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Abstract: The innate electrophilicity of imine building blocks has been exploited in organic synthetic
chemistry for decades. Inspired by the resurgence in photocatalysis, imine reactivity has now been
redesigned through the generation of unconventional and versatile radical intermediates under
mild reaction conditions. While novel photocatalytic approaches have broadened the range and
applicability of conventional radical additions to imine acceptors, the possibility to use these imines
as latent nucleophiles via single-electron reduction has also been uncovered. Thus, multiple research
programs have converged on this issue, delivering creative and practical strategies to achieve racemic
and asymmetric α-functionalizations of imines under visible light photoredox catalysis.

Keywords: amines; imines; photoredox catalysis; radical additions; radical–radical couplings;
stereoselectivity; umpolung chemistry; visible light

1. Introduction

Visible light photoredox catalysis has been at the forefront of organic chemistry research for over
a decade, establishing itself as a sustainable and multifaceted synthetic tool [1]. Irradiation of catalytic
amounts of polypyridyl complexes and organic sensitizers under mild conditions has proven to be
an excellent activation pathway to access a wide variety of radical intermediates (Figure 1). Spurred
by this resurgence, long-standing challenges in the field have been resolved, while a plethora of
transformations continue to be developed in an effort to revamp organic synthesis.
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Figure 1. Visible light photoredox catalysts (λ = local absorbance maximum for lowest energy absorption).

The reactivity of imines has certainly undergone a complete makeover, as different strategies
involving these key building blocks have been developed (Scheme 1). The classical approach still relies
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on the innate electrophilic nature of imines to undergo standard alkyl radical addition (pathway A in
Scheme 1, left). Thanks to photoredox catalysis, the generation of nucleophilic radicals starting from
mild alkylating reagents [2] has provided a broader range to a severely limited transformation in the
past due to hazardous reagents and impractical conditions.
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Scheme 1. Photocatalytic functionalization of imines: pathway A, alkyl radical addition (left); pathway
B, single-electron reduction (right).

Alternatively, the photocatalytic single-electron reduction of imines has emerged as a powerful
technology to generate radical anion intermediates which exist as two different resonant forms (pathway
B in Scheme 1, right) [3,4]. The α-amino radical species can engage in radical–radical couplings with
a large pool of reacting partners (pathway B1 in Scheme 1), while also displaying a complementary
nucleophilic behavior to their corresponding electrophilic imine precursors. Indeed, they can be
trapped by electron-deficient π-systems, a combination which would not be feasible using polar
chemistry (pathway B2 in Scheme 1). Interestingly, the N-centered radical species can be quickly
quenched by an H atom donor to yield a stable carbanion capable of reacting with a traditional
electrophile in polar fashion (pathway B3 in Scheme 1).

The single-electron reduction event (pathway B in Scheme 1, right) can be a challenging
redox process which often requires assistance [4]. While some electron-poor imines can undergo a
straightforward photocatalytic reduction (such as N-sulfonyl- or α-keto-imines), other neutral imines
feature a reduction potential which falls out of range of most photocatalysts. The addition of an external
Lewis acid can increase the reduction potential of the imine (less negative) through coordination.
Moreover, hydrogen-bonding via Brønsted acid can make this reduction a thermodynamically favorable
process thanks to proton-coupled electron transfer (PCET), wherein an electron transfer from the
photocatalyst to the imine takes place in concert with a proton transfer from the Brønsted acid to
the imine.



Catalysts 2020, 10, 562 3 of 22

2. Photocatalytic Radical Additions to Imines—Pathway A

2.1. Racemic Photocatalytic Radical Additions to Imines

Racemic radical additions to imines under visible light photocatalysis began to appear in 2016,
when Bode reported the cyclization of silicon amine protocol (SLAP) reagents with an imine moiety
(Scheme 2, left) [5]. These α-silyl amine precursors could undergo mild single-electron oxidation to
render α-amino radicals, which could then engage with the imine to yield a wide variety of piperazine
derivatives. The protocol was expanded further with α-silyl ether and thioether precursors to access
morpholines, oxazepanes, thiomorpholines and thiazepanes (Scheme 2, right) [6,7]. It should be noted
that, in this case, a Lewis acid was required to activate the imine, and the photocatalytic cycle could
start with an initial Lewis acid-assisted single-electron reduction of the imine.
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Scheme 2. Cyclization of SLAP reagents developed by Bode for the synthesis of piperazines (left) and
morpholines, oxazepanes, thiomorpholines and thiazepanes (right).

