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Abstract: The aim of this study was to investigate the effects of aluminum (Al) or selenium (Se) on
the “primary” antioxidant defense system enzymes (superoxide dismutase, catalase, and glutathione
reductase) in cells of mouse brain and liver after long-term (8-week) exposure to drinking water
supplemented with AlCl3 (50 mg or 100 mg Al/L in drinking water) or Na2SeO3 (0.2 mg or 0.4 mg Se/L
in drinking water). Results have shown that a high dose of Se increased the activities of superoxide
dismutase and catalase in mouse brain and liver. Exposure to a low dose of Se resulted in an
increase in catalase activity in mouse brain, but did not show any statistically significant changes in
superoxide dismutase activity in both organs. Meanwhile, the administration of both doses of Al
caused no changes in activities of these enzymes in mouse brain and liver. The greatest sensitivity
to the effect of Al or Se was exhibited by glutathione reductase. Exposure to both doses of Al or Se
resulted in statistically significant increase in glutathione reductase activity in both brain and liver.
It was concluded that 8-week exposure to Se caused a statistically significant increase in superoxide
dismutase, catalase and glutathione reductase activities in mouse brain and/or liver, however, these
changes were dependent on the used dose. The exposure to both Al doses caused a statistically
significant increase only in glutathione reductase activity of both organs.

Keywords: superoxide dismutase (SOD); catalase (CAT); glutathione reductase (GR); aluminum (Al);
selenium (Se); mouse; brain; liver

1. Introduction

Most chemical elements play a very important role in human life. This is especially true for
metals, which may have a major impact on human health [1]. Metals are naturally found in the Earth’s
crust, whereas humans cause their dissemination into the biosphere. These elements are highly stable,
water-soluble, can accumulate in soil, and may enter the human body with food, air, or through the
skin. Aluminum (Al) is especially noteworthy, as it plays an exceptional role in modern life due to its
wide use in both industrial and household contexts. Al compounds are used in water purification and
as antacids, food additives, vaccine adjuvants, and antiperspirants. Al intake does not correlate with
Al amount in the body [2]. Al absorption by the gastrointestinal tract varies from 0.01% to 1% of the
total Al intake. For a long time, owing to its inertness, Al was regarded as a completely harmless metal,
but a growing body of emerging evidence suggests that it may be one of the main factors that cause a
number of diseases in humans and animals [3]. Due to its specific chemical properties, Al inhibits
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more than 200 biologically important functions and causes harmful effects. For instance, chronic
exposure to Al has been proven to play a role in the development of neurodegenerative disorders:
Parkinson’s dementia [4–6] or Alzheimer’s disease [7–9]. The mechanisms of Al neurotoxicity are
unclear, although research has shown that these mechanisms may mostly be attributed to the ability of
Al to: (a) generate reactive oxygen species (ROS) or free radicals when metabolized, and to suppress
the activity of antioxidant enzymes and other components of the antioxidant system in various organs,
(b) impair signal transduction pathways in the cells, and (c) disturb calcium homeostasis. In addition,
Al is one of the causes of hepatotoxicity [10,11] and pathological processes in the testis, kidneys, and
lungs [12–14].

However, there is a range of chemical elements that play an important role in the antioxidant
processes within cells [15,16]. One such microelement is selenium (Se). The beneficial role of Se in
human cells is due to its presence in at least 25 proteins—selenoproteins, part of which are directly
involved in redox catalysis. Trace amounts of Se element are essential for cellular functions [17]. Se is
an element that reduces the risk of cancer [18], prevents cardiac diseases [19], and protects against the
effects of ionizing radiation, heavy metals, and other toxic compounds. There is data indicating that Se
strengthens the body’s immune system, thus reducing the risk of infection [20]. In large amounts Se
and its salts are toxic. Toxic doses of Se are able to negatively affect cellular redox status directly by
oxidizing thiols, and indirectly by generating reactive oxygen species (ROS) [21].

