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Abstract: Photocatalytic membrane reactors (PMR), with immobilized photocatalysts, play an
important role in process intensification strategies; this approach offers a simple solution to the
typical catalyst recovery problem of photocatalytic processes and, by simultaneous filtration and
photocatalysis of the aqueous streams, facilitates clean water production in a single unit. The synthesis
of polymer photocatalytic membranes has been widely explored, while studies focused on ceramic
photocatalytic membranes represent a minority. However, previous reports have identified that the
successful synthesis of polymeric photocatalytic membranes still faces certain challenges that demand
further research, e.g., (i) reduced photocatalytic activity, (ii) photocatalyst stability, and (iii) membrane
aging, to achieve technological competitiveness with respect to suspended photocatalytic systems.
The novelty of this review is to go a step further to preceding literature by first, critically analyzing the
factors behind these major limitations and second, establishing useful guidelines. This information
will help researchers in the field in the selection of the membrane materials and synthesis methodology
for a better performance of polymeric photocatalytic membranes with targeted functionality; special
attention is focused on factors affecting membrane aging and photocatalyst stability.

Keywords: membrane functionality; persistent organic pollutants; photocatalytic membranes;
photocatalytic membrane reactor (PMR); composite polymeric membranes; wastewater treatment

1. Introduction

The wide use of chemicals in our society contributes to the accumulation of a huge amount of
pollutants in the environment. Many of these recalcitrant pollutants listed in the Stockholm Convention
on Persistent Organic Pollutants (POPs) [1] are persistent in the environment due to their strong and
stable structure; therefore, conventional technologies of wastewater treatment are not able to degrade
or remove them [2].

Advanced oxidation processes are based on the degradation of organic or inorganic contaminants
in water and wastewater through oxidation reactions. Among all, heterogeneous photocatalysis is a
promising technology in the field of environmental applications because it is driven by UV or visible
light [3,4]. Photocatalysis needs a semiconductor material that is excited mainly with UV light. Oxidant
species produced during the photocatalytic process can attack the pollutant and break the molecule in
smaller compounds. The main advantages of the photocatalytic technology are (i) low operational and
installation costs and null post-treatment cost as there is no sludge production except in suspended
systems, (ii) it is a technology capable of degrading non-biodegradable pollutants, and (iii) advances
in the development of new composite photocatalysts, by doping the primary semiconductor with
a co-catalyst, could open up the possibility to use low-cost visible light. However, among certain
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drawbacks it is worth mentioning the short service life and high power consumption of the light source,
and the requirement of a facility for the photocatalyst recovery in suspended systems [3].

Hybrid processes, such as photocatalytic membrane reactors, PMRs, integrate the activity of the
photocatalyst and membrane separation in the same device, this configuration shows great potential to
effectively solve the separation problem of harsh systems and the recovery of the catalyst particles
in wastewater treatment. Thus, PMRs not only maintain the advantages of photocatalyst technology
for degrading high concentration of refractory organic wastes, but they also have the benefit of
non-selectivity, fast reaction speed, and complete degradation [5].

Furthermore, the potential harmful effects of nanoparticles are still under debate. If they are not
correctly handled and they are released to the environment, they could interact with living organisms.
They have similar dimensions to biological molecules such as proteins, so they can enter the human
body. Small concentrations of about 5–50 µg/L may cause physiological changes, chromosomal
alterations and oxidative stress [6]. Photocatalyst immobilization on membranes can significantly
contribute to avoid nanoparticles hazards.

Different classifications have been followed to better characterize PMRs [7–9]. The first one
distinguishes between the catalyst being suspended in solution (SPMR) and the catalyst being
immobilized on the membrane (IPMR). SPMR primarily aimed at catalyst separation and recovery.
The membrane can be submerged in the photocatalytic reactor, Figure 1A [10]. This configuration fails
from protecting the membrane for UV irradiation after long operation times (Figure 1AI), although this
effect could be reduced with the use of a light-tight baffle in between the light source and the membrane
(Figure 1AII). Alternatively, the membrane can be placed out of the photo-reactor, Figure 1B [10], but
this configuration is prone to higher pressure drops in the catalyst flow and instability of the catalyst
concentration inside the reactor. Otherwise, the catalysts can be fixed to the membrane, IPMR. In this
configuration, the membrane can act as support with the only function of immobilizing the catalyst
(Figure 1C), or the membrane can integrate the catalyst and simultaneously have a separation function,
Figure 1D,E [10]. In this latter system, the membrane acts both as selective barrier for the contaminants
to be degraded, thus maintaining them into the reaction environment, and as the support for the
photocatalyst. Here, two different flow configurations are possible, dead-end, Figure 1D; or cross-flow,
Figure 1E [7]. External illumination is usually applied for these configurations [5,10].

IPMR configuration is raised as an advanced solution. Although suspension photocatalysis results
in great pollutant degradation yields due to the large surface area of the nano-size particles, this is at
the same time the main drawback that makes difficult the catalyst separation and recovery. Moreover,
nanoparticles tend to agglomerate which can lead to a reduction of the reaction yield. This could be
somehow avoided if they are properly fixed to some supporting material as it is promoted in IPMRs.
In addition, membrane fouling in SPMRs due to photocatalyst deposition is an additional problem. In
line with a process intensification philosophy, photocatalyst immobilization can avoid the necessity
of the photocatalyst post-recovery stage. Furthermore, it could simultaneously overcome fouling
phenomena associated with the photocatalyst and pollutants [4,5,8].

In advanced IPMRs, the role of the membrane is to perform as a barrier to retain the pollutants
as well as photocatalyst support. The membrane support can be made of ceramic, metallic, or
polymeric materials [8]. Although ceramic and metallic membranes have great chemical stability
and high mechanical strength, their applications are limited because of the manufacturing costs [4,8].
Taking into account the economic factor, polymeric membranes are cheaper and easier to apply on an
industrial scale in spite of their limitations. Moreover, they are easy to process, and their properties and
microstructure can be tuned. The selection of the polymeric membrane material is not trivial. Due to
the nature of polymers as long-chain carbon molecules, they are susceptible to UV light and oxidative
species degradation that can damage the membrane during the photocatalytic process. The challenge
is to develop low-cost polymeric membranes with adequate mechanical strength and flexibility, which
withstand UV and oxidative conditions [4] while supporting the photocatalyst particles. Furthermore,
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the conformed polymeric membrane should prevent the pollutant from crossing the membrane before
photocatalytic degradation while still performing with sufficiently high total flux.
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Figure 1. Photocatalytic membrane reactor configurations A and B suspended in solution photocatalytic
membrane reactors (SPMR), (A): Membrane module inside the reactor; (B): Membrane module outside
the reactor; (C–E) immobilized in a membrane photocatalytic membrane reactors (IPMR) C: a membrane
with support function; D (dead-end configuration) and E (cross-flow configuration) of a membrane
with simultaneous support and filtration function. Adapted from [7,10].

Previous reviews [11–14] have addressed the most recent advances on membrane synthesis and
applications and have detected major challenges that need to be overcome to develop technically
competitive IPMRs for future scaling-up and expansion of the technology. One of these challenges
results from the intrinsic nature of an immobilized nanoparticle system. The photocatalyst can be
immobilized either in the membrane matrix or on the membrane surface as a coating layer. The method
of photocatalyst immobilization importantly affects the photocatalyst distribution in the membrane, its
stability and accessibility to light-source. Therefore, a rigorous and methodological analysis of how the
immobilization method of the photocatalyst in the membrane affects all those parameters needs to be
done to ascertain their impact on the overall performance of the functional membrane, in terms of flux
properties and photocatalytic activity [4].

This is the first attempt reported in the literature to critically review the information on
photocatalytic polymeric membranes so far applied to the treatment of waters and wastewaters
polluted with POPs or model organic pollutants; the analysis has been focused to identify the influence
of (i) the polymer and photocatalyst selection and, (ii) the methodology of membrane synthesis, on
the functional properties of the resulting membranes. As a major novelty, this review is conceived to
not only point out the major challenges collected after reviewing the literature, but it also extracts the
reasons of current failures and proposes guidelines and solutions to overcome the reported limitations
for the successful development of photocatalytic polymeric membranes. Thus, this review aims at
becoming a practical guide for scientists in the field of photocatalytic membranes to decide the best
methodological approach to deal with the synthesis of new functional photocatalytic membranes and
to detect possible experimental gaps that future research would need to fill.
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2. Materials in Polymeric Photocatalytic Membranes

Tables 1–3 show a literature survey of the porous photocatalytic polymer membranes synthesized
so far. Tables 1 and 2 collect the photocatalytic membranes classified as mixed matrix membranes
(MMM), considering that the photocatalyst is dispersed in a polymeric matrix. Table 1 presents the
membranes synthesized by phase inversion methods and Table 2 presents the membranes synthesized
by electrospinning. On the other hand, Table 3 collects the works that propose different synthesis
techniques of thin-film composite membranes (TFCM). Moreover, the materials employed (i.e., polymer,
non-solvent, additive, and photocatalyst), components composition and the application evaluated in
each study are presented. These data will be analyzed to acquire knowledge to define the guidelines that
will help to decide which is the adequate material and processing technique for the desired application.
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Table 1. Mixed-matrix membrane systems synthesized by phase inversion: materials, compositions, and applications.

Polymer
(wt. %) Solvent Non-Solvent Additive

(wt. %) Photocatalyst wt.% (Polymeric
Solution)

wt. %/cm2

(Membrane)
Application

(Removed Pollutant) Author

PVDF (20) DMAc deionized water PEG (5) TiO2 0–7, 5 * 0–0.612, 0.478 * BSA Méricq, J.P [15]

PVDF (20) DMAc deionized water PEG (5) TiO2 4 0.30 (-) Tran, D. [16]

PVDF (19) DMAc distilled water PVP (7) Ag-TiO2 0.01-0.06, 0.06 * (-) BSA, E.Coli Chen, Q. [17]

PVDF (18) DMAc deionized water PVP (2) TiO2 0–1, 1 * 0–0.33, 0.33 * Estrone, 17β-
estradiol Wang, M. [18]

PVDF (16) DMAc
water:

isopropanol
(70:30)

(-) TiO2 0–3, 2* 0–0.04, 0.027 RTB Sakarkar, S. [19]

PVDF (15) DMAc Water PVP (1) GO-TiO2 1 0.32 BSA Xu, Z [20]

PVDF (15) DMAc distilled water PVP (1) GO-OMWCNTs 1% (carb/pol) (-) BSA Zhang, J. [21]

PVDF (14) DMAc tap water (-) AC-TiO2 (0–0.5)–(0–0.1) 0.106 BSA Liu, Q. [22]

PVDF (12) DMAc tap water PEG (1–5), 2 * TiO2 0.25–2, 0.5 * 0.042–0.297,0.083 * NOM, HA Song, H. [23]