The first intermolecular photocatalytic radical addition was published in 2017 by Molander’s
group [8]. The design of a general and modular approach based on the swift single-electron oxidation
of ammonium alkyl bis(catecholato)silicates enabled the alkylation of different N-sulfonyl- and
N-aryl-imines (Scheme 3, top left) [9]. In addition, Friestad employed these silicon reagents to perform
the alkylation of N-acyl hydrazones in the presence of a Lewis acid (Scheme 3, top right) [10]. Alkyl
silicates have also been utilized by Kelly and Molander to achieve the synthesis of various saturated
N-heterocycles via radical alkylation and subsequent cyclization in a radical polar crossover (RPC)
process (Scheme 3, bottom) [11].

More radical precursors have also been deployed in an attempt to expand the synthetic prowess
of this transformation. For instance, Hanna, Jr. and Molander disclosed the photocatalytic activation
of alkyl trifluoroborates, enabling the radical alkylation of non-activated imines (Scheme 4) [12,13].



Catalysts 2020, 10, 562 4 of 22

Catalysts 2020, 10, x FOR PEER REVIEW 4 of 21 

 

 87 

Scheme 3. Intermolecular photocatalytic radical additions to imines using alkyl silicates developed 88 
by Molander (top left), Friestad (top right) and Kelly and Molander (bottom). 89 

 90 
Scheme 4. Photocatalytic radical additions to imines using alkyl trifluoroborates developed by 91 
Hanna, Jr (left) and Molander (right). 92 

O
Si

O

H2NiPr2

2

N

HN

(1.1 - 3.0 equiv.)

4CzIPN (1 mol%)
DMSO, r.t.

up to 91% yield

Molander

(0.5 equiv.)

2
Br

n

[Ir{dF(CF3)ppy}2bpy]PF6 (1 mol%)

DMSO, r.t.
+

N
O

Si
O

H2NiPr2

N
n

n = 1 - 3
up to 84% yield

N
Br

N
Br

RPC
SET

Intramolecular
SN2

Alkyl Radical
Addition

Kelly, Molander

N
N

O

4CzIPN (5 - 15 mol%)
MgCl2, DMSO, r.t.

HN
N

O

up to 94% yield

Friestad

[(het)aryl imines] [alkyl, aryl imines]

[(het)aryl imines]

N
N

Ph

N

SMe2N

OO

Br

N
Ph

Cl

N

Ph

Ph

MeO
38% yield 66% yield 66% yield 24% yield

selected examples

HN
S

Me

OO

O

O

HN
Ph

MeO2C

OMe
HN

Ph

N

OO

Me

HN
NHBz

Ph

69% yield 69% yield 63% yield 45% yield

selected examples

N

[(het)aryl, glyoxyl imines]
[in situ formation]

[Ir{dF(CF3)ppy}2bpy]PF6 (2 mol%)
NaHSO4, 1,4-dioxane, r.t.

KF3B

(1.5 equiv.)

Ph

N
Ph

Ph

HN
Ph

[Ir{dF(CF3)ppy}2dtbbpy]PF6 (2.5 mol%)
DCM, r.t.

HN

up to 73% yield up to 95% yield

MolanderHanna, Jr.