Al is the trivalent cation that does not undergo redox changes, but it has a strong prooxidant
activity and can potentiate oxidative damages [22]. In addition, high amounts of Se can exert toxic
prooxidant properties [21]. The enzymatic and nonenzymatic antioxidant cellular defense systems
play a key role in protecting cells from ROS toxicity. Enzymes superoxide dismutase (SOD), catalase
(CAT) and glutathione reductase (GR) belong to enzymatic defense system antioxidants. SOD catalyzes
the dismutation of two molecules of superoxide anion to molecular oxygen and hydrogen peroxide.
Hydrogen peroxide is degraded to water and oxygen by CAT [23]. GR is the essential enzyme for the
glutathione redox cycle that maintains the level of most abundant intracellular thiols—glutathione.
GR is a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidoreductase, which
catalyzes the conversion of oxidized form of glutathione (GSSG) to reduced form (GSH). In its reduced
form, glutathione plays key roles in the cellular control of ROS [24].

In our previous experimental studies, we evaluated the effect of acute exposure to Al on oxidative
stress and the capacity of the antioxidant system in mouse organs by using the Al intoxication model
that involved the injection of AlCl3 solution into the abdominal cavity of the mouse [25–28]. However,
the obtained results encouraged us to select a different route of administration of Al: the oral route. This
is a natural route of entry of Al into the body, which is also characteristic of humans. In addition, such
administration does not cause inflammation at the site of the injection. A number of studies performed
with experimental animals have demonstrated changes in the cognitive functions and morphological
peculiarities of the CNS following the consumption of water with elevated Al concentrations. Even
though the absorption of Al though the gastrointestinal system is very poor, a long-term negative effect
of Al cannot be ruled out completely, even if the concentrations of Al that enter the body with potable
water are lower. The aim of this study was to evaluate the long-term effect of different doses of Al and
Se on the “primary” antioxidant defense system (the enzymes SOD, CAT, and GR) in mouse brain and
liver cells after an 8-week oral administration in drinking water supplemented with AlCl3 or Na2SeO3.
This would complement the results of our previous studies on the effects of Al and Se on oxidative
stress in mouse tissues.

2. Results

Data of the activities of SOD, CAT, and GR in the tissues of control and experimental animals
are provided in Tables 1–3. Results have shown that Se affects SOD activity in both brain and liver
cells (Table 1). The changes in the activity of the enzyme were observed when the animals received
the high dose of Se (0.4 mg/L in drinking water); the activity of this enzyme increased in the brain
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(45%) as well as in the liver (33%), compared to controls. Meanwhile, at 8 weeks since the initiation of
the experiment, the administration of the Al solution (50 mg or 100 mg Al/L in drinking water) to the
laboratory animals had no effect, i.e., SOD activity in the brain and liver of the experiment animals was
the same as in the respective organs of the control group animals.

Table 1. Superoxide dismutase activity in mouse brain and liver.

Group
Superoxide Dismutase Activity (U/mg Protein)

Brain Liver

Control 5.67 ± 1.30 0.87 ± 0.10
Al1 5.53 ± 0.40 0.92 ± 0.24
Al2 5.44 ± 0.86 0.99 ± 0.17
Se1 5.58 ± 1.20 0.96 ± 0.16
Se2 8.23 ± 0.31 * 1.16 ± 0.10 *

The presented data (Mean ± SD) relate to 8–10 experiments. * p < 0.05 if compared to the control group. Al1—the
mice of the first group; Al2—the mice of the second group; Se1—the mice of the third group; Se2—the mice of the
fourth group; C—control group.

Table 2. Catalase activity in mouse brain and liver.

Group
Catalase Activity (U/mg Protein)

Brain Liver

Control 27.37 ± 6.25 963.80 ± 102.04
Al1 24.79 ± 6.88 944.76 ± 34.90
Al2 28.30 ± 9.78 955.62 ± 43.22
Se1 46.48 ± 17.63 * 903.27 ± 103.78
Se2 41.80 ± 1.96 * 1121.29 ± 144.25 *

The presented data (Mean ± SD) relate to 8–10 experiments. * p < 0.05 compared to the control group. Al1—the
mice of the first group; Al2—the mice of the second group; Se1—the mice of the third group; Se2—the mice of the
fourth group; C—control group.

