure and crude glycerol were compared for the production of 1, 3-PD. In general, higher yields for
production of not only 1, 3-PD but also other metabolites were reported with pure glycerol [129,130].
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However, reports are available that show approximately the same yield from 1, 3-PD production
for both pure as well as non-purified glycerol. For instance, 11.3 g/L of 1, 3-PD was obtained using
C. butyricum grown on both pure glycerol (99%) and crude glycerol (81.0%) during batch cultures in a
3-L bioreactor [131]. A positive influence of impurities has even been reported. Productivity of 1.51 g/L
h using crude glycerol as compared with 0.84 g/L h with pure glycerol was reported by Jun et al. [132]
after 47 h of fermentation using Klebsiella pneumoniae.

3.3.4. Microbial Hydrogen Production

Hydrogen (H2) is a clean and renewable fuel that produces only water on combustion. This can
significantly reduce CO2, NOx, particulate and other emissions. Hydrogen not only serves as a
clean fuel, but it is a valuable feedstock for production of food, pharmaceuticals, specialty chemicals
and petrochemical products [133]. Four groups of microorganisms including anaerobic, facultative
anaerobic, aerobic and phototrophic are involved in the production of hydrogen based on the
biosynthesis pathways. The main fermentative bacteria known to produce hydrogen include
Enterobacter sp., Bacillus sp., Clostridium sp., Klebsiella sp. and Citrobacter sp. [134]. Dark fermentation,
photo fermentation, microbial electrolysis cells (MECs) and microbial fuel cells (MFCs) and
combined methods were applied using glycerol as substrate for production of biohydrogen [8,13].
Dark fermentation showed better performance in terms of production rate, yield and cost as compared
with H2 production usingt photosynthetic techniques. The cost of H2 production via the photosynthetic
pathway is 300-fold higher than fermentative H2 production [135]. Microorganisms such as Clostridium
sp. and Klebsiella pneumoniae [136,137] in dark fermentation and Rhodopseudomonas palustris [138] in
photosynthetic fermentation were used. A combination of dark fermentation with a MEC was studied
using glycerol, and a maximum H2 rate of 332 mL/L and a yield of 0.55 mol H2/mol glycerol was
achieved [139].

3.3.5. Succinic Acid

Succinic acid (SA) is a C4 linear saturated dicarboxylic acid and as a platform chemical plays a
significant role in the synthesis of polymers such as polyesters and polyurethane. Furthermore, it has
several applications in food, cosmetics and pharmaceuticals [140]. In 2018, the global production of
(SA) was 131.71 million tones, and it is predicted that its market will increase further [141]. Production
of SA on an industrial scale is based on the oxidation of maleic anhydride [142]. The high cost of
this chemical conversion has motivated scientists to seek alternative economical processes. SA can
be produced using microbial fermentation and a low-cost substrate such as glycerol, which will help
to reduce the cost of production substantially. Moreover, biological conversion of SA requires the
addition of CO2 to the culture broth, which contributes to the reduction of CO2 emissions [143].

Anaerobic facultative bacteria like Mannheimia succiniciproducens [144], Anaerobiospirillum
succiniciproducens [145], Actinobacillus succinogenes [146] or Basfia succiniciproducens DD1 [147]
have been reported to produce SA as a fermentation end-product. Engineered strains such as
Yarrowia lipolytica [148] and Escherichia coli [149] have also been reported. Anaerobiospirillum succinici
is one of the best SA producers, with production of 19 g/L of succinate using glycerol as the only
carbon source in the medium [150]. One of the limiting factors to achieving a higher yield is the redox
imbalance during cell growth. Utilization of an external electron acceptor such as dimethylsulfoxide
can improve the SA production in this strain [151].

3.3.6. Citric Acid

Citric acid is an organic acid with various applications, mainly in the food industry and
pharmaceutical industry. Several microorganisms including bacteria, fungi and yeasts have been
studied for the production of citric acid. Aspergillus niger has been used on an industrial scale [152] for
microbial production of citric acid for a long time. Among citric acid producers, yeasts showed better
resistance against metal ions which facilitate the use of non-pure substrate such as crude glycerol.
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This in turn improves the overall economy of the process [152]. In addition, the unicellular nature
of yeast allows a better process control [153,154]. Candida (Yarrowia) lipolytica, Candida guilliermondii,
Candida oleophila, Candida intermedia, Candida paratropicalis, Candida zeylanoides, Candida catenulata,
Candida parapsilosis and Pichia anomala are the yeast species that were reported to produce citric
acid [155,156]. Mutant strains of Yarrowia lipolytica were also reported to increase the production on
glycerol [157]. It is a potential citric acid producer using this cheap substrate. Submerged fermentation
in batch mode is the most common technique for this bioconversion [156].

4. Conclusions

The biodiesel industry is increasing globally, however, the economics aspect of this production
remains a challenge. The fluctuation of the crude oil industry also affects the competitive price of
biodiesel and other biofuels. Utilizing the desired by-product of biodiesel, glycerol, can contribute
to the sustainable growth and economics of this high demand biofuel. Finding markets for crude
glycerol will also address the environmental issues associated with the surplus generation of glycerol
with expected growth of biodiesel production. We have attempted to highlight and evaluate various
facets of glycerol valorization, ranging from crude glycerol composition, its purification and multiple
routes of and the importance of taking into account glycerol purity when designing biodiesel plants.
Glycerol esters, glycerol ether, glycerol formal, fuel additives and syngas can be obtained by chemical
modification of glycerol. In addition, the reduced nature of carbon atoms in glycerol makes this low-cost
substrate more attractive as compared with more oxidized carbon sources for biological conversion of
glycerol to value-added biochemicals such as microbial lipid, 1, 3-propanediol, microbial hydrogen,
succinic acid and citric acid. Both native and engineered microorganisms were able to consume pure
as well as crude glycerol efficiently. In general, the high potential of using glycerol generated by the
biodiesel industry needs to be harnessed as it will bring about economic and environmental benefits
locally and globally. This in turn will help to move towards a circular bioeconomy.
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