Ph

HN
Ph

Ph

HN
Ph

Me

Me
Me

HN
Ph

NBoc
MeO2C

EtO2C

HN
Ph

70% yield 60% yield 83% yield 77% yield

selected examples

Scheme 3. Intermolecular photocatalytic radical additions to imines using alkyl silicates developed by
Molander (top left), Friestad (top right) and Kelly and Molander (bottom).
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Alkyl carboxylic acids hold a preferred position among radical precursors due to their versatility and
ubiquity. Indeed, these alkylating agents can be implemented into mechanistically distinct photoredox
pathways. Deprotonation of the acid can render a carboxylate species which can then undergo
single-electron oxidation and subsequent decarboxylation to afford the alkyl radical intermediate.
Alternatively, these acids can be activated with N-hydroxyphthalimide (NHPI) or its tetrachlorinated
derivative (TCNHPI) through a simple esterification process to provide redox-active esters (RAEs). In this
case, single-electron reduction can deliver the alkyl radical intermediate. This flexible behavior has
been exploited by several research groups attempting to perform the alkyl radical addition to imines
(Scheme 5). Weng and Lu reported the decarboxylative benzylation process following the oxidative
pathway (Scheme 5, left) [14,15], while Mariano and Wang published a reductive version. In this later case,
the decarboxylative glycosylation of imines was featured, although a Hantzsch ester (HEH) derivative
was needed as a stoichiometric photosensitizer (Scheme 5, right) [16,17].
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Scheme 5. Photocatalytic radical additions to imines using alkyl carboxylic acids developed by Weng
and Lu (left) and Mariano and Wang (right).

Notably, the radical fluoroalkylation of imines had remained inaccessible in the field until Maestro
and Alemán recently reported the direct difluoromethylation of imine moieties (Scheme 6) [18].
This general procedure was predicated on the single-electron oxidation of readily available zinc
difluoromethane sulfinate (DFMS) in the presence of an organophotoredox catalyst (Rhodamine 6G).
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Scheme 6. Photocatalytic difluoromethyl radical addition to imines using DFMS developed by Maestro
and Alemán.
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Lastly, hydrogen atom transfer (HAT) has also been used in order to perform the C-H activation
of different alkyl radical precursors and perform the desired alkylation reaction with activated imines
(Scheme 7). Lu and Gong reported the α-oxyalkyl radical addition of 1,3-dioxolane to fluoroalkyl
imines (Scheme 7, top) [19,20], while Dilman managed to install different alkyl and acyl radicals into
N-sulfonyl imines (Scheme 7, bottom) [21–23].
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Scheme 7. Photocatalytic radical additions to imines using HAT developed by Lu and Gong (top) and
Dilman (bottom).

2.2. Stereoselective Photocatalytic Radical Additions to Imines

In the field of asymmetric photocatalytic additions to imines, Knowles first described in 2013 an
elegant intramolecular example in which a hydrazone trapped a ketyl radical intermediate—generated
by PCET—in enantioselective fashion thanks to the chiral induction exerted by a chiral phosphoric
acid (Scheme 8) [24].
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Scheme 8. Asymmetric intramolecular photocatalytic radical addition to hydrazones developed
by Knowles.

No further reports were published on this topic until Maestro and Alemán disclosed in 2017
an asymmetric intermolecular radical alkylation of imines based on the use of chiral sulfoxides
(Scheme 9) [25]. The photocatalytic reduction of NHPI-derived RAEs delivered the alkyl radical, which
then engaged with the enantiopure N-sulfinimine in diastereoselective fashion to afford α-branched
benzyl amine derivatives.
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Scheme 9. Asymmetric intermolecular photocatalytic radical addition to N-sulfinimines developed by
Maestro and Alemán.

Moreover, Gong’s research group developed a series of transformations in 2018 and 2019 based
on chiral Lewis acid-catalyzed radical alkylations of different imine scaffolds (Scheme 10, top) [26,27].
When using redox-active alkyl trifluoroborates and silanes, the Cu-BOX complexes acted as bifunctional
chiral photocatalysts, performing both the asymmetric induction and the single-electron oxidation of
the radical precursors, while suppressing the need for an external photocatalyst. In the latest report
published by Gong, an HAT-photocatalyst (5,7,12,14-pentacenetetrone, PT) was required to perform the
C-H activation of benzyl and allyl positions, as well as non-activated alkanes (Scheme 10, bottom) [28].
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Scheme 10. Asymmetric intermolecular photocatalytic reactions developed by Gong: Cu-photocatalyzed
radical additions (top) and HAT-photocatalyzed C-H activation (bottom).