Table 3. Glutathione reductase activity in mouse brain and liver.

Group
Glutathione Reductase Activity (U/mg Protein)

Brain Liver

Control 9.02 ± 0.89 0.88 ± 0.05
Al1 11.05 ± 2.17 * 1.10 ± 0.17 *
Al2 12.03 ± 1.59 * 1.18 ± 0.15 *
Se1 12.28 ± 1.71 * 0.96 ± 0.07 *
Se2 11.20 ±1.65 * 1.18 ± 0.09 *

The presented data (Mean ± SD) relate to 8–10 experiments. * p < 0.05 compared to the control group. Al1—the
mice of the first group; Al2—the mice of the second group; Se1—the mice of the third group; Se2—the mice of the
fourth group; C—control group.

Similar results (by trend) were obtained when analyzing CAT activity in brain and liver cells of
experimental animals. Like in the case of SOD, evident changes in CAT activity were observed in mice
that received supplementation with the Se solution for 8 weeks (Table 2): CAT activity was statistically
significantly increased in the brain (53%) and liver (16%) of mice that were administered the high dose
of Se (0.4 mg/L in drinking water), compared to that observed in the brain and liver of the control
mice. However, it is noteworthy that during our experiment, the change in brain CAT activity was also
observed in mice that received low doses of Se (0.2 mg/L in drinking water)—in this case, CAT activity
increased up to 69%, compared to the control mice. The administration of both doses of Al caused no
changes in activity of this enzyme in mouse brain and liver.

The results of the experiment showed that the greatest sensitivity to the effect of the Al and Se
was exhibited by GR, and the effect of Al and Se was observed in both the brain and the liver. In
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addition, an increase in GR activity was registered at all the doses of Al or Se salts administered to the
experimental animals (Table 3). Thus, following the administration of Al, GR activity in mouse brain
cells increased by 24% and 34% (at the Al dosage of, respectively, 50 mg and 100 mg/L in drinking
water), in comparison to control. Se also increased GR activity in the brain by 36% (0.2 mg/L in drinking
water) and 24% (0.4 mg/L in drinking water), respectively. The increase in mouse liver GR activity
was dose-dependent: 10% and 33% in 0.2 mg/ L and 0.4 mg/L drinking water, respectively. Similar
changes were observed in the liver GR activity after exposure to Al solutions. The administration of
both low and high doses of Al caused a statistically significant increase in this enzyme activity by 22%
and 33%, respectively.

3. Discussion

As we have mentioned before, the toxicity of chemical elements (both metals and non-metals) is
believed to manifest itself mainly through the formation of ROS or free radicals in the cells of living
organisms or through the inhibition of the enzymes that are a part of the antioxidant system. Thus,
the cells enter a state that is known as oxidative stress. This stress reflects an imbalance between ROS
formation and the ability of the cell’s biological system to neutralize these radicals. The antioxidants
molecules that constitute the antioxidant defense system act at three different levels: Prevent from
radical, scavenge radical and repair radical induced damage [29]. Under usual conditions, a certain
pro-oxidant/antioxidant balance is maintained in the cell, thus protecting the cell (its macromolecules)
against the destructive effect of the ROS. However, due to various internal and external factors (disease
or unfavorable environmental conditions, etc.) this balance may shift in favor of pro-oxidants [30].
Following the depletion of the antioxidant system resources, an uncontrollable increase in ROS in
the cell causes oxidative damage to the essential structures of the cell—lipids, nucleic acids, and
proteins [31]. Thus, by damaging proteins, nucleic acids and lipids in the cell, ROS plays a key role
in the etiology of a number of diseases. In the human organism, oxidative stress is believed to be an
important factor in the development of cancer [32], Parkinson’s and Alzheimer’s diseases, myocardial
infarction, heart failure and atherosclerosis [33], the X syndrome [34], autism [35], infection [36], the
chronic fatigue syndrome [37], and other diseases.

