Supplementary Information

Regulation of polyphosphate glucokinase gene expression through cotranscriptional processing in *Mycobacterium tuberculosis* H37Rv

Naveen Prakash Bokolia^{ab}, Inshad Ali Khan^{ab*}

^aClinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India

^bAcademy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India

*Tel: [Phone: 91-191-2569001]; Fax: [91-191- 2569333]; E-mail: iakhan@iiim.ac.in, inshad@rediffmail.com]

T7 282 ppgk	Forward Primer	TAATACGACTCACTATAGGGCA
transcription primer		AGGTTTTCGGCCACAGAG
	Reverse Primer	GACGATTCCGCCCTTGATG
Real time quantitative	Reverse primer	AGCAGTACCACTAAGCCAGG
PCR, <i>ppgk</i> gene specific	for cDNA	
primer	synthesis	
Primer pair C1 for ppgk	Forward Primer	CCGCAGTTTAAGGTGAGGGT
mRNA I quantification	Reverse Primer	CGACGATTCCGCCCTTGAT
(cleavage site I)		
Primer pair C2 for ppgk	Forward Primer	GGATAGGGACCAACGCACGC
mRNA II quantification	Reverse Primer	AGCCAGGGTTGTTCTTGCCG
(cleavage site II)		
Primer pair for full	Forward Primer	CCTATCGCATCACAGTCGCC
length <i>ppgk</i> mRNA	Reverse Primer	ACGTGGATGACCCTCACCTT
quantification		

Supplementary Table 1. List of oligonucleotides used in this study

Real time quantitative	Reverse primer	CCGTATCTCAGTCCCAGTGT
PCR, 16s rRNA gene	for cDNA	
specific primer	synthesis	
16s rRNA (<i>rrs</i>) gene	Forward Primer	GGGATGCATGTCTTGTGGTG
specific primer pair for		
quantitative PCR	Reverse Primer	CCGTCGTCGCCTTGGTAG
Primer for cDNA	Reverse Primer	GACGATTCCGCCCTTGATG
synthesis for cleaved		
RNA fragment, eluted		
from denaturing PAGE		
Adapter and Primer for	5' Adapter	5'GCUGAUGGCGAUGAAUGAAC
118 nt fragment		ACUGCGUUUGCUGGCUUUGAU
sequencing		GAAA-3'
	5' Adapter	5'-
	primer	GCTGATGGCGATGAATGAACAC
	(will be	TG-3'
	complementary	
	after first strand	
	cDNA	
	synthesis)	
sequencing	5' Adapter primer (will be complementary after first strand cDNA synthesis)	GAAA-3' 5'- GCTGATGGCGATGAATGAACAC TG-3'

SD Sequestering Domain

Supplementary Figure 1. (A) Secondary structure prediction of the specific region of ppgk gene. Probability of secondary structure formation is given from 0 to 1 (blue to red). Formation of SD sequestering domain has shown highest probability. This domain has also been predicted by other RNA folding webservers including Kinefold, mFold and Mathews Lab Webserver. (B) Three dimensional structure also exhibit the SD sequestering domain formation (blue arrow) that was simulated and predicted by simRNA webserver, resultant PDB file visualized by Jena 3D viewer.

Supplementary Figure 2: PCR product was synthesized by using phusion DNA polymerase kit (GC buffer), that was optimized with addition of 1.4 μ I DMSO, 1.4 μ I formamide and 1.2 μ I MgCl₂ in a total 50 μ I reaction volume. The annealing temperature was set at 65.7°C. 400 ng of PCR product was electrophoresed by native PAGE, and gel was silver stained.

Supplementary Figure 3. Effect of wild type 282-*ppgk* element and it's mutants on the β -galactosidase expression, constructs were transformed in *M. smegmatis* mc²155 and streaked on 7H10 agar plates supplemented 20mg/ml X-gal. Plate was incubated at 37°C for 30 hours and image was taken.

Supplementary Figure 4. Agarose gel electrophoresis of real time quantitative PCR products. 5µl of each sample analyzed and confirmed for the single product (along with specific single melting peak) of respective size. Gel image 2A, shows the separation of 152bp (lanes A and B) and 102bp real time PCR products (lanes C and D), quantified by primer pair C1 and primer pair FL respectively. Lanes E and F shows no specific amplification (Cq value~34) from primer controls (no template), and lanes G and H shows the No RT control from both primer pairs (Cq value~32). Gel image 2B shows the separation of 129bp real time PCR product quantified by primer pair C2. No RT and primer control samples are loaded in Lanes D and E respectively. Gel image 2C shows the separation of 96bp PCR product quantified (Cq value~14) from the 16srRNA reference gene.

Supplementary Figure 5. A, Analysis of β -galactosidase expression with the increasing concentration of MgCl2. Exogenous MgCl2 was added when O.D. reached 0.2, and allow to grow for next ~30 hours (O.D.~0.7-0.8). Expression becomes increased and observed to be maximum at 5mM. Higher concentration of MgCl2 (10mM- 20mM)

caused the variation in O.D., therefore expression was not measured from these cultures.

Supplementary Figure 6: Analysis of β -galactosidase expression from the constructs (plasmid pML163+282nt insert) grown in Sauton's fluid medium base. Specific metabolite or salts were added at final concentration of 5mM, when O.D.₆₀₀ reached at ~0.3, followed by cultures were incubated further for 24 hours. *M. smegmatis* cultures were sonicated and processed for β -galactosidase measurement as described in Methods section. As data indicates there is no significant difference of LacZ expression between control and experimental samples.

Supplementary Figure 7. Incubation of PAGE purified 282-*ppgk* RNA element at different concentrations of Mg²⁺ ions. No specific cleaved fragment was observed after incubation at 37°C for 45 minutes.

Supplementary Figure 8. RNA Structure of 177 bases over 282 bases that is generated by kinefold webserver. Pseudoknot formation is displayed by straight lines. Predicted pseudoknots highlighting the significance of these structures during co-transcriptional folding and processing at these sites.