The generality observed throughout this section noticeably stands out, wherein an assortment of
radical precursors has been inserted into mechanistically similar protocols based on their photocatalytic
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activation to render the nucleophilic radical intermediate. Most notably, the range of imine building
blocks employed in these reactions is quite impressive, as both activated and non-activated substrates
have proven to be suitable acceptors to the different radical additions.

3. Photocatalytic α-Amino Radical Reactivity via Single-Electron Reduction of Imine
Derivatives—Pathway B

3.1. Racemic α-Amino Radical–Radical Couplings—Pathway B1

The generation of α-amino radical intermediates derived from imine building blocks was first
reported by Kisch (Scheme 11, top) [29,30]. By means of a family of heterogeneous photocatalyst
semiconductors, their group developed a series of transformations involving the coupling of α-amino
radicals and allyl radicals (pathway B1 in Scheme 1) [31]. CdS powder as well as supported versions
on SiO2, ZnS, and Al2O3 can behave as the photocatalyst semiconductor which features a surface
with the ability to engage in interfacial electron transfer (IFET). Upon visible light absorption, the
semiconductor can generate an electron-hole pair—essentially reducing and oxidizing surface centers.
These sites can then perform IFET with the adsorbed substrates, delivering the two radical intermediates
that eventually afford the recombination product (known as semiconductor photocatalysis B). Later
on, Pu and Shen used CdSe/CdS core/shell quantum dots (QDs) as photocatalysts for the transfer
hydrogenation of diaryl imines with a thiophenol as H atom donor (Scheme 11, bottom) [32,33].
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Scheme 11. Heterogeneous photocatalytic α-amino radical–radical couplings developed by Kisch (top)
and Pu and Shen (bottom).

In the field of homogenous photocatalysis, MacMillan first reported the coupling of α-amino
radicals with α-oxybenzyl and β-enaminyl radicals, giving access to pinacol-type products and the
formal β-Mannich reaction, respectively (Scheme 12, top) [34,35]. Notably, the generation of the radical
reacting partners required elegant multicatalytic approaches. The pinacol-type coupling reaction
relied on the initial photocatalytic oxidation and deprotonation of methyl thioglycolate to produce
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a thiyl radical. Then, this S-centered radical could perform the H atom abstraction from the benzyl
ether to afford the α-oxybenzyl radical and regenerate the thiol catalyst. On the other hand, the
β-enaminyl radical could be accessed following: i) initial condensation of a cyclic ketone with a
simple aminocatalyst (azepane), ii) subsequent oxidation of the catalytic enamine, and iii) final allylic
deprotonation (Scheme 12, bottom).
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Scheme 12. Photocatalytic α-amino radical–radical couplings (top) and mechanistic proposal for the
formal β-Mannich reaction (bottom) developed by MacMillan.

Concurrently, Rueping displayed the ability of these α-amino radicals to react with each other to
render symmetrical and unsymmetrically substituted 1,2-diamines (Scheme 13) [36,37].

Following the development of these transformations, different variants of the radical–radical
coupling of α-amino radicals began to appear. Sudo successfully employed an organophotoredox
catalyst in a similar symmetrical coupling [38], whereas Gilmore obtained vicinal primary diamine
products through in situ formation of the imines with aldehydes and ammonia [39]. Regarding
unsymmetrical adducts, Wang reported the coupling of imine-derived α-amino radicals with
tetrahydroisoquinoline-derived α-amino radicals [40]. In most cases, the imine reduction is believed to
be assisted by coordination to an external acidic species.
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Scheme 13. Photocatalytic α-amino radical–radical couplings developed by Rueping.

A unique example based on the reactivity of these α-amino radicals was reported by Opatz
featuring a four-component reaction which gave access to structurally diverse products (Scheme 14) [41].
The protocol involved the simultaneous construction of three new bonds: C-N (via in situ formation
of the imine), C-S (via sulfonyl radical addition to styrene) and C-C (via α-amino radical-benzyl
radical coupling).
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Scheme 14. Photocatalytic α-amino radical-benzyl radical coupling developed by Opatz.