To ensure protection against oxidative stress, the cells have the so-called antioxidant system.
This system is as varied as the radicals that cause oxidative stress. Despite the significant progress in
the understanding of the activity of individual enzymes and components of the antioxidant system,
the complex composition of the cell’s antioxidant system greatly complicates the understanding of
the overall functioning of this “defense system”. Even though there are several classifications of the
antioxidant system in the cells, the classification proposed by Davies [38] in 1988 may be considered
one of the most acceptable ones. According to this classification, the antioxidant system is classified
into the primary and the secondary ones. The primary antioxidant “defense” system consists of the
enzymes such as SOD, CAT, GR and the antioxidant vitamins E, A, C, glutathione, and uric acid. SOD
are enzymes that catalyze the dismutation of the superoxide radical, which causes many types of cell
damages, into molecular oxygen or hydrogen peroxide. Hydrogen peroxide is also damaging and has
degraded by other enzymes such as CAT. GR catalyzes the NADPH-dependent reduction of oxidized
glutathione (GSSG) to reduced glutathione (GSH), which plays an important role in the GSH redox
cycle that maintains adequate levels of reduced glutathione. The GSH/GSSG ratio determines cell
redox status of cells. At rest state healthy cells have a GSH/GSSG ratio greater than 100. When cells
are in oxidative stress conditions, the GSH/GSSG ratio drops from 1 to 10 [39]. Glutathione directly
scavenges free radicals or is the electron donor for the reduction of peroxides in antioxidant enzymes
reactions [40]. Glutathione also is as a thiol buffer maintaining sulfhydryl groups of many proteins in
their reduced form.

The secondary antioxidant system includes lipid-cleaving enzymes—phospholipases, proteolytic
enzymes—proteases and peptidases, DNA-repairing enzymes—polymerases, glycosylases,
endonucleases, exonucleases, and ligases. Concerning the antioxidant “defense” system, of special
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interest is the enzyme group of this system—superoxide dismutase, catalase, and glutathione
peroxidase/glutathione reductase system. They are the elements that form the “first line of defense”
against the ROS and free radicals. The increased GR activity improves the cells ability to replenish
glutathione, and helps maintain favourable GSH/GSSG ratio during oxidative stress.

As we have mentioned before, the aim of this study was to evaluate the effect of 8-week oral
administration of Al and Se salts on the activity of the main enzymes of the antioxidant defense system
(SOD, CAT, and GR) in mouse brain and liver. It is noteworthy that our interest in the study on the
effect of Al and Se on the elements of the cellular antioxidant system has also been stimulated by
the fact that there are a number of studies on this issue, but they use a different animal intoxication
scheme [41].

First, we evaluated the activity of the studied enzymes in mouse brain cells. The evaluation
showed that after 8-week oral administration with AlCl3 and Na2SeO3 solutions, Se ions had the
greatest influence on SOD, CAT, and GR activity (by increasing it). During our experiment, the most
significant increase in the activity of these enzymes was observed with the administration of the high
dose of Se (0.4 mg Se/L in drinking water) by 45%, 53%, and 24%, respectively. Se at low doses (0.2 mg
Se/L in drinking water) affected only CAT and GR activity (it increased by, accordingly, 69% and 36%).
However, Al (both doses of Al; 50 mg and 100 mg Al/L in drinking water) had virtually no effect on
SOD or CAT activity. Only GR proved to be sensitive to the exposure of the experimental mice to both
doses of Al. Al ions increased the GR activity by up to 23% and 33%, respectively.

During the second stage of our study, we evaluated the effect of Al and Se on the activity of the
antioxidant system enzymes (SOD, CAT, and GR) in hepatocytes. The results of the study showed
that the effect of the aforementioned metal salts after 8-week daily oral supplementation caused an
increase in SOD, CAT, and GR activity. The effect was analogous to that observed in the brain cells of
the same experimental animals. Only a high dose of Se affected SOD and CAT activity (the increase
was, accordingly, 33% and 16%), and only GR reacted to the administration of both Al and Se (at all
doses). The administration of both low and high doses of Al caused a statistically significant increase
in this enzyme activity by 22% and 33%, respectively. Se also increased GR activity in the liver by 10%
(low dose) and 33% (high dose), respectively.