PVDF (12) DMAc Tap water LiCl (0–4), 0.5 * TiO2 0–1.5, 0.5 * 0–0.23, 0.083 * NOM, HA Song, H. [24]

PVDF+PMMA
(12) TEP Water PEG (25) + PEG

(5) TiO2 0–0.5, 0.5 * 0–0.5, 0.5 * MB Benhabiles, O. [25]

PVDF (10) NMP tap water (-) TiO2 0–4, 2–4 * 0–0.189, 0.110–0.189 * E. Coli, RB5, BSA Damodar, R.A. [26]

PMAA-g-PVDF/PAN
(-) DMAc Ethanol:deionized

water (1:3) (-) N-TiO2 1,3,5 (-) Bentazon Mungondori, H. [27]

PSF (20) NMP distilled water (-) TiO2 0–2.43, 1.96 * 0–0.553, 0.455 * Cr(VI) Jyothi, M.S. [28]

PSF (18) DMAc:NMP Ethanol:water
(20:80) (-) TiO2 0–5, 2 * (-) BSA Yang, Y. [29]

PSF (18) DMAC:NMP
(4:1) deionized water PEG (8) Fe-TiO2 0–4.5, 3.6 * 0–0.077 BPA Wang, Q. [30]

PSF (18) DMAC Water (-) TiO2-ZnO,
TiO2-SiO2

0.16 (-) MO, phenol El-Aassar, A. [31]

PSF (18) NMP deionized water (-) N, Pd-TiO2 0–1.26, (0–7) (-) EY Kuvarega, A.T. [32]

PSF (18) NMP Water PVP (2) N-rGO-TiO2 0.5 0.095 DR 80, DB 15 Xu, H. [33]

PSF (17) NMP tap water PVP (0.5) mpg-C3N4-TiO2 0–1, 1 * 0–0.653, 0.653 * SMX Yu, S. [34]

PSF (12) DMF distilled water (-) CNTs-TiO2 1 (-) Ampicillin
Erithtomycin Muhulet, A. [35]
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Table 1. Cont.

Polymer
(wt. %) Solvent Non-Solvent Additive

(wt. %) Photocatalyst wt.% (Polymeric
Solution)

wt. %/cm2

(Membrane)
Application

(Removed Pollutant) Author

PES (27 g) DMF, EtOH
(1–4) distilled water (-) TiO2 0.1–0.4, 0.1 * 0.0062–0.024, 0.0062 * HA Sotto, A. [36]

PES (26) NMP Water (-) Co-TiO2 0.5–1, 1 * 0.065–0.129, 0.129 * 2-DCP Hoseini, S. N. [37]

PES (21) DMAc distilled water PVP (1) rGO-TiO2 0.05–0.2, 0.1 * 0.237–0.943, 0.497 * DY 12, RG 19, RB 21,
BSA Safarpour, M. [38]

PES (20) DMAc distilled water PVP (1) B-TiO2-SiO2/CoFe2O4 0–1, 0.5 * 0–0.497, 0.239 * DR 16, POME Zangeneh, H. [39]

PES (18) NMP tap water SMM (1) O-g-C3N4 1 (-) Phenol Salim, N. [40]

PES (18) NMP tap water SMM (1–5,4 *) O-g-C3N4 1 (-) Phenol Salim, N. [41]

PES (15) DMAc Water PVP (5) mNi-TiO2 0–1, 1 * 0-0.083, 0.083 * BSA, YEF, SA, HA,
MB Sun, T. [42]

PES-F-COOH
(20) DMF deionized water PVP (10) TiO2 1–5,5 * 0.123–0.519, 0.519 * PAM Geng, Z. [43]

CA-PS (-) Acetone distilled water (-) ZnO 0.1 g (-) CR, RY 105 Rajeswari, A. [44]

CA-PU (-) Acetone-chloroform distilled water (-) ZnO 0.3 (-) RR 11, RO 84 Rajeswari, A. [45]

P(VDF-TrFE)
(10) DMF (-) (-) TiO2 8 0.32 MB, CIP, IBP Martins, P.M. [46]

P(VDF-TrFE)
(10) DMF (-) (-) TiO2 8 0.017 Tartrazine Aoudjit, L. [47]

P(VDF-TrFE)
(10) DMF (-) (-) TiO2, ZnO 0–15,15 * 0–3.75, 3.75 MB Teixeira, S. [48]

P(VDF-TrFE)
(10) DMF (-) (-) TiO2 (NaY) 0–8, (0–8), 8(8) * 0–3.70, 3.70 * MB Martins, P.M. [49]

PVDF-HFP (15) DMF (-) (-) Ag- TiO2 0-10, 10 * 0–0.56, 0.56 * NOR Salazar, H. [50]

PSF (16) NMP distilled water PVP (2) TiO2, MIP TiO2,
NIP TiO2

2 (-) MB, MO Melvin, H.K. [51]

PVDF Dul layer
HF (18 in, 15

out)
DMAc tap water (-) TiO2 0 (in) 3 (out) (-) 8 pharmaceutical

mixture Paredes, L. [52]

PVDF Dual
layer HF (18 in,

15 out)
DMAc tap water (-) TiO2 0 (in) 3–15 (out), 3 * 0 (in) 0.067–0.201

(out), 0.067 * NOM Dzinun, H. [53]
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Table 1. Cont.

Polymer (wt.
%) Solvent Non-Solvent Additive

(wt. %) Photocatalyst wt.% (Polymeric
Solution)

wt. %/cm2

(Membrane)
Application

(Removed Pollutant) Author

PVDF Dual
layer HF (18 in,

15 out)
DMAc tap water (-) TiO2 0 (in) 3–15 (out) 0 (in) 0.067–0.201

(out) NP Dzinun, H. [54]

PVDF Dual
layer HF (18 in,

15 out)
DMAc tap water (-) TiO2 0 (in) 3 (out) 0 (in) 0.067 (out) NP Dzinun, H. [55]

PVDF Dual
layer HF (18 in,

15 out)
DMAc tap water (-) TiO2 0 (in) 0–15 (out), 15 * 0 (in) 0–0.201 (out),

0.201 * NP Dzinun, H. [56]

PVDF Dual
layer HF (18 in,

15 out)
DMAc tap water PEG (5 in, 0 out) TiO2 0 (in) 3 (out) 0 (in) 0.067 (out) NP Dzinun, H. [57]

PVDF HF
(18–19) NMP tap water PVP (15) PEG TiO2 0.5 0.071 MB Galiano, F. [58]

PVDF HF
(18) DMAc Water PVP (5) TiO2 0–4, 2 * (-) Oil wastewater Ong, C.S. [59]

PVDF (18) DMAc, NMP,
DMF Water (-) TiO2 0.001, 0.01, 0.1 g/L (-) HA Teow, Y.H [60]

* optimal concentration.
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Table 2. Mixed-matrix membrane systems synthesized by electrospinning: materials, compositions and application.

Polymer (wt. %) Solvent Additive Photocatalyst wt. % (Polymeric
Solution)

Application
(Removed Pollutant) Author

P(VDF-TrFE)
(15) DMF/MEK, 85/15 (-) GO-TiO2 0–20, 5 * MB Almeida, N.A.

[61]

PVDF (-) (-) PEO TiO2-MWCNTs (20:1) 0–40 HA Chen, J. [62]

PTFE: PVA (6:1) water PVA ZnO 0–30, 20 * RhB Huang, Y. [63]

PTFE (15) (-) PVA (1), BA (0.0025) TiO2 (-) MB Kang, W. [64]

PA6 (12) AA: FA (2:1) (-) TiO2 25 E. coli, RBB Blanco, M. [65]

PAN (8) DMF (-) TiO2-ZnO 2 MG Yar, A. [66]

PAN (6) DMF (-) ZnO 0.9 MO Tissera, N. D. [67]

PAN (7) DMF (-) TiO2 3.57 Nitrate Suriyaraj, S.P. [68]

* optimal concentration. Abbreviations: Polymers: cellulose acetate (CA), polyamide 6 (PA6), polyacrylonitrile (PAN), polyethersulfone (PES), polystyrene (PS), polysulfone (PSF),
polytetrafluoroethylene (PTFE), polytrifluoroethylene (PTrFE), polyurethane (PU), polyvinylidene fluoride (PVDF), PVDF-co-hexafluoropropylene (PVDF-HFP) ; Solvents: acetic acid
(AA), dimethylacetamide (DMAc), dimethylformamide (DMF), ethanol (EtOH), formic acid (FA), methyl ethyl ketone (MEK), N-methylpyrrolidone (NMP), triethyl phosphate (TEP);
Photocatalysts: activated carbon (AC), silver (Ag), boron (B), bismuth (Bi), carbon nanotubes (CNTs), cobalt (Co), cobalt ferrite (CoFe2O4), carbon quantum dots (CQDs), iron (Fe), graphene
oxide (GO), molecular imprinting polymer (MIP), mesoporous graphitic carbon nitride (mpg-C3N4), multi-walled carbon nanotubes (MWCNTs), nitrogen (N), sodium Y zeolite (NaY),
magnetic nickel (mNi), non-imprinting polymer (NIP), oxygen doped graphitic carbon nitride (O-g-C3N4), oxygenated MWCNTs (OMWCNTs), palladium (Pd), reduce graphene oxide
(rGO), silicon oxide (SiO2), titanium dioxide (TiO2), zinc oxide (ZnO); Additives: boric acid (BA), lithium chloride (LiCl), polyethylene glycol (PEG), polyethylene oxide (PEO), polyvinyl
alcohol (PVA), polyvinyl pyrrolidone (PVP), surface molecule modifier (SMM); Pollutants: 2,4 dichlorophenol (2-DCP), bovine serum albumin (BSA), bisphenol A (BPA), ciprofloxacin
(CIP), congo red (CR), direct blue (DB), direct red (DR), direct yellow (DY), Escherichia coli (E. Coli), eosin yellow (EY), humic acid (HA), ibuprofen (IBP), indigo carmine (IC), methylene
blue (MB), malachite green (MG), methylene orange (MO), Natural Organic Matter (NOM), norfloxacin (NOR), nonylphenol (NP), polyacrylamide (PAM), palm oil mill effluent (POME),
reactive black 5 (RB5), reactive blue 21 (RB21), Remazol black B (RBB), reactive green (RG), rhodamine B (RhB), reactive orange (RO), reactive red (RR), remazol turquoise blue (RTB),
reactive yellow (RY), ammonium alginate (SA), sulfamethoxazole (SMX), yeast extract fermentation (YEF).
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Table 3. Literature review on thin film composite membranes: synthesis methods, materials, compositions, and pollutant application.

