Supplemental Information

Contrasting Effects of Potassium Addition on M₃O₄ (M = Co, Fe, Mn) Oxides during Direct NO Decomposition Catalysis

Torin C. Peck¹, Charles A. Roberts^{1,*} and Gunugunuri K. Reddy^{1,*}

¹ Toyota Research Institute of North America; e-mail@e-mail.com

* Correspondence: <u>charles.roberts@toyota.com</u>; Tel.: +1-734-995-3625; (C.A.R.), <u>krishna.gunugunuri@toyota.com</u>; Tel. 1-734-995-0023 (G.K.R.)

Catalytic Activity

Sample	NO Conversion (%)	NO₂ Selectivity (%)	N ₂ O Selectivity (%)	N ₂ Selectivity (%)	Activity (μmol NO to N₂/g/s)
Co_3O_4	4.5	97.4	0.0	2.6	4.8E-04**
0.9K Co ₃ O ₄	4.4	99.3	0.0	0.7	1.3E-04**
2K Co ₃ O ₄	4.5	95.3	0.0	4.7	8.7E-04**
3K Co ₃ O ₄	4.6	87.8	0.0	12.2	2.3E-03
Fe ₃ O ₄	2.9	≤100.0*	0.0	0.0	0.0E+00
0.9K Fe ₃ O ₄	2.5	98.8	1.2	0.0	0.0E+00
2K Fe ₃ O ₄	2.4	98.9	1.1	0.0	0.0E+00
3K Fe ₃ O ₄	2.0	96.9	0.0	3.1	2.6E-04
Mn ₃ O ₄	2.7	≤100.0	0.0	0.0	0.0E+00
0.9K Mn₃O₄	1.8	99.5	0.5	0.0	0.0E+00
2K Mn₃O₄	1.7	96.9	3.1	0.0	0.0E+00
3K Mn₃O₄	0.9	95.5	4.5	0.0	0.0E+00

Table S1. NO Decomposition Catalytic Performance at 400 °C

* Unreliable selectivity calculation due to low NO Conversion (i.e. \leq 3.0%)

** Unreliable activity calculation (i.e. $\leq 2.0E-03 \mu mol NO$ to N₂/g/s)

Sample	NO Conversion (%)	NO ₂ Selectivity (%)	N ₂ O Selectivity (%)	N ₂ Selectivity (%)	Activity (µmol NO to N₂/g/s)
Co ₃ O ₄	3.5	82.1	0	17.9	2.6E-03
0.9K Co ₃ O ₄	4.6	70.5	0	29.5	5.6E-03
2K Co ₃ O ₄	5.5	58.5	0	41.5	9.4E-03
3K Co ₃ O ₄	4.9	57.9	0	42.1	8.6E-03
Fe ₃ O ₄	2.5	≤100	0	0	0
0.9K Fe ₃ O ₄	2.5	98.1	1.9	0	0
2K Fe ₃ O ₄	2.4	98.6	1.4	0	0
3K Fe ₃ O ₄	2.4	98.8	1.2	0	0
Mn ₃ O ₄	2.4	≤100	0	0	0
0.9K Mn ₃ O ₄	2.2	99.5	0.5	0	0
2K Mn ₃ O ₄	2.3	99.2	0.8	0	0
3K Mn ₃ O ₄	1.8	96	4	0	0

Table S2. NO Decomposition Catalytic Performance at 450 °C

Table S3. NO Decomposition Catalytic Performance at 550 °C

Sample	NO Conversion (%)	NO ₂ Selectivity (%)	N₂O Selectivity (%)	N ₂ Selectivity (%)	Activity (μmol NO to N₂/g/s)
Co ₃ O ₄	2.8	44.3	0	55.7	6.4E-03
0.9K Co ₃ O ₄	24.1	10.5	0	89.5	8.9E-02
2K Co ₃ O ₄	23.3	10.6	0	89.4	8.6E-02
3K Co ₃ O ₄	18.8	10.9	0	89.1	6.9E-02
Fe ₃ O ₄	0.9	≤100	0	0	0
0.9K Fe ₃ O ₄	1.1	91.3	5.5	3.2	1.4E-04
2K Fe ₃ O ₄	0.8	93.6	6.4	0	0
3K Fe ₃ O ₄	0.5	87.6	12.4	0	0
Mn ₃ O ₄	0.6	≤100	0	0	0
0.9K Mn ₃ O ₄	0.9	≤100	0	0	0
2K Mn ₃ O ₄	0.6	98.3	1.7	0	0
3K Mn₃O₄	0.3	≤100	0	0	0