It is noteworthy that, compared to the literature data [42–47], our findings partially correlate
with those of other studies. For instance, the results of our previous studies showed that exposure to
Al tends to reduce the activity of the main enzymes of the antioxidant system [25,26]. Such a trend
was observed in both the brain and the liver of laboratory animals [42–45]. Meanwhile, our results
showed that the effect of Al on SOD and CAT activity (in brain and liver) was not as significant. GR
was an exception here, as its activity statistically significantly increased in both the brain and the liver.
Conversely, exposure to Se results in an increase in the activity of all the enzymes of the antioxidant
system. In addition, the literature sources have emphasized the antioxidant effect of Se in neutralizing
the oxidative stress caused by Al (as well as other factors) [42,43,46,47].

Thus, the results of our study showed that elements (in this case, Al and Se) did affect the
components of the antioxidant system in cells of some organs. As expected, the effect depended on the
type of the elements. The much weaker effect of Al on some enzymes (SOD and CAT) might have been
dependent of its physical and chemical properties; this metal has a relatively difficult entry into the
body and very slowly accumulates in organ cells [48]. Al is poorly absorbed in the gastrointestinal
tract (0.1%–1.0% of the oral dose) [49]. As a result, symptoms of oxidative stress develop much more
slowly. It is known that Al circulates in the blood mainly bound to transferrin (90%) and low molecular
mass compounds (e.g., citrate) [50]. Therefore, Al may interfere with Fe homeostasis by displacing it
from transferrin; as a result, Fe is released into the bloodstream. Nayak [51] indicated that exposure
to Al can impair intestinal Fe absorption. Al ions increase Fe concentration in serum and disrupt
normal ferritin level. Al increases uptake of transferrin bound Fe and the transport of non-bound
Fe in human glial cells. The higher levels of intracellular Fe can increase oxidative damages [52].
Oxidative damages of cellular lipids, proteins and DNA and disturbed redox status in cells can been
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characterized by the change in antioxidant enzymes activities and the consumption of sulfhydryl
measured by the reduced glutathione (GSH) status [53]. Glutathione reductase is an enzyme which
causes a reduction of the oxidized glutathione. Reduced glutathione is a component of the antioxidant
system that comprises more than 90% of total intracellular thiols. It is possible that in our experiments
using different doses of aluminum (50 mg or 100 mg Al/L in drinking water), Al enters the brain poorly,
and so we did not determine the effect of Al ions on the activities of antioxidant enzymes SOD and
CAT. It has been found that only 1% of the total body Al accumulates in brain tissue [54]. On the other
hand, it is also known that Al increases the uptake of Fe to brain cells. Fe, a redox-active metal, can
interact with molecular oxygen to form the superoxide anion, which in turn generates a highly reactive
hydroxyl radical [49]. The role of the intracellular antioxidant GSH is important against these radicals.
Reduced GSH can be oxidized to glutathione disulfide (GSSG) during oxidative stress. Reduced GSH
is regenerated from GSSG during the glutathione redox cycle catalyzed by GR; therefore, we found an
increase in the activity of this enzyme in mice brains after long-term (8-week) exposure to drinking
water supplemented with AlCl3 (50 mg or 100 mg Al/L in drinking water). We also found similar
changes in GR activity in both the liver and the brain.