Synthesis Method Support Material Aeff (cm2) Photocatalyst Photocatalyst Mass
(mg)

Photocatalyst per
Membrane Area

(mg/cm2)

Application (Removed
Pollutant) Author

Vacuum deposition
PES (com)

Pretreatment:
PAAM

4.3 nAg-GO- TiO2 3 0.697 E. coli, B. subtilis Jiang, Y. [69]

Vacuum deposition
CA (com)

Pretreatment: PEG
+ GA

12.56 Ag-rGO- TiO2 2.5–20, 10 * 0.199–1.59, 0.796 * MB, RhB, oil water Chen, Q. [70]

Vacuum deposition CA (com) 12.56 rGO-g-C3N4 10–100, 25 * 0.796–7.96, 1.99 * RhB Zhao, H. [71]

Vacuum deposition MCE (com) 1.54 GO- TiO2 10 6.49 DP, MO Pastrana-Martínez,
L [72]

Vacuum deposition PC (com) (-) GO- TiO2 (-) (-) DR 80, DB 15 Xu, C. [73]

Vacuum deposition PC (com) (-) GO- TiO2 (-) (-) MO, RhB Xu, C. [74]

Vacuum deposition
(Support:

Electrospinning)

PAN
(8wt. %, DMF) 12.56 rGO-α-Fe2O3 (-) (-) MB, MO, RhB, R6G, MG,

GV Sun, K. [75]

Filtration CA (com) 14.6 GO-TiO2 50–400, 100 * 3.42–27.4, 6.85 * CR Nair, A.K. [76]

Filtration CA (com) 11.94 GO-TiO2 50–300, 200 * 4.18–25.12, 16.75 * RhB, AO7 Gao, P. [77]

Immersion
PSF (com)

Pretreatment: PVA
(2.5 mg)

17.34 AC-N-rGO-TiO2 10–160, 120 * 0.57–9.22, 6.92 * MO Wu, T. [78]

Immersion (Support:
Electrospinning)

CA-GO
(15−(0–1.5) wt. %,

DMF)
Pretratment: GA

(-) NH2-TiO2 0.005 g/mL (-) MB, IC Aboamera, N. M.
[79]

Immersion (Support:
Electrospinning)

PAN-CNT (10 wt.
%, DMF)

Pretratment: GA
(-) NH2-TiO2

40.6 wt. % (CNT-TiO2)
NF (-) Cr (VI) Mohamed, A. [80]

Immersion - In situ
growth

(Support:
Electrospinning)

PAN (9 wt. %,
DMF)

Pretreatment:
PDA

20 Ag-TiO2 (-) (-) MB, Phenol Shi, Y. [81]
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Table 3. Cont.

Synthesis Method Support Material Aeff (cm2) Photocatalyst Photocatalyst Mass
(mg)

Photocatalyst per
Membrane Area

(mg/cm2)

Application (Removed
Pollutant) Author

Immersion (Layer by
Layer (LbL)) PSF (com) (-) GO-TiO2 (-) 0.062 MB Gao, Y. [82]

Immersion (Support:
Phase inversion)

PEI/P25
(24/1.23 wt. %,

NMP)
12.56 TiO2 nw 250 19.9 RhB Jiang, R. [83]

Immersion
(Plasma-grafted)

PVDF-g-PAA
(com) 4.5 TiO2 0.5 1.5 3 (% m/v) (-) RB5, BSA You, S.-J. [84]

Immersion (UV-grafted) PA-g-PAA (com) 13.4 Ag-ZnO-Fe3O4-MWCNTs 8.7 0.649 Amoxicilin Irani, E. [85]

Electrospraying
(Support:

Electrospinning)

PVDF (18 wt. %,
DMF:acetone

60:40)
45 TiO2 4.5–27, 27 * 0.1–0.6, 0.6 * BPA, 4-CP, CMT Ramasundaram, S.

[86]

Coaxial electrospinning PAN (10, 15 core)
DMAc (-) CQDs-Bi20-TiO32 5, 10, 15 w/v% (-) Isoproturon Xie, R. [87]

Hot pressing
(Support: Phase

inversion)

PVDF (-wt. %,
DMAc) (-) TiO2 (-) (-) BPA Nor, N.A.M. [88]

Sputtering +
Anodization PES (com) 17.35 TiO2 (-) (-) diclofenac Fischer, K. [89]

* Optimal concentration. Abbreviations: Polymers: cellulose acetate (CA), commercial (com), mixed cellulose esters (MCE), polyamide (PA), polyacrylonitrile (PAN), polycarbonate
(PC), (polyetherimide (PEI), polyethersulfone (PES), polysulfone (PSF), polyvinylidene fluoride (PVDF); Solvents: dimethylacetamide (DMAc), dimethylformamide (DMF), N-methyl
pyrrolidone (NMP). Additives: glutaraldehyde (GA), litium chloride (LiCl), polyacrylic acid (PAA), polyallylamine (PAAM), polyethylene glycol (PEG), polydopamine (PDA), polyvinyl
alcohol (PVA); Photocatalysts: activated carbon (AC), silver (Ag), cobalt (Co), graphitic carbon nitride (g-C3N4), graphene oxide (GO), nitrogen (N), nano-silver (nAg), amine group (NH2),
nanowire (nw), polyoxometalate (POM), reduce graphene oxide (rGO), titanium dioxide (TiO2), hematite (α-Fe2O3); Pollutant: 4-chlorophenol (4-CP), acid orange 7 (AO7), Bacillus subtilis
(B. subtilis), bisphenol A (BPA), bovine serum albumin (BSA), cimentine (CMT), congo red (CR), chromium VI (Cr VI), crystal violet (CV), direct blue (DB), Diphenhydramine (DP), direct
red (DR), Escherichia coli (E. coli), gentian violet (GV), humic acid (HA), indigo carmine (IC), methylene blue (MB), malachite green (MG), Methyl Orange (MO), reactive black 5 (RB5),
rhodamine B (RhB), rhodamine 6G (R6G).
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2.1. Nano-Photocatalyst

As it can be observed in Tables 1–3, the photocatalytic membranes prepared so far were mostly
synthesized using semiconductor materials such as TiO2 [15,16,18,23–26,28,29,36,47,52–60,64,65,68,83,
84,86,88,89], ZnO [44,45,48,63,67], g-C3N4 [34,40,71], and Fe2O3 [75]. Most of them are metal oxides
such as TiO2, ZnO, and Fe2O3. Titanium dioxide (TiO2) is the most commonly used semiconductor for
photocatalytic membranes, due to its chemical and thermal stability, low cost, high reusability, and
excellent yield in the degradation of organic pollutants. The main disadvantages of TiO2 are the high
electron-hole recombination ratio, and large bandgap (3.2 eV) that implies a low adsorption capacity
for visible light [3,90]. To avoid these limitations some strategies such as doping with a co-catalyst are
being tested. The introduction of doping agent into the bulk photocatalyst provides a large dipole
moment to change the electron transfer kinetic, and more electrons can be transferred from valence
band (VB) to conduction band (CB) of the photocatalyst, hence narrowing the Eg value. The low Eg

value indicates a better absorption ability in the visible light or natural sunlight. The incorporation
of two semiconductors forms a hybrid photocatalyst, where the photo-generated electrons can flow
from more negative to less negative fermi energy (EF) in CB, while holes flow from more positive to
less positive EF in VB at the interface to prevent charge recombination. These new materials have
been mostly used in slurry-type reactors and when it comes to photocatalytic membranes inorganic
supports [91] or self-standing catalysts [92]. Silver [17,50,69,70,81,85] and iron [30,39,75] are the metals
most commonly used, but also palladium [32], cobalt [37,39], and magnetic nickel [42] have been tested.
Other elements used are nitrogen [27,32,33,78–80] and boron [39].

Similarly as in suspension systems, in immobilized photocatalysis, the combination of the
photocatalyst with other materials is a widely used strategy to enhance their photocatalytic properties
and to redshift its bandgap. Composite photocatalysts are synthesized combining the semiconductor
photocatalyst with other materials. Many authors have reviewed the use of composites based
on TiO2 in batch suspension systems [3,93], including composites synthesized with carbonaceous
materials (GO-TiO2, rGO-TiO2, MWCNTs-TiO2, AC-TiO2) [94,95] and g-C3N4 based photocatalyst
(rGO-g-C3N4, g-C3N4-TiO2) [96]. Readers are referred to the just mentioned thorough reviews to
get deeper insight on the photocatalytic activity of those materials, as it is not the objective pursued
with the present review. As Tables 1–3 show, the use of composite materials has been extended
to the preparation of photocatalytic membranes. Carbon materials that include graphene oxide
(GO) [69,73,74,76,77,79,82], reduced graphene oxide (rGO) [20,33,38,61,70–72,75], activated carbon
(AC) [22], carbon nanotubes (CNTs) [35,80], multi-walled carbon nanotubes (MWCNTs) [21,62,85],
graphitic carbon nitride (gC3N4) [34,40,41,71], and carbon quantum dots (CQDs) [87] have been
immobilized in polymeric membranes. Certain carbon materials develop high surface area and in
general provide good mechanical properties, together with antimicrobial properties [69].

Additionally to the photocatalytic activity, the introduction of semiconductor nanoparticles
in the membrane matrix can also lead to: (i) the enhancement of the membrane hydrophilicity
due to the photocatalyst polarity, and (ii) the modification of the membrane morphology during
the synthesis. The influence on membrane morphology will be further discussed in the section
covering the membrane synthesis methods of the present review. Some authors have observed a
so-called superhydrophilicity of polyvinylidene fluoride (PVDF) [15,18,59], polysulfone (PSF) [28,29],
polyethersulfone (PES) [97], PES-F-COOH [43], and polyetherimide (PEI) [83] membranes that
incorporate TiO2. Superhydrophilicity is defined as an intrinsic property of TiO2 surface that generates
a significant increase in water flux under UV or sunlight conditions [15,16,59,98]. The mechanism
of TiO2 nanoparticles superhydrophilicity is depicted in Figure 2. As the TiO2 is UV-irradiated, the
photo-generated electrons reduce Ti4+ to Ti3+, and the O2- anions are oxidized to O2 in the photocatalyst
holes. Oxygen vacancies are produced on the surface, so the empty sites can be occupied by the water
molecules, and OH- groups are adsorbed on the surface, which increases the surface hydrophilicity [97].
In consequence, the water permeate flux is increased [18,28,29,43]. Composites with ZnO particles also
provided improved permeation flux in references [44,45].
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To find out the optimum photocatalyst concentration to be immobilized in a membrane is not
trivial. Multiple factors can influence this variable as stated in the revised literature, such as the
selection of the photocatalyst and the polymer materials, the synthesis method and the membrane
macrostructure, among others. As Tables 1–3 show, a wide variety of photocatalyst concentration
ranges has been studied, from 0 wt. % to 30 wt. % for similar systems. Particularly, the synthesis
method and the processing variables exert an important influence. Therefore, the critical analysis of
the optimal nanoparticle concentration observed by different authors will be addressed in the specific
membrane synthesis section.

2.2. Polymer

The selection of the polymer matrix material is a key point in the performance of photocatalytic
membranes. As it was already mentioned in the introduction, the support material must be resistant
to the degradation caused by UV irradiation and by the generated oxidants. Therefore, this section
overviews the different polymers reported in the literature to develop photocatalytic membranes,
focusing the attention on their chemical, and particularly, photochemical resistance.