Sample	NO Conversion (%)	NO ₂ Selectivity (%)	N ₂ O Selectivity (%)	N2 Selectivity (%)	Activity (μmol NO to N₂/g/s)
Co ₃ O ₄	1.7	30.7	0	69.3	4.9E-03
0.9K Co ₃ O ₄	59.2	1.1	0	98.9	2.4E-01*
2K Co ₃ O ₄	62.5	0.9	0	99.1	2.5E-01*
3K Co ₃ O ₄	44.3	2.9	0	97.1	1.72E-01
Fe ₃ O ₄	0.2	100	0	0	0
0.9K Fe ₃ O ₄	1.3	40.7	0	59.3	3.15E-03
2K Fe ₃ O ₄	1.5	44.4	0	55.6	3.33E-03
3K Fe ₃ O ₄	1	49.3	0	50.7	2.08E-03
Mn ₃ O ₄	0.1	≤100	0	0	0
0.9K Mn ₃ O ₄	0.5	93.1	0	6.9	1.38E-04
2K Mn ₃ O ₄	0.7	91.3	0	8.7	2.45E-04
3K Mn ₃ O ₄	0.3	≤100	0	0	0

Table S4. NO Decomposition Catalytic Performance at 650 °C

* NO Conversion percentage is above differential conditions, activity calculation is not comparable

Sample	NO Conversion (%)	Activity (µmol NO to N₂/g/s)
0.9K Co ₃ O ₄	7.8	1.8E-1
2K Co ₃ O ₄	6.2	1.4E-1
3K Co ₃ O ₄	0.5	1.3E-2

Figure S1. NO Decomposition over Fe_3O_4 as a function of time at 400 °C

<u>XRD</u>

Table S6. Crystallite Size from X-Ray Diffraction Patterns as Calculated Via Scherrer Equation

Sample	Calculated Crystallite Size (nm)
Co ₃ O ₄ Fresh	22
Co ₃ O ₄ Spent	65
0.9K Co ₃ O ₄ Fresh	25
0.9K Co₃O₄ Spent	31
2K Co₃O₄ Fresh	25
2K Co ₃ O ₄ Spent	30
3K Co₃O₄ Fresh	25
3K Co₃O₄Spent	28
Mn ₃ O₄ Fresh	86
Mn₃O₄ Spent	101
0.9K Mn ₃ O ₄ Fresh	78
0.9K Mn ₃ O ₄ Spent	81
2K Mn ₃ O ₄ Fresh	70
2K Mn ₃ O ₄ Spent	86
3K Mn₃O₄ Fresh	54
3K Mn₃O₄ Spent	70
Fe ₃ O ₄ Fresh	53
Fe₃O₄ Spent	47
0.9K Fe₃O₄ Fresh	53
0.9K Fe ₃ O ₄ Spent	55
2K Fe ₃ O ₄ Fresh	57
2K Fe ₃ O ₄ Spent	52
3K Fe ₃ O ₄ Fresh	51
3K Fe ₃ O ₄ Spent	52

Note: For all materials, assumed 0.89 for shape factor in Scherrer equation, and $\lambda = 1.5418$ Å For Co₃O₄ Samples, utilized FWHM of (103) peak at ~ 36.8°

For Mn₃O₄ samples, utilized FWHM of hausmannite (103) peak at ~32.3°

For Fe₃O₄ samples (sans spent Fe₃O₄), utilized FWHM of magnetite (220) peak at \sim 30.2° For Spent Fe3O4, utilized FWHM of hematite (104) peak at \sim 33.1°

X-Ray Photoelectron Spectroscopy

Comple	Peak 1	Peak 2	Peak 3	Peak 4	Peak 5
Sample	Position (eV)				
Co ₃ O ₄ (ref[42])	779.6	780.9	782.2	785.2	789.5
Co ₃ O ₄ Fresh	779.4	780.5	782.7	786.2	789.3
Co₃O₄ Spent	779.3	780.4	781.7	785.4	789.4
0.9K Co₃O₄ Fresh	778.8	779.9	781.6	785.1	788.9
2K Co ₃ O ₄ Fresh	778.7	779.9	781.6	785.1	788.7
3K Co ₃ O ₄ Fresh	778.6	779.8	781.6	785.1	788.5
0.9K Co₃O₄ Spent	778.7	779.8	781.6	785.1	788.8
2K Co ₃ O ₄ Spent	778.6	779.8	781.6	785.1	788.5
3K Co ₃ O ₄ Spent	778.7	779.8	781.6	785.7	789.0