Arylation reactions, which had remained elusive in the context of radical chemistry with imines,
were achieved by Xia and Lehnherr and Rovis (Scheme 15) [42,43]. Through generation of stabilized
aryl radical intermediates, the radical–radical coupling became feasible with 1,4-dicyanobenzene and
4-cyanopyridine precursors, respectively.
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Scheme 15. Photocatalytic α-amino radical-aryl radical couplings developed by Xia (left) and Lehnherr
and Rovis (right).

3.2. Racemic α-Amino Radical Additions to Activated Olefins—Pathway B2

The development of the single-electron reduction of imines to produce new radical–radical
couplings has undoubtedly revamped this area. Furthermore, the polarity reversal displayed in this
redox process served as a platform upon which an even greater challenge could be tackled. The new
nucleophilic character of the α-amino radical was exploited in a series of Giese radical additions
(pathway B2 in Scheme 1) reported by several groups. Indeed, Chen [44], Dixon [45,46], Ngai [47],
and Rueping [48] independently worked on the addition of these intermediates to different activated
olefins (Scheme 16).
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Scheme 16. Photocatalytic α-amino radical additions to activated olefins developed by Chen (top left),
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In addition, Dixon’s lab described two procedures built on these radical additions to electrophilic
partners followed by cyclization events, thus granting access to molecules of higher structural
complexity (Scheme 17) [49,50]. Notably, the addition of the α-amino radical to vinyl sulfones led to a
reverse polarity Povarov reaction (Scheme 17, top), while bridged 1,3-diazepanes could be prepared
via α-amino radical addition to the 4-position of a quinoline core and subsequent ring closure at the
2-position (Scheme 17, bottom).
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Scheme 17. Photocatalytic reactions of α-amino radicals for the synthesis of polycyclic
structures developed by Dixon: reverse polarity Povarov reaction (top) and bridged 1,3-diazepane
construction (bottom).
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3.3. Racemic α-Amino Carbanion Nucleophilic Attacks—Pathway B3

After thorough evaluation of the results outlined above, it could be assumed that the single-electron
reduction of imine scaffolds usually delivers a radical anion that can exist as two different resonant
forms. As mentioned previously, the N-radical resonant form can engage in an HAT to yield a stable
carbanion (pathway B3 in Scheme 1). This behavior has been exploited by Yu and Fan and Walsh to
achieve polar nucleophilic attacks on numerous electrophiles, such as CO2 and aldehydes, as well as
the direct hydrolysis of these anionic intermediates to afford the formal reduction to benzyl amines
(Scheme 18) [51–54].Catalysts 2020, 10, x FOR PEER REVIEW 14 of 21 
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Scheme 18. Photocatalytic carbanion additions to electrophiles developed by Yu and Fan and Walsh:
carboxylation (top), reaction with aldehydes (middle left) and hydrolysis (middle right).

3.4. Stereoselective Photocatalytic α-Amino Radical Reactivity via Single-Electron Reduction of Imine
Derivatives—Pathway B

Controlling the stereochemical outcome of transformations involving the single-electron reduction
of imines has proven to be an outstanding challenge. An exceptional solution to this problem was
developed by Ooi’s lab in 2015 and 2016 (Scheme 19) [55,56], wherein the radical anion derived
from this redox process was ion-paired with a chiral phosphonium salt, rendering an asymmetric
radical–radical coupling with α-amino radicals (pathway B1 in Scheme 1).
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Moreover, Jiang’s lab reported two transformations involving the use of traditional organocatalysts
(Scheme 20) [57,58]. In the first one, the formal reduction of activated ketimines was achieved via
coordination of Takemoto’s urea catalyst to the radical anion and ensuing asymmetric HAT (pathway
B1 in Scheme 1). In the second one, a chiral Brønsted acid managed to activate vinyl pyridines—acting
as acceptors in a Giese radical addition—while exerting stereocontrol through H-bond interactions
(pathway B2 in Scheme 1).