Tables 1–3 show that several polymers have been used to produce photocatalytic membranes.
These polymers can be grouped in:

1. Fluorine-based: polyvinylidenefluoride (PVDF), poly(vinylidenefluoride–trifluoroethylene)
P(VDF-TrFE), polytetrafluoroethylene (PTFE), and a copolymer of PVDF and hexafluoropropylene
(PVDF-HFP)

2. Sulfur-based: polysulfone (PSF), and polyethersulfone (PES)
3. Nitrogen-based: polyacrylonitrile (PAN), polyethylenimine (PEI), polyamide (PA), and polyamide

6 (PA6)
4. Cellulose derivatives: cellulose acetate (CA), and mixed cellulose esters (MCE)
5. Other polymer: polycarbonate (PC)

Among all polymers, PVDF is the most widely employed material for photocatalytic applications
in literature, followed by PAN, PES, PSF, and CA. Other polymers such as PTFE, PC, PDA, and MCE
are less frequently used. PVDF, P(VDF-TrFE), PTFE, PSF, and PES are hydrophobic polymers while
PAN, PEI, CA, MCE, and PC are considered hydrophilic. PVDF, PTFE, PES, PSF, and PAN are polymers
usually employed to synthesize mixed matrix membranes because they are easy to process. On the
other hand, porous CA, MCE, PC, and PEI membranes are usually employed as supports for thin-film
composite photocatalytic membranes.

For mixed-matrix membranes fabrication (Tables 1 and 2), PVDF is the most commonly used
polymer [15–18,20–23,25,26,52–60,62,84,86,88] due to the strength and stability of the C-F bond. Other
fluorine-based polymers are P(VDF-TrFE) [46] and PVDF-HFP copolymer [50], which presents similar
properties than PVDF, and to a lesser extent, PTFE [63,64]. PVDF is commonly used in microfiltration
or ultrafiltration membranes as it presents good thermal and chemical resistance [15]. One of the
major drawbacks of these fluoropolymers is their high hydrophobicity and therefore low water
filtration fluxes. A strategy to improve the wettability of P(VDF-TrFE) membranes was developed by
incorporating hydrophilic fillers, such as NaY zeolite type [49].
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Sulfonated polymers, i.e., PSF [28–35,51,82] and PES [36–43,69,89] have been widely used to
manufacture photocatalytic membranes [28,38]. Both are commercially available polymers with
excellent thermal, chemical, and biological stability, good mechanical properties, and high rigidity.
However, due to their hydrophobic nature, membranes made with PSF and PES provide low
water flux and fouling problems arise, because of the strong interaction between hydrophobic
compounds and the membrane surface. Moreover, sulfur-based polymers have poor resistance to UV
irradiance [28–30,32,34,38,39,43], as the C-S bond is weak and unstable under UV light and oxidative
conditions [99,100].

PAN is a non-toxic polymer and presents UV and chemical resistance [66,80,81]. It is commercially
available and environmentally stable. Moreover, it provides good mechanical properties, particularly
its flexibility. PEI, whose chemical formula is (C37H24O6N2)n [83], PA [85], and PA6 also known as
nylon 6 [65] are other nitrogen-containing polymers that have been attempted to a lesser extent for
preparation of photocatalytic membranes.

CA and MCE are polymers widely used in the preparation of membranes for water purification
and biomedical applications due to their good mechanical strength, water affinity and especially their
easy availability and low cost. Among their drawbacks, these materials have low chemical and thermal
resistance [44,45]; to overcome these disadvantages, CA is combined with other polymers such as
polystyrene (PS) [44], polyurethane (PU) [45], or with nanomaterials such as graphene oxide [79].

Finally, PC [73,74] commercial membranes are mostly used as supports, for the case of thin-film
photocatalytic membranes.

The resistance to UV light of several polymeric PAN, CA, PVDF, PTFE, PSF, PES, and PC commercial
membranes in the presence of TiO2 under photocatalytic conditions was studied by Chin et al. [99].
Membranes made of PSF, PES, PC, and CA broke before 30 days of exposure to light irradiance. The
rest of the materials were tested again by adding hydrogen peroxide. The authors concluded that
PVDF and PTFE showed the highest resistance to oxidative conditions. Meanwhile, PAN membranes
reported reduced mechanical properties, leading to the breakup of the PAN membrane. However, there
is still an important lack of information about how photocatalytic membranes produced by different
processing techniques and polymer materials perform under long-term exposures to UV-light. In the
following sections, a specific analysis will be directed to address this issue.

3. Membrane Synthesis Method

The membrane morphology and nanoparticles distribution will depend on the synthesis method
employed to incorporate the photocatalyst in the membrane. Below, a thorough analysis of the
influence of processing variables on membrane morphology will be performed. The objective pursued
is to establish processing guidelines to attain the desired membrane morphology.

3.1. Mixed Matrix Composite Membranes Synthesis Methods

As it is shown in Tables 1 and 2, two different synthesis methods have been reported to
immobilize photocatalyst nanoparticles embedded in the polymer matrix: (i) phase inversion and
(ii) electrospinning, respectively. For both techniques, the photocatalyst nanoparticles are dispersed
in the polymer solution before the membrane synthesis; thus, during precipitation of the polymer
photocatalyst nanoparticles remain embedded into the polymer matrix.

3.1.1. Phase Inversion

Phase inversion is the mechanism that takes place in the membrane formation following different
polymer coagulation routes such as i.e., Non-solvent Induced Phase Separation (NIPS) or Evaporation
Induced Phase Separation (EIPS) [101]. These techniques applied to classical systems of three
components can be extrapolated to quaternary systems. These techniques produce two configurations:
flat membranes and hollow fibers, that have been reported in the literature as indicated in Table 1. Flat
photocatalytic membranes are simple to produce and very useful for laboratory-scale evaluation [101],
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and mainly incorporate bare TiO2 or TiO2 composites combined with other substances. However, the
large surface area provided by hollow fibers might be required to accomplish scalable technologies.
Hollow fibers are made by extrusion techniques [52,58,59]. In particular, co-extrusion allows to create
two membrane layers with different functional characteristics, the inner part acting as support and
the outer part that contains TiO2 nanoparticles and gives to the membrane photocatalytic and/or
antifouling function [52–57].

When the membrane is synthesized by NIPS, a solution formed by a polymer dissolved into an
organic solvent and blended with the photocatalytic nanoparticles is forced to demix via its introduction
into a bath of a non-solvent, also known as coagulant. At this moment, there is an exchange between
the solvent and non-solvent, which must be miscible. The polymer solution separates in two phases at
equilibrium, one of them is rich in polymer (solid containing the photocatalyst) and the second one is
poor in polymer (liquid). The thermodynamics of this process is explained through the Flory–Huggins
theory based on Gibbs free energy equations and interaction parameters of the components. Figure 3
shows an exemplary diagram with the main thermodynamic elements and a typical precipitation
pathway of a polymer in NIPS membrane fabrication process. Binodal and spinodal curves are
represented in ternary-phase diagrams. As a result of the addition of photocatalytic nanoparticles,
such as TiO2, the diagram of the binodal curve of the ternary system is displaced as depicted in the red
line plotted in Figure 3 [102,103]. This will ultimately affect the porous morphology of the polymer
membrane and it should be analyzed in detail for each quaternary system.
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Additionally, the kinetics of the exchange between the solvent and non-solvent would affect the
membrane morphology. When the exchange is fast, the pathway followed by the change in the mixing
composition would cross the binodal line earlier; thus, big finger-like pores and asymmetric membrane
morphology are expected. Otherwise, when the exchange kinetics is slow, small sponge-like pores are
usually obtained.

PVDF and sulphur-based polymers i.e., PSF and PES are the polymers mostly used to develop
photocatalytic membranes by NIPS. TiO2 -based photocatalyst has been introduced to these membranes
to remove some model compounds such as dyes (MB, MO), BSA, or humic acid and organic pollutants
as bisphenol A or tartrazine.

Regarding the solvent/non-solvent pairs, as can be seen in Table 1, water is the non-solvent most
commonly used. Although a large number of solvent and non-solvent combinations are possible,
DMAc/water [15–18,20–23,31,38,39,42,52–57,59] and NMP/water [26,28,32–34,37,40,41,51,58] are the
most popular pairs in NIPS (Table 1). DMF/water [35,36,43] and TEP/water [25] are also used but to
a lower extent. Membranes from ternary systems polymer/solvent/ non-solvent, where the polymer
is PVDF, PSF, or PES, the solvent is DMAc, NMP, or DMF and the non-solvent is water, present the
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typical porous asymmetric structure formed by a thin dense top layer, supported by a finger-like
structure [15,17,18,20–23,28–30,33,34,36–39,43,51], which is characteristic of instantaneous demixing
when water is used as coagulant. Moreover, due to the binodal curves of the systems PVDF/DMAc/water,
PVDF/NMP/water, and PVDF/DMF/water being very close, similar membrane structures with the
three solvents were obtained [104]. The use of a water: isopropanol (70:30) mix as coagulation bath for
TiO2/PES membranes produce a sponge-like structure [19].

Regarding quaternary systems, the most popular photocatalysts dispersed on the polymer solution
are TiO2 and ZnO as shown in Table 1. The photocatalyst concentration affects importantly the rheology
of the polymeric solution [15,19,29]. Figure 4 gathers the effects of the photocatalyst concentration on
the polymeric solution rheology and the consequent membrane performance. On the one hand, at low
concentrations of the photocatalyst, the viscosity of the polymer solution slightly and progressively
increases. The hydrophilic groups of the catalyst attract the water molecules that diffuse faster towards
the polymer phase, so as previously mentioned, the binodal curve shifts to the left of the ternary phase
diagram (see Figure 3). This will ultimately accelerate the demixing rate, producing bigger and distorted
finger-like pores and an increase of the membrane porosity. On the other hand, at high concentration of
photocatalyst, due to the strong interaction between the photocatalyst nanoparticles and the polymer
molecules, the viscosity increases abruptly, the polymer solution changes its nature from Newtonian to
non-Newtonian fluid and the membrane formation is governed by the kinetics, that is radically slowed
down reducing the pore radius and membrane porosity. This phenomenon is directly related to the
membrane performance. At the photocatalyst concentration of the rheological change (Figure 4), the
flux, the porosity, the pore size, the hydrophilicity, and the mechanical properties, such as breaking
strength, reach a maximum (‘optimum’) value [15,19,23,26,28–30,36,38,39,43,53,59,61,63] From this
point on, the membrane properties, i.e., flux, pore size, porosity, etc., decrease and additionally the
photocatalyst nanoparticles tend to aggregate. The nanoparticles aggregation could be avoided if a
strong chemical bonding is achieved between the nanoparticles and the polymer chains, for instance,
using silane (γ-aminopropyltriethoxysilane) as a coupling agent to form a covalent link between the
photocatalyst and the polymer [43].
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Additionally to the photocatalyst, some works incorporate other additives or fillers to the polymer
solution [15,17,18,20,21,23,24,30,33,34,38,39,43,51,57–59,62]. Some of these additives are i.e., leachable
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agents such as polyvinyl pyrrolidone (PVP) [17,18,20,21,33,34,38,39,43,51,58,59] and polyethylene glycol
(PEG) [15,23,30,57] and inorganic salt as lithium chloride (LiCl) [24], which increase the membrane
pore size and the number of pores. Surface modifier macromolecules (SMM) are tailormade polymers
with tuneable hydrophobicity. As hydrophilic SMMs have lower surface energy than polymers, they
migrate to the air/membrane interface to minimize the total free energy of the system. Its addition to
the polymer solution forms a denser skin layer and forces the photocatalyst migration to the active
layer of the membrane [40,41]. Another interesting strategy to arrange the position of the photocatalyst
is the use of magnetic nanoparticles. Sun et al. [42] applied a magnetic field over a casted solution of
PES and magnetic Ni-TiO2 catalyst before the immersion to the bath coagulation. The particles moved
to the surface of the membrane instead of being homogeneously dispersed in the membrane matrix,
confirmed by Ni and Ti mapping test of SEM images.