 Table S7. XPS Peak Position Summary of Cobalt 2p3/2 Curve Fits

Table S8. XPS Peak Area Percentage Summary of Cobalt 2p3/2 Curve Fits

Sampla	Peak 1 Area	Peak 2 Area	Peak 3 Area	Peak 4 Area	Peak 5 Area
Sample	(%)	(%)	(%)	(%)	(%)
Co ₃ O ₄ (ref[42])	40.5	29.1	15.2	8.1	7.2
Co ₃ O ₄ Fresh	17.6	60.8	13.0	3.3	5.3
Co ₃ O ₄ Spent	20.1	29.4	39.0	5.9	5.5
0.9K Co ₃ O ₄ Fresh	26.6	42.8	16.3	6.5	7.8
2K Co₃O₄ Fresh	30.0	44.7	14.3	5.0	6.0
3K Co₃O₄ Fresh	27.3	48.4	14.6	3.4	6.3
0.9K Co₃O₄ Spent	18.2	54.1	16.7	5.3	5.8
2K Co ₃ O ₄ Spent	25.5	51.5	15.2	2.4	5.4
3K Co₃O₄ Spent	24.4	52.3	13.6	4.8	4.9

Sample	Peak 1 Position (eV)	Peak 2 Position (eV)	Peak 3 Position (eV)	Peak 4 Position (eV)	Peak 5 Position (eV)	Peak 6 Position (eV)	Peak 7 Position (eV)
Mn ²⁺ (ref[42])	640.3	641.5	642.3	643.2	645	647.5	
Mn ³⁺ (ref[42])	641.2	641.9	642.7	643.7	645.1		
Mn ⁴⁺ (ref[42])	641.9	642.7	643.4	644.2	645.2	646.2	
Mn₃O₄ Fresh	640.7	642	643.7	646.2	649.1	653.4	656.2
Mn₃O₄ Spent	640.2	641.4	643.2	646	649.1	652.8	655.6
0.9K Mn₃O₄ Fresh	640.6	641.9	643.2	645.8	649.9	653.6	656.3
2K Mn ₃ O ₄ Fresh	640.4	641.9	643.2	646.1	649.8	653.7	656.4
3K Mn₃O₄ Fresh	640.5	641.9	643.2	646.4	650.8	653.7	656.2
0.9K Mn₃O₄ Spent	640.2	641.7	643.2	645.8	649.1	653.3	655.2
2K Mn ₃ O ₄ Spent	640.4	641.9	643.2	645.8	649.1	653.7	656.3
3K Mn ₃ O ₄ Spent	640.7	642.1	643.2	645.8	649.1	653.8	656.5

 Table S9. XPS Peak Position Summary of Manganese 2p3/2 Curve Fits

Table S10. XPS Peak Area Percentage Summary of Manganese 2p3/2 Curve Fits

Sample	Peak 1 Area (%)	Peak 2 Area (%)	Peak 3 Area (%)	Peak 4 Area (%)	Peak 5 Area (%)	Peak 6 Area (%)	Peak 7 Area (%)
Mn ²⁺ (ref[42])	24	27.8	22.1	12.5	4.7	9.1	
Mn ³⁺ (ref[42])	24	24	27.8	17.5	6.7		
Mn ⁴⁺ (ref[42])	41.7	26.5	15.5	9.1	4.9	2.5	
Mn₃O₄ Fresh	13.3	30.3	15.9	5.2	4.0	29.2	2.2
Mn₃O₄ Spent	10.5	31.2	17.0	5.0	2.8	29.6	3.9
0.9K Mn₃O₄ Fresh	7.9	23.9	23.6	6.8	4.8	30.3	2.8
2K Mn₃O₄ Fresh	3.4	27.4	26.9	5.2	4.8	30.3	1.9
3K Mn₃O₄ Fresh	4.2	28.1	27.2	5.0	4.8	27.8	3.0
0.9K Mn₃O₄ Spent	6.6	30.5	20.4	4.5	2.7	32.7	2.5
2K Mn ₃ O ₄ Spent	3.8	30.0	23.1	4.5	3.4	34.4	0.8
3K Mn₃O₄ Spent	9.3	12.9	28.8	5.0	4.7	38.0	1.3