Finally, Ward and Wenger published an interesting asymmetric reduction of cyclic imines in which
enzymatic catalysis played a fundamental role (Scheme 21) [59]. Initial photocatalytic reduction and
HAT would deliver a racemic mixture of both amines (pathway B1 in Scheme 1), yet, in the presence
of monoamine oxidase MAO-N-9, only one enantiomer could undergo subsequent re-oxidation
(enantiomer recycling). Therefore, the combination of photocatalysis and biocatalysis yielded an
elegant dynamic kinetic resolution (DKR) en route to chiral amines.

In this section, the pool of radical precursors employed in reactions following pathway B1 may
not be as diverse when compared to conventional radical additions (pathway A). However, thanks to
the nucleophilic character of the imine-derived radical anion, pathways B2 and B3 have widened the
scope of reacting partners since they no longer require photocatalytic activation. Remarkably, common
electrophiles used in polar methodologies find a smooth transition into these new radical processes
thanks to the inspired polarity reversal enforced upon the imine substrates.
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4. Conclusions

The development of new methodologies to perform the α-functionalization of imine building
blocks has proven to be a subject of intense research during the past decade, as numerous approaches
featuring outstanding versatility have surfaced in the context of visible light photoredox catalysis.
Most importantly, the complimentary nature to the different photocatalytic strategies employed in
imine chemistry has provided immense flexibility, since the imine reagent can now be used as both an
electrophile and, strikingly, a nucleophile. This multifaceted behavior has delivered a wide array of
racemic transformations in this area. However, asymmetric functionalization of the C=N moiety has
remained a great challenge in photoredox catalysis. Nevertheless, brilliant activation strategies have
been deployed to achieve stereoselectivity, although an increase in generality and modularity can be
expected as the field continues to grow.
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abbreviation full description
4CzIPN 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile
Ac acyl
Alk alkyl
Anth anthracenyl
Ar aryl
BArF B[3,5-(CF3)2C6H3]4
BD 2,3-butanedione
Boc tert-butyloxycarbonyl
BOX bis(oxazoline)
bpy 2,2′-bipyridine
Bu butyl
Bz benzoyl
CBA chiral Brønsted acid
CPA chiral phosphoric acid
CPME cyclopentyl methyl ether
Cy cyclohexyl
DABCO 1,4-diazabicyclo[2.2.2]octane
DCM dichloromethane
DFMS zinc difluoromethanesulfinate
DKR dynamic kinetic resolution
DMA N,N-dimethylacetamide
DMF N,N-dimethylformamide
DMPU N,N’-dimethylpropyleneurea
DMSO dimethylsulfoxide
DPZ 5,6-bis(5-methoxythiophen-2-yl)pyrazine-2,3-dicarbonitrile
dr diastereomeric ratio
dtbbpy 4,4′-di-tert-butyl-2,2′-dipyridyl
E electrophile
ee enantiomeric excess
Et ethyl
EWG electron withdrawing group
HAT hydrogen atom transfer
HEH Hantzsch ester
Het heteroaryl
IFET interfacial electron transfer
iPr iso-propyl
MAO monoamine oxidase
Me methyl
Mes mesityl
MS molecular sieves
Naph naphthyl
NHPI N-hydroxyphthalimide
NHS N-hydroxysuccinimide
PCET proton-coupled electron transfer
Ph phenyl
phen 1,10-phenanthroline
ppy 2-phenylpyridine
PT 5,7,12,14-pentacenetetrone
pTol para-tolyl
QD quantum dot
RAE redox-active ester
RPC radical polar crossover
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SET single-electron transfer
SLAP silicon amine protocol
SN2 bimolecular nucleophilic substitution
sppy 3-(pyridin-2-yl)benzenesulfonate
TBS tert-butyldimethylsilyl
TCNHPI N-hydroxytetrachlorophthalimide
Tf trifluoromethanesulfonyl
TFA trifluoroacetic acid
TFE 2,2,2-trifluoroethanol
THF tetrahydrofuran
TMS trimethylsilyl
TPP 2,4,6-triphenylpyrylium tetrafluoroborate
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