Finger-like microstructure usually produces membranes with low mechanical stability. On the
other hand, the sponge-like structure would allow the membranes to avoid membrane compaction
during filtration. This structure can be obtained with slow polymer precipitation techniques. For
instance, in EIPS [101] the polymer precipitation is induced by solvent evaporation, which retards the
polymer solidification. A slow precipitation mechanism usually produces membranes with a dense
homogeneous structure. However, it has been reported the EIPS synthesis, using DMF as a solvent,
of homogeneous sponge-like photocatalytic membranes with controlled porosity and pore size of
P(VDF-TrFE) [46–49] and PVDF-HFP [50] copolymers when adding TiO2 [46–49], Ag-TiO2 [50], and/or
ZnO [48] as photocatalysts.

The sponge-like structure can be also obtained by controlling the solvent evaporation time before
the introduction of the polymer solution into the coagulation bath in a NIPS process [25,40,41]. When
the solvent (NMP) evaporation time was below 5 min, g-C3N4 doped polymer membranes with an
asymmetric structure formed by a dense top-layer and finger-like structure sub-layer were obtained.
Above this evaporation time, the structure changed from finger-like to sponge-like [40,41]. In other
works, using TEP as the solvent with an evaporation time of 2.5 min [25] or using isopropanol: water
as the coagulation bath [19], TiO2 containing polymer membranes presented sponge-like structure.

The variables employed during the phase inversion, such as i.e., components, composition, and
solvent evaporation time, importantly affect the ultimate membrane morphology in terms of pore size
and pore structure. Figure 5 depicts schematically the different types of variables that mainly influence
the membrane structure when phase inversion techniques are used.
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3.1.2. Electrospinning

Electrospinning is a simple, versatile, and low-cost way to synthesize polymeric nanofibers [66,80].
A high potential gradient is applied between the grounded collector and the polymer solution droplet.
When the electrostatic potential overcomes the polymer solution droplet surface tension, charged
threads of the polymer solution are formed with fiber diameters in the order of some hundreds
of nanometers [105]. During this processing technique, as it has been revised in Tables 2 and 3,
micro/nano-fibers have been usually collected in flat mats. In most cases, photocatalysts such as bare
TiO2 [64,65,68], and ZnO [63,67] or composites as GO-TiO2 [61], and TiO2-ZnO [66] were incorporated
to the fiber (Table 2). In addition, electrospun mats could be used as supports for TFCM as indicated in
Table 3 [75,81,87,88].

The morphological structure of the fibers can be tailored by changing different processing variables,
such as the polymer molecular weight, polymer concentration, and flow rate of the polymer solution,
tip to collector distance, and applied electric voltage [61,66,67,79,88]. In general, solid (non-porous)
polymer fibers are produced. The bulk porosity of the mat is formed by the interstitial separation
among the deposited micro/nano-fibers. Electrospinning allows high aspect ratio (length/diameter) of
the fibers and uniform diameter, which means large specific surface area [61,80].

As can be seen in Tables 2 and 3, DMF is the principal solvent used [66–68,79,80] and to a lesser
extent water [63], DMAc [87] and mixtures of acetic acid: formic acid [65] have been also used.

Regarding the polymer materials usually employed to produce photocatalytic mats by
electrospinning, PAN is the most widely used polymer [66–68,75,80,81,87] due to its flexible
nature and because it is easy to process. PAN fibers have high mechanical strength and are
chemically resistant [66,67,81,87]. Other polymers used, although to a lower extent, are PTFE [63,64],
P(VDF-TrFE) [61], PA6 [65], CA [79] and PVDF [86].

The photocatalytic nanoparticles of TiO2, ZnO, among others (see Table 2) are mostly incorporated
and homogeneously dispersed in the polymer solution [61,63–68], and subsequently electrospuned.

The rheological change of the polymer solution caused by the photocatalyst incorporation at high
concentrations also causes the agglomeration of the nanoparticles and consequently the formation of
beads which could affect the polymer structure [106]. In most cases the fiber diameter and porosity
increase with the photocatalyst concentration due to the increase of the solution viscosity [63,65–67], as
can be extracted from scanning electron microscopy (SEM) images. When using ZnO concentration
higher than 20 wt. %, there is adhesion between the nanofibers. As a result, the mat porosity decreases
blocking the light access inside the mat [63]. However, Almeida et al. [61] found that the fiber diameter
and porosity decreased with the increase of the TiO2/GO concentration due to mechanical stretching
during the material processing caused by an increase in the solution electrical conductivity when
doping GO to form composite TiO2/GO photocatalyst nanoparticles.

The selection of the polymer material limits the dosage of nano-photocatalysts in the polymer
solution. When fibers are synthesized with fluorine polymers it is possible to work with photocatalyst
concentration up to 20 wt. % of TiO2/GO and ZnO [61,63]. Membranes that use PAN usually work
with photocatalyst concentration below 2 wt. % including TiO2-ZnO [66], and ZnO [67].

3.2. Thin Film Composite Synthesis Methods

Table 3 shows different coating techniques to prepare thin-film photocatalytic membranes, including
vacuum deposition also called vacuum filtration [69–75], filtration [76,77], immersion [78–85],
electrospraying [86], co-electrospinning [87], hot-press deposition [88], and sputtering followed
by anodization [89]. Being immersion and vacuum deposition, the techniques mostly used. In this
case the main photocatalysts incorporated to the membrane were TiO2 [83,84,86,88,89] and composites
of TiO2 with carbon based compounds [69,70,72–74,76–80,82], among others (see Table 3).

Commercial microfiltration membranes with a pore size between 0.2–0.45 µm are frequently used
as supports to be coated with the photocatalyst [70,71,73,74,76,77,84,85,89]. The use of ultrafiltration
membranes is less common [69,78,82]. Commercial supports can be made of different materials as can
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be seen in Table 3, but the most used polymer is CA [70,71,76,77]. However, tailor-made supports have
also been produced by phase inversion [83,88] or electrospinning [68,75,79–81,86,87].

The photocatalyst loading capacity depends on the synthesis technique. For instance, Table 3
shows that it is possible to successfully coat membranes with a photocatalyst (nAg-GO-TiO2 [69],
Ag-rGO-TiO2 [70], rGO-g-C3N4 [71], and GO-TiO2 [72]) concentration up to 8 mg/cm2 when
vacuum deposition is used as a synthesis method, being the optimum concentration is around
0.8-2 mg/cm2. However, when using filtration or immersion deposition of TiO2 [83], or carbon based
photocatalyst [76–78], the working photocatalyst concentration can be increased up to 35 mg/cm2 and
the optimum concentration is in the range 7–20 mg/cm2.

As Figure 6 shows, different strategies can be followed to anchor the photocatalyst on the
membrane surface and then ensuring long-term stability. The most popular technique is the use of
an additive to cross-link the photocatalyst and the polymer through physical or chemical interaction.
For instance, chemical bonding is achieved with polyallylamine (PAAM) used to link nAg-GO-TiO2

photocatalysts to PES membrane [69] and glutaraldehyde (GA) to link NH2-TiO2 on the one hand to a
CA membrane blended with GO [79] and on the other hand to PAN-CNT [80] membranes. This linking
was possible because the amino groups of PAAM and NH2 react with GO and CNT nanoparticles
creating C-N bonds. Polyethylene glycol (PEG) and GA to link Ag-rGO-TiO2 [70], and polyvinyl
alcohol (PVA) is used to anchor AC-N-rGO-TiO2 nanoparticles [78] to commercial polymer membranes
of CA and PSF, respectively. Due to the saponification degree of PVA (98–99%), it is demonstrated
that the PVA coating is not dissolved during the degradation and filtration process [78]. All of these
photocatalysts are TiO2-based composites with carbonaceous compounds, silver, or amino groups.Catalysts 2020, 10, x FOR PEER REVIEW 19 of 35 
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The in situ synthesis of composite membranes, which has been exhaustively reviewed by Li
et al. [107], is another popular approach to improve the long-term stability of the nanoparticles in the
membranes. Related to this, only one work analyzed in this review applied in situ deposition, one of
them using polydopamine (PDA) as an additive that facilitates the in situ immobilization of Ag-TiO2

nanoparticles [81]. High temperatures are required for the in situ growth of the photocatalyst in the
membrane, so this could be the reason why only one work uses this technique in polymeric membranes.

The surface modification of the polymeric substrate is employed to create binding sites for
the photocatalyst or facilitate its adhesion. For instance, plasma-induced graft polymerization is a
technique that eliminates the need for a chemical initiator and is followed by immersion. Commercial
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PVDF membranes were modified by plasma-grafting which generates activated species that can
trigger polymerization reactions [84]. The liquid grafting was made by the introduction of the
plasma pre-treated membrane in a polyacrylic acid (PAA) polymer solution. Binding sites were
created in the membrane surface that facilitated the self-assembly of TiO2 nanoparticles as a thin and
uniform coating. The number of binding sites was controlled and maximized by the modification
of plasma-grafting conditions (plasma treatment: 100 W for 120 s; liquid graft: 70% acrylic acid
solution at 60ºC for 2 h). Similarly, the grafting can be initiated by UV irradiation [85], in this case the
Ag-ZnO-Fe3O4-MWCNT/PAA was grafted to a PA membrane support.

More elaborated coating techniques also ensure the good adhesion of the photocatalyst to the
support as electro-deposition techniques that includes electrospraying [86] and co-electrospinning [87].
Hot-press is a process in which pressure and temperature are applied to adhere the photocatalyst fibers,
by a partial fusion, to a polymeric membrane surface; the field emission scanning electron microscopy
(FESEM) cross-section images indicate a great adhesion between TiO2 as photocatalyst and PVDF as
the membrane matrix [88]. Sputtering is a physic process where there is vaporization of Ti atoms from
a solid material “blank” by bombarding it with energetic ions then, by anodization, Ti atoms crystalize
forming TiO2 nanotubes which are firmly bonded to the PES commercial support [89].