Sample	Peak 1 Position (eV)	Peak 2 Position (eV)	Peak 3 Position (eV)	Peak 4 Position (eV)	Peak 5 Position (eV)	Peak 6 Position (eV)	Peak 7 Position (eV)
Fe ⁰ (ref[42])	706.6	N/A	N/A	N/A	N/A	N/A	N/A
FeO (ref[42])	708.4	709.7	710.9	712.1	715.4		
hematite Fe₂O₃ (ref[42])	709.8	710.7	711.4	713.3	713.3	719.3	
maghemite Fe ₂ O ₃ (ref[31])	709.8	710.8	711.8	713	714.1	719.3	
Fe ₃ O ₄ Fe ²⁺ Peaks (ref[42])	708.4	709.2	N/A	N/A	N/A		
Fe₃O₄ Fe³+ Peaks (ref[42])	710.2	711.2	712.3	713.4	714.5		
Fe ₃ O ₄ Fresh	709.8	711	712.8	715.3	718.7	723.8	725.5
Fe₃O₄ Spent	710.5	712.1	713.2	714.3	718.9	723.9	
0.9K Fe₃O₄ Fresh	709.2	710.4	712.8	715.1	718.3	723.3	725.6
2K Fe₃O₄ Fresh	709	710.1	711.9	714.5	718.1	723.1	725.2
3K Fe₃O₄ Fresh	709.1	710.2	711.9	714.5	718.1	723.1	725.3
0.9K Fe₃O₄ Spent	709.4	710.3	711.9	714.5	718.3	723.3	725.3
2K Fe ₃ O ₄ Spent	709.3	710.2	711.9	714.5	718.2	723.2	725.5
3K Fe₃O₄ Spent	709.4	710.4	711.9	714.4	718.2	723.4	725.4

Table S11. XPS Peak Position Summary of Iron 2p3/2 Curve Fits

Sample	Peak 1	Peak 2	Peak 3	, Peak 4	Peak 5	Peak 6	Peak 7
	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)
Fe ⁰ (ref[42])	100	N/A	N/A	N/A	N/A	N/A	N/A
FeO (ref[42])	24.2	30.1	14.5	25.6	5.6		
hematite Fe ₂ O ₃ (ref[42])	26.1	22	17.4	25.9	8.6		
maghemite Fe ₂ O ₃ (ref[42])	27.4	27.4	20.3	9.1	9.3		
Fe ₃ O ₄ Fe ²⁺ Peaks (ref[42])	16.6	14.8	N/A	N/A	N/A		
Fe ₃ O ₄ Fe ³⁺ Peaks (ref[42])	23.7	17.8	12.2	5.7	9.1		
Fe₃O₄ Fresh	13.0	22.6	19.8	6.8	13.1	17.4	7.5
Fe₃O₄ Spent	51.0	6.9	6.3	5.6	6.7	23.4	0.0
0.9K Fe ₃ O ₄ Fresh	9.6	33.2	13.2	5.4	13.5	19.0	6.1
2K Fe ₃ O ₄ Fresh	10.1	25.2	18.6	7.0	12.8	19.3	6.8
3K Fe ₃ O ₄ Fresh	10.4	24.3	18.6	7.7	14.4	19.6	5.0
0.9K Fe₃O₄ Spent	9.8	22.6	19.9	8.2	13.5	18.7	7.3
2K Fe ₃ O ₄ Spent	9.6	25.9	20.6	8.8	14.9	14.9	5.2
3K Fe ₃ O ₄ Spent	10.1	21.6	19.2	8.4	14.3	19.3	7.0

Table S12. XPS Peak Area Percentage Summary of Iron 2p3/2 Curve Fits

EDX and BET

Table S13. Summary of Potassium Weight Loading on Fresh and Spent Catalysts

Sample	K Loading Fresh Catalyst (wt.%)	K Loading Spent Catalyst (wt.%)	
CO ₃ O ₄	0	0	
0.9K Co ₃ O ₄	1.0	0.9	
2K Co ₃ O ₄	2.0	1.9	
3K Co ₃ O ₄	3.3	3.0	
Fe ₃ O ₄	0	0	
0.9K Fe ₃ O ₄	0.8	0.9	
2K Fe ₃ O ₄	2.2	2.1	
3K Fe ₃ O ₄	3.0	2.7	
Mn ₃ O ₄	0	0	
0.9K Mn ₃ O ₄	1.0	0.9	
2K Mn ₃ O ₄	2.0	2.0	
3K Mn ₃ O ₄	2.7	2.7	

Figure S2. EDX map of K distribution on 0.9K Co₃O₄ (left), 2K Co₃O₄ (middle), and 3K Co₃O₄ (right).

Figure S3. EDX map of K distribution on 0.9K Fe₃O₄ (left), 2K Fe₃O₄ (middle), and 3K Fe₃O₄ (right).

Figure S4. EDX map of K distribution on 0.9K Mn₃O₄ (left), 2K Mn₃O₄ (middle), and 3K Mn₃O₄ (right).

Sample	BET Specific Surface Area (m²/g)		
Co ₃ O ₄	36		
0.9K Co ₃ O ₄	33		
2K Co ₃ O ₄	33		
3K Co ₃ O ₄	32		
Fe ₃ O ₄	9		
0.9K Fe ₃ O ₄	7		
2K Fe ₃ O ₄	6		
3K Fe ₃ O ₄	10		
Mn ₃ O ₄	2		
0.9K Mn ₃ O ₄	2		
2K Mn ₃ O ₄	2		
3K Mn ₃ O ₄	1		

Table S14. BET Specific Surface Area