Se is important for a various biological process in mammalian cells [55]. Its beneficial role is
related to low molecular weight Se compounds, as well as to its presence in at least 25 selenoproteins.
Some selenoproteins are directly involved in redox catalysis. Se as a cofactor of glutathione peroxidase
increases the antioxidant capacity of intracellular systems [56]. The amount of Se in the human
brain is low (2.3%) [57], however, the brain uptake of Se has a high preference in the presence of Se
dietary deficiency. The decrease of blood Se concentration and normal brain Se concentration was
determinate in young rats after Se-deficient 13-week diet [58]. The deficient supply of Se may have a
harmful effect on brain cells, can disturb neuronal function and induce cell death [59]. High metabolic
activity of the brain causes excessive production of ROS. The nervous tissue is abundant in Fe, a
substrate for the Fenton reaction, and is rich in polyunsaturated fatty acids, which are the target for
lipid peroxidation. For these reasons, the brain needs highly efficient ROS scavenging that is mainly
mediated by Se-required enzymes [60]. Thus, not surprisingly, exposure to this element significantly
affects the enzymes of the antioxidant system. However, it is also known, that Se seems to have both
beneficial and harmful properties. This element has a two-sided effect depending on its concentration.
The toxic doses of Se are able to negatively affect cellular redox status (directly by oxidizing thiols, and
indirectly by generating reactive oxygen species) [21]. It was shown that neurotoxicity of inorganic
Se compounds is higher in comparison to organic Se compounds [61], with some exceptions, like
methylseleninic acid, selenodiglutathione, L-selenocystine. In our experiments, two doses of Se were
chosen (0.2 mg or 0.4 mg Se/L in drinking water), but the effect of both doses of Se on the activity of
antioxidant enzymes was similar. The data obtained by us are not sufficient to determine whether the
effect of Se on the first line of defense is positive, leading to an increase in the activities of CAT, SOD
and GR enzymes. Se may act as prooxidant, forcing cells to increase their antioxidant defenses.

Thus, considering the obtained results, we think it is expedient for further study to assess the
effect of metals (especially Al) and microelements (Se) on the components of the antioxidant system in
organ cells, paying special attention to the distribution of the studied elements in mice organs.

4. Materials and Methods

4.1. Materials

All the reagents and solvents used through experiments were of analytical grade (>99.9%).
Nitroblue tetrazolium and tris(hydroxymethyl)aminomethane were purchased from Sigma-Aldrich
GmbH (Buchs, Switzerland); aluminum chloride hexahydrate and phenazine methosulfate were
obtained from Sigma-Aldrich (Steinheim, Germany). All other chemicals were from Sigma-Aldrich (St.
Louis, MO, USA).
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4.2. The Object of Research

The experiments were conducted on 4–6-week-old BALB/c laboratory mice (male) weighing
20–25 g. All experimental procedures were performed according to the Law of the Republic of Lithuania
Animal Welfare and Protection (License of the State Food and Veterinary Service for working with
laboratory animals No. G2-80). The mice were maintained and handled at Lithuanian University of
Health Sciences animal house (Kaunas, Lithuania) in agreement with the ARRIVE guidelines.

4.3. The Model of Mouse Intoxication

The mice were given drinking water supplemented with metal salts on a daily basis for 8 weeks.
The mice of the first group (Al1) were given drinking water supplemented with AlCl3 (50 mg (1.85 mmol)
of Al/L in drinking water). The mice of the second group (Al2) were given drinking water supplemented
with AlCl3 (100 mg (3.7 mmol) of Al/L in drinking water). The mice of the third group (Se1) were given
drinking water supplemented with Na2SeO3 (0.2 mg (2.5 µmol) of Se/L in drinking water). The mice of
the fourth group (Se2) were given drinking water supplemented with Na2SeO3 (0.4 mg (5.0 µmol) of
Se/L in drinking water). The control group mice had free access to drinking water without supplements.
Each experimental and control group included 8–10 mice.

After the exposure time, the animals were terminated according to the rules defined by
the European Convention for the Protection of Vertebrate Animals Used for Experimental and
Other Purposes.

4.4. The Brain and Liver Homogenates Preparation

Following cervical dislocation of the animal the brain and liver were removed, washed, and
immediately cooled on ice. The organs were carefully weighed and homogenized in three volumes
(relative to organ weight) of buffer (50 mM Tris-HCl, pH 7.6; 250 mM sucrose; 60 mM KCl; 5 mM
MgCl2; 10 mM 2-mercaptoethanol). Homogenate was centrifuged at 15,000× g for 15 min (centrifuge
„Beckman J2-21“, USA), and then postmitochondrial supernatant was used for the measurement of
enzymatic activity in organ tissues.