However, in the cited literature, most of the works [71–77,82,83] do not use any additive or
additional technique to ensure the photocatalyst attachment. To further analyze the photocatalyst
stability, chemical evidences of the particle leaching from the membrane should be followed during
the experimental evaluation of the membrane performance. Works complying this study are analyzed
in the sections below.

4. Membrane Functionality

The incorporation of photocatalytic nanomaterials can lead to the following functional
improvements in polymeric membranes: (1) membranes with antifouling properties and the
consequently improved filtration capacity and reusability, (2) membranes with photocatalytic activity,
or (3) a combination of the above two functional features. Below, a detailed analysis of the filtration and
photocatalytic properties of the reported membranes will be addressed in terms of the influence of the
membrane synthesis method. Additionally, general guidelines about the processing variables advisable
to achieve improved membrane performance and membrane long-term stability will be emphasized.

4.1. Filtration Performance

Membranes intended for filtration applications were made by NIPS and EIPS in the case of
MMM, while both commercial polymeric supports and NIPS-homemade supports were employed
for TFCM. The functionality of MMM and TFCM membranes was analyzed in terms of hydraulic
permeability and antifouling properties and compared to neat polymeric membranes. The hydrophilic
enhancement provided by TiO2 automatically benefited the permeability and antifouling properties of
TiO2-functionalized membranes [21,22,38], without the necessity of applying further UV irradiation
(and therefore additional photocatalytic action). In other cases, the organic deposits on the functional
membranes were cleaned by photocatalytic degradation after membrane filtration [17,23,43] using
cycles of membrane filtration-UV irradiation cleaning. Below a detailed analysis of the membrane
features and their influence on the hydraulic permeability and antifouling effect of the modified
membranes will be addressed.

4.1.1. Hydraulic Permeability

The effect of adding TiO2, AC, GO, and TiO2 carbon-based nanomaterials on the structure and
filtration properties of PVDF and PSF membranes, prepared by NIPS are shown in Table 4.
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Table 4. Permeability, pore size, and porosity comparison between neat and composite membrane.

Neat Membrane Composite Membrane

Polymer (%) Permeability
(L/hm2bar)

Mean Pore Size
(nm) Porosity (%) Nanoparticles Added

(%)
Permeability
(L/hm2bar)

Mean Pore Size
(nm)

Porosity
(%) Literature

PVDF (15) 150 48.1 69.6
TiO2 (1) 300 52.6 75.1

[20]GO (1) 400 55.7 78.3
GO-TiO2 (1) 490 65.2 83.1

PVDF (14) 90 18.6 47.2
AC (0.5) 170 18 56

[22]TiO2 (0.1) 280 28.2 54.3
AC-TiO2 (0.5:0.1) 255 30.6 55.4

PSF (18) 115 56.2 62.5

GO (0.5) 150 61.4 69.4

[33]TiO2 (0.5) 155 62.8 71.6
rGO-TiO2 (0.5) 180 67.9 77.2

N-rGO-TiO2 (0.5) 230 70.5 81.8
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In Table 4, the values of permeability are directly related with the pore size of the membrane,
which is defined by the initial system polymer/solvent/additive. The higher values of pore size reported
in Table 4 [20,33] are due to the use of pore formers during membrane synthesis. It can be seen that, as
previously indicated, the incorporation of TiO2 increased the membrane permeability. In the MMMs
the increase of membrane permeability could be mainly attributed to the increase of the pore size
and the porosity produced by the inclusion of the nanomaterials on the ternary system. The use of
TiO2 modified with carbon-based nanomaterials even enlarged membrane pore size and porosity
and therefore higher permeability was attained. As it was previously explained in Section 3.1.1., for
MMM synthesized by NIPS, the optimal selection of photocatalyst concentration and its effect on the
rheological properties of the polymer solution resulted in obtaining membranes with adequate porosity
and morphology. Above the nanoparticles optimal concentration, they tend to aggregate, and it has
detrimental effects in the membrane permeability and hydrophilicity. For example, the permeability
for a bare PES membrane was found to be 1.1 L/m2hbar [38]. The addition of nanoparticles increased
the pore size, the porosity, and the hydrophilicity (measured by contact angle), thus the permeability
improved to 2.25 L/m2hbar, corresponding to a 1 wt. % of nanoparticles. Above this nanoparticle
concentration, the aggregates clogged the pores of the membrane, which increased the water transport
resistance of the membrane surface [59] hence, the permeability decreased.

The works that analyze the optimum concentration of TiO2 [15,19,26,28,29,59] and Fe-TiO2 [30]
conclude that the optimum nanoparticles concentration in the polymeric solution will be between
2–5 wt. % according to the concentration before the rheological change (see Figure 4 and Section 3.1.1),
which gives the highest permeability value. This range usually corresponded to a 0.2–0.5 wt. %/cm2.
However, the optimum value should be experimentally found for each system as it will depend on the
particular rheological properties of the polymer solution that incorporate the photocatalyst.

Additionally, Tran et al. [16] showed an efficient way to maximize pure water flux, in absence of
pollutants, with fewer energy consumption using irradiation cycles of non-UV and UV periods for
TiO2/PVDF flat membranes.

In TFCM, the incorporation of an additional thin layer with low-size pore to a microfiltration or
ultrafiltration support typically increases the resistance to the mass transport and even reduces further
the support membrane pore size, therefore the flux is reduced [69–74,76,77,82,89]. This effect has been
frequently observed when vacuum [69–74], filtration [76,77], immersion through layer by layer [82],
and sputtering [89] deposition were used, using mostly GO-TiO2 as the catalyst, but also rGO-g-C3N4,
and TiO2, see Table 3. On the contrary, three works reported an increase in the membrane flux after the
photocatalyst deposition. Nor et al. [88] used the hot-press technique, under controlled temperature
conditions (160 ◦C), to partially melt the TiO2 photocatalyst to the PVDF membrane. In that case,
the porosity of the support remained unaltered and the use of hydrophilic TiO2 as photocatalyst
increased the flux in contrast to the plain support. On the other hand, the flux enhancement is also
achieved modifying the membrane support hydrophilicity through two ways, using the hydrophilic
PVA as a crosslinker between the AC-N-rGO-TiO2 coating and the PSF membrane support prepared
by immersion [78] or using plasma grafting, which modifies the hydrophilicity of the PVDF support
combined with the immersion in a TiO2 solution [84].

4.1.2. Antifouling Properties

The antifouling behavior has been studied for MMM systems synthesized by phase
inversion [15,20–23,26,33,36,38,43,53,57] and for TFCM systems synthesized by vacuum deposition [70,71]
and immersion [83–85]. Model organic foulant solutions, i.e., bovine serum albumin (BSA)
protein [15,17,20–22,26,84], humic acid (HA) [23,36], and polyacrylamide (PAM) [43] are usually employed
for studying antifouling phenomena.

The benefits of immobilizing photocatalysts for the membrane antifouling property can be
associated with: (i) an increase of the hydrophilicity and (ii) a decrease of the membrane roughness.
As it has been previously explained, the use of bare TiO2 produced an enhancement of the
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hydrophilicity [15,23,24,36,43,53,57,83,84], which can be enhanced even more when the material is
irradiated with UV light. In addition, this property might be intensified when carbon based composite
photocatalysts are used [20–22,33,38,70,71] considering the synergy between carbon compounds and
TiO2 [20]. This synergy is produced because the presence of oxygen-containing functional groups
(hydroxyl, epoxy, carboxyl, and carbonyl) in the surface of the photocatalyst facilitates the interaction
of carbonaceous materials with a wide variety of organic and inorganic materials that helps avoiding
the aggregation of the nanoparticles [72,75]. Furthermore, in MMM the use of additives, i.e., PEG [57],
also improved the anti-fouling property because this additive generated smoother membrane surface.

As it was previously mentioned for MMM, at the photocatalyst concentration of rheological
change, the permeability, the porosity, the pore size, and the hydrophilicity of the membrane reach a
maximum [15,26,36]. In most of the cases, this concentration matches with the one that gives the best
antifouling performance [15,29]. The best antifouling performance occurs at the concentration where
the flux recovery ratio is the highest and the irreversible fouling is the lowest.

4.2. Photocatalytic Activity

4.2.1. Comparison between Suspended and Membrane Immobilized Systems

In general, it has been reported that the SPMRs permit to achieve higher degradation yields
of POPs when compared to IPMRs, due to the larger active surface area, which guarantees a good
contact between the photocatalysts and the pollutants. As a consequence, there are more studies of
SPMRs. However, fouling, which is caused by deposition of the photocatalyst nanoparticles on the
membrane surface with a consequent flux decline, and light scattering, still limit the performance of
this type of PMRs configuration [4,108,109]. Meanwhile, in the IPMRs, the photocatalyst/pollutants
contact is hindered by the mass transfer limitation over the immobilized photocatalyst. However, in
this configuration, catalyst recovery and reuse can be more easily achieved than in SPMR and it is
potentially less hazardous.

In general, few works have been found in the literature comparing the photocatalytic activity
of (i) systems with immobilized photocatalyst, and (ii) the corresponding amount of suspended
photocatalyst. In terms of membrane functionality, this comparison is a key point. It will help to
determine the synthesis method that preserves the photocatalyst activity once it is immobilized or
improve the dispersibility of the immobilized photocatalyst; the latter will favor enhanced performance
when compared to suspended systems. When MMMs are used, a slight reduction of the photocatalytic
performance compared with suspended systems has been so far observed. This reduction, in most of
these works, can be considered inside the experimental error (<5–10%). For instance, flat membranes
made by EIPS showed a negligible reduction in the photocatalytic degradation yield of MB of 3%
using TiO2-NaY/P(VDF-TrFE) [49]; in the case of NIPS membranes, the photocatalyst performance
decayed down to 6% (Co-TiO2/PES) [37] and 15% (O-g-C3N4/PES) [41] for the degradation of 2,4
dichlorophenol and phenol, respectively. For electrospun nanofibers, using TiO2-MWCNTs/PVDF
nanofibers to degrade MB, the performance loss was 12% compared to the suspended photocatalyst [62].
Finally, degrading MO with ZnO/PAN nanofiber mat, the efficiency loss was about 4%, which means
that the nanofiber photo-activity is 1.6 times less than the photocatalyst (ZnO) powder [67]. As it can
be seen, in general low performance reductions on immobilized photocatalysts on MMMs were always
reported (<15%) compared to suspended systems

However, Ramasundaram et al. [86] showed an interesting comparison of the photocatalytic
activity between TiO2 (i) in suspension, (ii) deposited by electro-spraying on PVDF nanofibers mat
(TFCM), and (iii) immobilized in PVDF MMM by NIPS; these authors analyzed different synthesis
methods. Total degradation of MB and IC was achieved with TiO2 suspension in 40 min, while for the
electrosprayed nanofibers mat, the time to achieve the degradation increased up to 60 and 100 min for
each pollutant respectively. Furthermore, after 140 min of irradiation, the pollutants studied were not
completely degraded with the MMMs. From these results, a lower photoactivity of MMM is observed,
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attributed to a lower photocatalyst active surface area in contact with the pollutant, in contrast to the
suspended system.

Overall, attending to the aforementioned results, it could be that the dispersibility on the polymer
matrix of MMMs of bare TiO2 might be more difficult than for other photocatalysts, such as composite
TiO2 photocatalyst or other type of semiconductors. However, more detailed studies should be done
to confirm this preliminary observation.

4.2.2. Influence of the Synthesis Method on the Membrane Photocatalytic Performance

As previously remarked, it has been observed in the literature that the different photocatalyst
immobilization methods resulted in different photocatalytic performances. This effectiveness might be
attributed to different photocatalyst accessibility to light sources. Therefore, the in-depth analysis of
the effect of the method of membrane synthesis on the allocation of the photocatalyst in the membrane
matrix is; this analysis is focused to evaluate the potential relationship between the photocatalyst
entrapment or shielding effect within the membrane and its photocatalytic activity, as well as its
long-term stability.

In the case of phase inversion MMMs, the nanoparticles could be homogeneously dispersed in the
whole membrane matrix, so they could be embedded in the membrane and therefore the number of
nanoparticles accessible to light could be importantly reduced. To overcome this problem, dual-layer
hollow fibers provide an external photocatalytic layer, while the inner layer is not photocatalytic.
Within this strategy, similarly than in TFCM strategies, the filtrating performance of the membrane
might be hampered with the additional photocatalytic layer. Therefore, it is often necessary to reach a
compromise on the photocatalyst concentration and be careful with the pore structure of the coating
layer. Different works have observed that the best photocatalytic performance of double layered
TiO2/PVDF hollow fibers [56] and flat membranes of TiO2/P(VDF-TrFE) prepared by EIPS by Teixeira
et al. [48] was achieved with a 15 wt. % of photocatalyst concentration. Further concentration increase
would limit the photocatalytic activity due to the nanoparticles agglomeration with the consequent
decrease the surface area. However, regarding the filtration performance of the double layered
TiO2/PVDF hollow fibers, Dzinun et al. [53] observed that at a concentration of 3 wt. % of TiO2 the
highest membrane flux was achieved as further concentration of photocatalyst blocked the membrane
pores. Overall, Dzinun et al. [49] observed that a concentration of 3 wt. % of TiO2 could be considered
adequate to perform simultaneous filtration and photocatalytic degradation of NP.

Usually, the electrospun MMMs have been only used to immobilize the photocatalyst and
never with filtration purposes as they usually have large macro-pores and therefore, low pollutant
rejection. The mat is submerged in the polluted solution and, after the degradation process, it is easily
recovered [61,63–68,87]. Similarly as in blended MMMs by NIPS, in electrospun membranes, the
photocatalytic nanoparticles, such as ZnO and TiO2, were homogeneously located in the membrane
matrix [63,65]. On the other hand, the nanoparticles of the CQDs-Bi20-TiO32 photocatalyst could
be also anchored on the surface of the electrospun nanofiber using co-electrospinning [87]. Salazar
et al. [50] compared the photocatalytic performance of Ag-TiO2/PVDF-HFP membranes prepared by
solvent casting and electrospinning. Solvent casting membranes present higher degradation rates of
norfloxacin (64%) than the nanofibers (51%).

Only 2 out of the 21 works dealing with photocatalytic TFCMs study the influence of the
photocatalyst concentration in the degradation of some dyes. On the other hand, most of the works of
TFCMs select the optimum photocatalyst concentration based on the point of highest flux, but not based
on results of the membrane photocatalytic activity. For instance, for GO-TiO2/CA membranes prepared
by filtration the catalyst concentration that provided the highest permeation flux was 6.85 mg/cm2 but
the best photocatalytic performance to degrade CR was achieved with 27.4 mg/cm2 [76]. Similarly, for
AC-N-rGO-TiO2/PSF membranes prepared by immersion the optimum photocatalyst concentration was
fixed in 6.92 mg/cm2, although the higher degradation of MO was achieved with 9.22 mg/cm2 [78]. Most
of works in the literature of TFCM synthesis applied the criteria of the highest filtration performance
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to set the optimum photocatalyst concentration highlighting the importance of this property on the
overall photocatalytic system.

On the other hand, the method of deposition of the thin photocatalytic film on the membranes is
of utmost importance on the efficient anchorage of the photocatalyst on the membrane surface. While
using vacuum deposition on CA membranes, low photocatalyst concentration could be deposited,
i.e., 0.796 mg/cm2 of Ag-rGO-TiO2 [70] and 1.99 mg/cm2 of rGO-g-C3N4 [71], with filtration and
immersion as synthesis techniques, higher concentration of photocatalyst was attained, 16.75 mg/cm2

(GO-TiO2/CA) and 13.95 mg/cm2 (Ag3PO4/PAN). Consequently, lower photocatalytic degradations
were achieved with the vacuum deposited TFCMs, however, attention should be paid to the different
type of photocatalysts that were used in the works reported above.

The comparison between the photocatalytic performance of TFCM and MMM membranes has
been scarcely reported. Wu et al. [78] prepared TFCM with a PSF commercial support coated with a
PVA solution to immobilize the nanoparticles (AC-N-rGO-TiO2) by a surface deposition method. The
MMM was synthesized by NIPS, a solution of PSF, PVP, and AC-N-rGO-TiO2 was prepared in NMP
using water as coagulation bath. TFCM presented higher photocatalytic performance (95.2%) than
MMM (31.1%). In addition, Ramasundaram et al. [86] compared TFCM with MMM. They deposited
TiO2 by electro-spraying on PVDF nanofibers mat and immobilized TiO2 in PVDF MMM by NIPS.
Surface deposition by electrospraying was more favorable than NIPS to maintain the photocatalyst
accessibility to light. In the latter works, the lower photocatalytic performance of the MMM was
explained because the blending method encapsulated the nanoparticles into the membrane matrix,
which protects the nanoparticles but hinders light irradiation. However, as previously analyzed in
Section 4.2.1, many works also reported similar photoactivity of photocatalytic MMMs than suspended
systems. Therefore, more attention to the methodology of MMM membranes preparation should be
paid; further works comparing the structural features and functional performance of photocatalytic
TFCMs and MMMs should be done discerning the advantages and disadvantages offered by the two
membrane types.

4.2.3. Membrane Aging

Polymer Stability

Certain polymers are materials susceptible to photolytic and photocatalytic degradation. As
photocatalytic membranes are going to be exposed to UV irradiation, membrane aging, and long-term
resistance are crucial to their application. It must be remarked that only few works have explored this
long-term membrane behavior.

As in MMMs, the photocatalyst is embedded inside the matrix, and there is no additional protective
layer over the membrane, the polymer is highly exposed to light effects. In terms of membrane aging,
PVDF membranes have demonstrated stability against photocatalytic reaction and UV irradiation in
long-term operation [53–55]. After 30 days of UV irradiation, the membranes upheld their integrity
despite many cracks were formed on the surface, which increased the membrane roughness, analyzed
with atomic force microscopy (AFM). FTIR tests showed a change of the PVDF crystalline phase,
besides the formation of –CF=CH- double bond by dehydrofluorination. The dehydrofluorination
reaction of PVDF is presented in Figure 7, following the pathway of carbocation reaction using H2O
as a polar solvent and UV as the heat source, described by Dzinun et al. [54]. There was a slight
decrease in tensile strength that increased with the increase of the UV exposure time, causing negative
impact on the overall stability. SEM images of an mpg-C3N4-TiO2/PSF membrane [34] showed that the
membrane structure was maintained without changes after its exposure to simultaneous photocatalytic
degradation and filtration of the antibiotic sulfamethoxazole (SMX) during 30 h. Some loss in tensile
strength was observed, although the membrane integrity and flexibility were maintained. In the case
of MMM synthesized by electrospinning, ZnO/PTFE nanofibers, they only lost 3.8% of mechanical
strength after 5 cycles of operation (25 h) [63].
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On the other hand, the TFCM configuration might incorporate a photolytic protective layer to
low UV-resistant polymeric supports such as PP [99]. This solution was also pointed out by Tsehaye
et al. [100] in their study of the PES membrane stability under oxidative conditions.

Photocatalyst Detachment or Leaching

During operation, photocatalytic membranes might suffer the loss or leaching of photocatalytic
nanomaterials. The methodology employed to synthesize the membranes might induce different
nanomaterials anchorage on the polymer matrix. However, only two authors evaluate the amount of
photocatalyst that leached out from the membrane after each cycle using inductively coupled plasma
(ICP). Ramasundaram [86] did not detect any titanium in solution after 10 cycles (17.7 h) of use of a
TFCM of electrosprayed TiO2 on a PVDF nanofibers mat and they observed that the photo-activity
was preserved during all cycles. Tissera et al. [67] analyzed the Zn leached from a MMM made of
electrospun ZnO/PAN nanofiber after 3 cycles (30 h). Concentrations of Zn of 40, 20, and 17 ppb (which
accounted respectively by 0.08, 0.04 and 0.034 µg of ZnO leached per mg of membrane) were measured
in the feed tank solution during the first, second and third degradation cycles, respectively. This meant
than less than 0.0052% of the photocatalyst embedded in the membrane matrix was leached out of the
membrane after 30 h of use.4.2.3.3. Long term membrane performance

Table 5 compiles the works that reused the membrane in several cycles and the change in
the degradation rate of organic pollutants. Only 2 out of 5 works of TFCM found a loss of 10%
in photocatalytic activity during the cycles of photocatalyst reuse while the others reported stable
membrane photocatalytic activity. Meanwhile 6 out of 12 works of MMMs presented a decline in
the photocatalytic activity with membrane reuse between 8 and 45% independently of the synthesis
method. This means that, similarly, approximately 40% of both TFCM and MMM works report a
decline in photocatalytic activity during the reuse of the photocatalytic membranes, although the
loss of activity could be more pronounced in the case of MMMs due to the protective effect that
the photocatalytic layer could exert on the polymer substrate. Bare TiO2 or ZnO were used in most
membranes collected in Table 5.
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Table 5. Influence of the synthesis method on the nanoparticles stability based on the degradation change of the membrane after its reuse.

Photocatalyst/
Polymer Synthesis Method Targeted

Pollutant Number of Cycles Total Irradiation
Time (h)

Loss in Degradation Rate
(Cycle 1–Last Cycle)

Power of the
Lamp Ref.