4.5. Protein Concentration Assay

Protein concentration in homogenate samples of the brain and liver was measured by using the
Lowry method [62].

4.6. SOD Activity Assay

SOD activity in brain and liver homogenates was evaluated according to the method described
in [63]. Activity of enzyme was evaluated spectrofotometrically (spectrophotometer LAMBDA 25,
USA) by the inhibition of nitroblue tetrazolium (NBT) recovery rate in the nonenzymatic system with
phenazine methosulfate and NADH (nicotinamide adenine dinucleotide/reduced) at 540 nm light
wavelength. The SOD activity was expressed as U/mg protein per 1 min, where U was a relative unit
of activity defined as the amount of SOD required for the inhibition of NBT reduction by 50% and
expressed as a unit of activity in a 1 mg protein sample.

4.7. CAT Activity Assay

CAT activity in brain and liver homogenates was evaluated according to the method described
in [63]. CAT activity is measured by hydrogen peroxide reaction with ammonium molybdate which
produces a complex that absorbs at 410 nm light wavelength. The results were expressed in U/mg
protein. Under these conditions, one unit of catalase (U) decomposes 1 µmol of hydrogen peroxide per
1 min.
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4.8. GR Activity Assay

GR activity in the homogenates was evaluated according to the method described in [64]. The
GR reaction rate was evaluated according to the reduction in the optical density in the presence
of NADPH (nicotinamide adenine dinucleotide phosphate/reduced) oxidation reaction that occurs
during glutathione reduction catalyzed by GR. The GR activity was evaluated spectrophotometrically
spectrofotometrically (spectrophotometer LAMBDA 25, USA) at 340 nm wavelength. The results were
expressed in U/mg protein. The GR activity unit (U) was the amount of the enzyme catalyzing the
formation of 1 µmol of the reaction product in 1 min.

4.9. Statistical Analysis

The data were expressed as mean ± SD (standard deviation). Because the mice were grouped
into experimental groups according to one factor, statistical significance was assessed using one-way
analysis of variance (ANOVA) followed by Tukey‘s test with the software SPSS Statistics 20.0 (IBM
Corporation, NY, USA). The value of p < 0.05 was regarded as statistically significant.

5. Conclusions

Se is an element that can increase the capacity of the intracellular antioxidant system; Al might
have a lesser effect. Exposure to drinking water supplemented with Na2SeO3 (0.2 mg or 0.4 mg Se/L
in drinking water) resulted in an increase in antioxidant potential in mouse brain and liver through
enhancing the activities of superoxide dismutase, catalase and especially glutathione reductase, which
plays a pivotal role in maintaining the redox state of the cell. Exposure to both doses of AlCl3 (50
mg or 100 mg Al/L in drinking water) resulted in a statistically significant increase in brain and liver
glutathione reductase activity but caused no changes in the activities of SOD and CAT.

Author Contributions: Data curation, I.S. (Ilona Sadauskiene) and A.L.; Formal analysis, A.L.; Methodology,
I.S. (Inga Staneviciene); Project administration, L.I.; Supervision, L.I.; Writing—Original draft, A.L. and R.N.;
Writing—review and editing, I.S. (Ilona Sadauskiene) and I.S. (Inga Staneviciene). All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors of this study declare that they have no conflict of interest.

Data Availability: The data used to support the findings of this study are available from the corresponding author
upon request.