MMM
TiO2/ PSF NIPS Cr (VI) 4 - 0% Sunlight [28]

N-TiO2/
PMAA-g-PVDF/PAN NIPS Bentanzon 3 10 0% UV

(5063 lux) [27]

ZnO/ CA-PS NIPS CR, RY 105 5 5 45 % Sunlight [44]

TiO2/ PSF NIPS MB, MO 5 7.5 0% UV-C 10 W [51]

TiO2/ P(VDF-TrFE) EIPS MB, CIP, IBP 4 20 0% UV-A 48 W [46]

TiO2 or ZnO/
P(VDF-TrFE) EIPS MB, Model organic 3 15 13 % UV-A 48 W [48]

Ag-TiO2/
PVDF-HFP EIPS NOR 3 15 15.6 % UV-A 8 W [50]

Ag-TiO2/
PVDF-HFP Electrospinnin NOR 3 15 8.8 % UV-A 8 W [50]

ZnO/ PAN Electrospinning MO 3 30 0% UV-A 40 W UV-B
20 W [67]

ZnO/ PTFE:PVA Electrospinning RhB 5 25 20 % UV 500 W [63]

TiO2/ PTFE Electrospinning MB 5 7.5 45 % UV 300 W [64]

TiO2/ PA6 Electrospinning RBB 3 12 0% UV 6 W [65]
TFCM

TiO2/ PVDF Electrospraying BPA, 4-CP, CMT 10 16.7 0% 4 W [86]

GO-TiO2/ CA Filtration CR 3 - 10 % No data [76]

TiO2/ PEI-P25 Immersion RhB 6 12 10% UV 18 W [83]

NH2-TiO2/
PAN-CNT Immersion Cr (VI) 5 5 0% 125 W (420 nm) [80]

rGO-α-Fe2O3/
PAN

Vacuum
deposition

MB, MO, RhB,
R6G, MG, GV 5 4.2 <10% UV-vis

275 W [75]
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For instance, in TiO2/P(VDF-TrFE) MMMs synthesized by NIPS, the degradation rate of MB and
the kinetic constants of three consecutive cycles of 5 h each were reported [48]. Particularly, when
the membrane incorporated a TiO2 concentration in the polymer solution of 5, 10, and 15 wt. %, the
reduction in the degradation rate between cycle 1 and cycle 3 was 6%, 16%, and 13%, respectively. In
this work, nanoparticles were located mainly on the membrane surface and weakly bonded to the
polymer, so the authors attributed this effect to the nanoparticles leaching out of the membrane.

It is worth remarking that the important 45% decay in photocatalytic activity reported in Table 5
for some MMMs could be attributed to an important membrane degradation during operation caused
by the low chemical and photochemical stability of CA polymer [41] and the high power of the light
source employed [60].

Overall, the characterization of the membranes before and after a long-term exposure to UV would
help to better analyze membrane aging. The morphological characterization should be done with
SEM or FESEM, to obtain images of the membrane surface [55] and AFM, to analyze changes in the
membrane surface roughness [54,55]. Additionally, other chemical analytical techniques can be used,
X-ray diffractive dispersion (XRD) to observe changes in the crystallinity of the materials employed and
energy dispersive X-ray (EDX) to observe changes in the chemical structure of the membrane. Finally,
analysis of the functionality of the photocatalytic membrane with filtration tests and photocatalytic
reuse tests through ICP analysis of the liquid medium would complete the photocatalytic membrane
stability characterization

5. Guidelines and Recommendations for Researchers

This review aims to evaluate the materials, synthesis methods, and their relationship with the
functional performance of photocatalytic polymeric membranes. PVDF is the recommended material to
fabricate flat or hollow fiber MMMs by phase inversion techniques due to its photocatalytic resistance;
this is supported by the large information gathered in the reported works that use this polymer.
However, the use of PES and PSF is also popular due to their easy manufacture. In the case of
nanofibers made by electrospinning, PAN is the polymer mostly used because it is easy to process by
this technique, albeit it is not the most stable polymer under UV-light exposure. On the other hand, in
TFCM it seems that the photocatalytic coating generates a protective layer, so supporting materials
with low photocatalytic resistance, such as PES or PSF, could be used.

Many works use TiO2 as photocatalyst for photocatalytic membranes, however, it has been
demonstrated that carbon based composite photocatalysts not only improve the photocatalytic
performance in both MMMs and TFCMs but also contribute to enhancing between 2 and 3.26 times the
filtration performance of the membrane. Moreover, from preliminary observations in this review, it
could be stated that TiO2-based composite photocatalysts could be better anchored and dispersed by
linkers on TFCMs than bare TiO2 nanoparticles.

After an exhaustive review of the synthesis methods for photocatalytic polymeric membranes, not
enough evidence was found to select the best methodology and the choice should ultimately be based
on the aimed application of the material. The few works that compare the photocatalytic performance
of MMM and TFCM have observed that TFCM provided higher photocatalyst surface area of contact
with the pollutant, so the degradation is favored with respect to MMM. Nevertheless, in MMM some
researchers investigate the synthesis of dual-layer hollow fibers. In this case, the outer layer would
have photocatalytic properties and the inner one would act as support to give mechanical strength to
the membrane.

Photocatalyst leaching out of the membrane is an important issue. Higher stability of the
photocatalyst entrapped in the MMM than in TFCM is expected. However, the use of photochemically
non-stable polymers and/or very high powerful light sources could cause the polymer membrane
degradation in MMMs and the consequent release of the photocatalyst. Furthermore, in TFCM the use of
additives and the application of modification techniques such as surface oximation and plasma-grafting
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improves the photocatalyst adherence. Furthermore, no reliable evidence has been found to demonstrate
any direct photocatalyst loss attributed exclusively to the membrane synthesis technique.

Finally, although ideally, a good method of photocatalyst immobilization on a membrane could
reduce the aggregation of suspended systems, it has been well established in a variety of studies that
the photocatalytic degradation activity is normally reduced when the photocatalyst is immobilized
in a membrane due to the reduction of the available contact area. This reduction has been studied
and quantified in several works giving a range of 3–30%. Therefore, the challenge still persists on the
search for a membrane synthesis method that helps reducing nanoparticles aggregation and maximize
the area of the photocatalyst exposed to the light source. Herein some guidelines are proposed to
help authors in decision-making on the synthesis methodology to produce a membrane with the best
performance depending on the required function.

• If a membrane with high filtration and antifouling performance is sought, MMM synthesized
by phase inversion is recommended, and particular attention should be paid to the solution
rheology to obtain maximum porosity and permeability. The photocatalyst concentration when the
rheological change of the polymer solution occurs should be found in the range of 0.2–0.5 wt. %
for MMM, albeit each system should be studied in detail. Furthermore, TiO2-based composites of
metal or carbon based materials are recommended.

• If high pollutant rejection is desired, either MMM can be produced with techniques to slow down
phase inversion or TFCM techniques, as these would reduce the mean pore size and surface
porosity. Among TFCM deposition techniques, vacuum filtration is the least recommended
method as it produces the lowest performance in the deposition of the photocatalyst and the least
photocatalytic activities.

Based on this literature review, we consider that there are important methodological aspects that
should be considered and/or studied more in depth to facilitate future comparison among photocatalytic
membranes. Some recommendations can be suggested:

• The influence of the lamp irradiance is crucial on photocatalytic membrane systems, in particular
on the effects on membrane aging. In the case of photocatalytic membranes, UV light sources of
low power (less than 50 W) or light-emitting diodes (LEDs) are highly recommended to reduce
polymer aging and thus, ensuring long-term stability of the membrane.

• Long-term stability is a key issue for process scalability. Therefore, high attention should be
paid on this aspect during the membrane viability study. Performing (i) long-term experiments
to verify that the membrane maintains its integrity under the experimental conditions, and
(ii) reuse experiments to ensure good stability of the photocatalyst is therefore encouraged. It
should be considered the effect of elevated heat, UV irradiation and moisture which can lead to
polymer degradation.

• The use of analytical techniques such as EDX, XRD, AFM, and SEM or FESEM, before and after the
UV exposure, are highly recommended to analyze the aging of the membrane. The quantification
of the leaching of nanoparticles from the membrane to the medium should be analyzed with ICP.

• High efforts are being adopted on synthesizing novel and more active photocatalysts. Their
physico-chemical characteristics can be notably different from conventional semiconductors such
as commercial TiO2. Nanoparticle dispersions in polymeric matrix present different rheology so
the membrane processing can suffer significant changes. These changes could play a key role
on the improvement of nanoparticles dispersibility on the polymer matrix so far encountered
on MMMs.

• When the membrane has a simultaneous filtration and photocatalytic function, experimental
reactors should integrate both filtration and photocatalytic degradation. Membrane functionality
characterization should consider: (i) pure water flux test to obtain permeability values (L/hm2bar);
(ii) photocatalytic degradation comparison with the suspended system to evaluate the change in
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the photocatalytic activity when the nanoparticles are immobilized, and (iii) pollutant rejection
under dark and UV irradiation conditions.

• In the particular case of TFCM synthesis, the influence of the photocatalyst concentration using
different coating techniques has not been sufficiently evaluated. There is expected to be an
optimal concentration to maintain the balance between the membranes photocatalytic and
filtration functions. While, as aforementioned, in MMMs the recommended concentration range
is 0.2–0.5 wt. %, in TFMC this evaluation has not yet been assessed and should also be addressed.

• It is noteworthy that most of the works studied in this review analyze the photocatalytic activity
using dyes as model organic pollutants. These types of molecules are photosensitive and can be
adsorbed on the catalysts and/or on the membranes leading to results that are not representative
of other pollutants. Therefore, it is advisable to select other types of organic model compounds,
such as, acetic acid, or certain non-biologically degradable organic compounds as those contained
in hospital effluents, such as antibiotics, (cautiously) organohalogens, etc., to generalize the
obtained conclusions. In this regard, considering the important presence of persistent compounds,
antibiotics and disinfectants likely causing bacterial inhibition in the on-site hospital wastewater
treatment, the use of photocatalytic membrane reactors for the on-site treatment of hospital
wastewaters is envisaged as a promising alternative.

Finally, here we would like to remark that for instance regarding the membrane nature, most
PMRs make use of polymeric membranes either in SPMR or IPMR configuration. Although ceramic
membranes are less common, their positive characteristics such as high permeability, superior chemical,
mechanical, and thermal resistance than polymeric membranes, resistance to UV irradiation, long life,
and excellent antifouling properties counterbalance their higher price and there is an expanding trend
of applications to wastewater remediation [110].

Overall, the development of fouling resistant and more photo-catalytically active membranes
that could maximize the energy adsorbed from the visible light wavelength, together with a deeper
knowledge and control of mass transfer limitations in advanced configurations of PMRs and the
continuous research of motivating applications will facilitate process design and scale-up, thus, paving
the way to establish PMR as one of the best available technologies (BAT) for remediation of wastewaters
containing persistent organic pollutants.
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