References

1. Jomova, K.; Valk, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283,
65–87. [CrossRef]

2. Que, E.L.; Domaille, D.W.; Chang, C.J. Metals in neurobiology: Probing their chemistry and biology with
molecular imaging. Chem. Rev. 2008, 108, 1517–1549. [CrossRef] [PubMed]

3. Schützendübel, A.; Polle, A. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and
protection by mycorrhization. J. Exp. Bot. 2002, 53, 1351–1365. [CrossRef] [PubMed]

4. Hirsch, E.C.; Brandel, J.P.; Galle, P.; Javoy-Agid, F.; Agid, Y. Iron and Al increase in the substantianigra of
patients with Parkinson’s disease: An X-ray microanalysis. J. Neurochem. 1991, 56, 446–451. [CrossRef]
[PubMed]

5. Campdelacreu, J. Parkinson disease and Alzheimer disease: Enviromental risk factors. Neurologia 2014, 29,
541–549. [CrossRef]

6. Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B. Enviromental pollutants as risk factors for
neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell. Neurosci. 2015, 9, 1–22.
[CrossRef]

7. Flaten, T.P. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res.
Bull. 2001, 55, 187–196. [CrossRef]

http://dx.doi.org/10.1016/j.tox.2011.03.001
http://dx.doi.org/10.1021/cr078203u
http://www.ncbi.nlm.nih.gov/pubmed/18426241
http://dx.doi.org/10.1093/jexbot/53.372.1351
http://www.ncbi.nlm.nih.gov/pubmed/11997381
http://dx.doi.org/10.1111/j.1471-4159.1991.tb08170.x
http://www.ncbi.nlm.nih.gov/pubmed/1988548
http://dx.doi.org/10.1016/j.nrl.2012.04.001
http://dx.doi.org/10.3389/fncel.2015.00124
http://dx.doi.org/10.1016/S0361-9230(01)00459-2


Catalysts 2020, 10, 585 9 of 11

8. Bondy, S.C. Low levels of aluminum can lead to behavioral and morphological changes associated with
Alzheimer’s disease and age-related neurodegeneration. Neurotoxicology 2016, 52, 222–229. [CrossRef]

9. Huat, T.J.; Camats-Perna, J.; Newcombe, E.A.; Valmas, N.; Kitazawa, M.; Medeiros, R. Metal toxicity links to
Alzheimer’s disease and neuroinflammation. J. Mol. Biol. 2019, 431, 1843–1868. [CrossRef]

10. Geyikoglu, F.; Türkez, H.; Bakir, T.O.; Cicek, M. The genotoxic, hepatotoxic, nephrotoxic, heamatotoxic and
histopathological effects in rats after aluminium chronic intoxication. Toxicol. Ind. Health 2013, 29, 780–791.
[CrossRef]

11. Hall, A.R.; Le, H.; Arnold, C.; Brunton, J.; Bertolo, R.; Miller, G.G.; Zello, G.A.; Sergi, C. Aluminum exposure
from parenteral nutrition: Early Bile Canaliculus changes of the hepatocyte. Nutrients 2018, 10, 723. [CrossRef]
[PubMed]

12. Seidowsky, A.; Dupuis, E.; Drueke, T.; Dard, S.; Massy, Z.A.; Canaud, B. Aluminic intoxication in chronic
hemodialysis. A diagnosis rarely evoked nowadays. Clinical case and review of the literature. Nephrol. Ther.
2018, 14, 35–41. [CrossRef] [PubMed]

13. Ighodaro, O.M.; Omole, J.O.; Ebuehi, O.A.T.; Salawu, F.N. Aluminium-induced liver and testicular damage:
Effects of Piliostigmathonningii methanolic leaf extract. Niger. Q. J. Hosp. Med. 2012, 22, 158–162.

14. Bai, K.J.; Chuang, K.J.; Ma, C.M.; Chang, T.Y.; Chuang, H.C. Humanlung adenocarcinoma cells with an EGFR
mutation are sensitive to non-autophagic cell death induced by zinc oxide and aluminium-doped zinc oxide
nanoparticles. J. Toxicol. Sci. 2017, 42, 437–444. [CrossRef] [PubMed]

15. Byun, B.J.; Kang, Y.K. Conformational preferences and pK(a) value of selenocysteine residue. Biopolymers
2011, 95, 345–353. [CrossRef]
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