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Abstract: We synthesized and characterized both Co-doped ZnO (ZnO:Co) and Cu-doped
ZnO (ZnO:Cu) thin films. The catalysts’ synthesis was carried out by the sol–gel method
while the doctor blade technique was used for thin film deposition. The physicochemical
characterization of the catalysts was carried out by Raman spectroscopy, scanning electron
microscopy (SEM), X-ray diffraction, and diffuse reflectance measurements. The photocatalytic
activity was studied under visible irradiation in aqueous solution, and kinetic parameters were
determined by pseudo-first-order fitting. The Raman spectra results evinced the doping process
and suggested the formation of heterojunctions for both dopants. The structural diffraction patterns
indicated that the catalysts were polycrystalline and demonstrated the presence of a ZnO wurtzite
crystalline phase. The SEM analysis showed that the morphological properties changed significantly,
the micro-aggregates disappeared, and agglomeration was reduced after modification of ZnO.
The ZnO optical bandgap (3.22 eV) reduced after the doping process, these being ZnO:Co (2.39 eV)
and ZnO:Co (3.01 eV). Finally, the kinetic results of methylene blue photodegradation reached 62.6%
for ZnO:Co thin films and 42.5% for ZnO:Cu thin films.

Keywords: thin films; ZnO; doping; heterogeneous photocatalysis

1. Introduction

Synthetic dyes are commonly used by various industries, especially textile ones. These physically
and chemically stable compounds are harmful to the environment. Synthetic dyes are recalcitrant
compounds that exhibit high solubility in water and accumulate in both wastewater and industrial
effluents [1,2]. Currently, water pollution is one of the major challenges of the modern world, and
the recovery of wastewater by conventional methods is not suitable for emergent pollutants [3,4].
Heterogeneous photocatalysis can be satisfactorily applied for the decontamination of natural samples
through the photocatalytic degradation of toxic pollutants from complex matrices, such as river water
and wastewater [5]. All renewable technologies have become a promising alternative for both energy
generation and wastewater treatments. Solar photocatalysis is a suitable option to degrade recalcitrant
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pollutants from water [6,7]. Different catalysts have been reported to exhibit photocatalytic activity
(e.g., TiO2 [8], Fe2O3 [9], ZnO [10], CuO [11], CdS [12], WO3, and SnO2 [13]). ZnO has been used
as a photocatalyst, but its high bandgap value (~3.3 eV) is one of its major drawbacks. ZnO is not
photocatalytically active at longer wavelengths of the electromagnetic spectrum. As a consequence,
using solar irradiation as the main energy source to develop practical applications is a challenge for
ZnO [14]. Some alternative strategies to extend ZnO photoresponse in the visible light region are:
(a) ZnO doping [15–18], (b) co-doping [19,20], (c) coupling with lower band gap semiconductors [21,22],
(d) surface plasmon resonance [23–26], (e) quantum dots [27], and (f) sensitization with natural and
synthetic dyes [28–31]. With the doping process, optical and catalytic properties can be tuned by
doping [32], and the ZnO bandgap generates intragap electronic states inside the semiconductor [33].
Some transition metals (e.g., Co2+, Ag+, Cu2+, Mn2+) have been used to enhance the properties of
ZnO [34–37]. Among these, copper is an economical option. Because the ionic size of Cu2 is close
to Zn2+, Cu2+ ions can replace Zn2+ ions to modify the absorption spectrum [38]. Kuriakose et al.
reported that Cu-doped ZnO nanostructures photodegraded organic dyes. Their analysis associated
the enhanced photocatalytic activity to the combined effects of: (i) the separation of charge carriers
and (ii) the optimal Cu doping load [39]. Another transition element is cobalt, as the ionic size of
the Co2+ ion is close to that of Zn2+. Co2+ ions can replace Zn2+ and generate minimal distortion in
the crystalline lattice [35,40]. Yongchun et al. reported the synthesis of cobalt-doped ZnO nanorods
and reported an improvement in the performance of alizarin red photocatalytic degradation [41].
In addition, Kuriakose et al. synthesized Co-doped ZnO nanodisks and nanorods, and reported
photocatalytic activity improvement as the by-effect of the doping process due to: (i) the charge
separation efficiency and (ii) the surface area [42]. Poornaprakash et al. reported 66.5% efficiency
in photocatalytic degradation of Rhodamine B under artificial solar light illumination on Co-doped
ZnO nanorods [43]. The incorporation of these kinds of metals inside the ZnO structure can modify
optical properties by extending the photodegradation ability towards the largest wavelength of the
electromagnetic spectrum [44,45]. In this work, we report a facile wet chemical method for the synthesis
of Cu and Co-doped ZnO thin films with highly enhanced photocatalytic activity. The metal doping
process leads to highly efficient visible light photocatalytic degradation of methylene blue.

2. Results and Discussion

2.1. Structural Study

Figure 1 shows the XRD pattern for the catalysts synthesized in this study. The hexagonal wurtzite
phase (JCPDS No. 36−1451) is identified as a crystalline structure for ZnO thin films, with the signals
of the diffraction pattern corresponding to those reported by other authors [46]. The doping process
did not affect the main signals in the diffraction patterns, as the XRD patterns for ZnO:Cu and ZnO:Co
showed signals of a wurtzite ZnO structure. However, the XRD patterns showed a change in the
intensity of the signals, suggesting that metal ions could substitute Zn2+ ions after the doping process.
Lima et al. suggested that the change in the intensities could be associated with changes in both (i)
grain size due to network defects and (ii) oxygen vacancies [47,48].

We used the Debye–Scherrer equation to calculate the crystalline domain size of the catalysts,
using the full width at half maximum (FWHM) for the highest peak (101), with θ being the Scherrer
diffraction angle [49]. Although there is no clear tendency between the intensity of the signal and metal
doping load (see Figure 1b,c), all samples reduced the grain size of catalysis after the doping process
(see Table 1). This could be explained by the incorporation of Co2+ and Cu2+ ions as dopants into the
ZnO after the doping process [48,49]. Finally, the structural results suggest that ZnO films incorporated
metallic ions. This observation was verified by Raman spectroscopy and diffuse reflectance, as described
in the next sections.
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Figure 1. (a) X-ray diffraction patterns for the catalysts synthesized in this study. (b) Comparison of 
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ZnO:Cu 1% 0.2601 11,649 32.1 

ZnO:Cu 3% 0.2803 9202 29.8 
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*FWHM: full width at half maximum. 
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Figure 1. (a) X-ray diffraction patterns for the catalysts synthesized in this study. (b) Comparison of
the highest peak (101) for ZnO:Cu. (c) Comparison of the highest peak (101) for ZnO:Co.

Table 1. Crystallographic results for the X-ray characterization of both undoped ZnO and metal-doped
ZnO thin films.

Thin Film FWHM * (101) Intensity (101) Peak Grain Size (nm)

ZnO 0.2396 8949 34.9
ZnO:Co 1% 0.2615 14,997 32.0
ZnO:Co 3% 0.2552 11,836 32.3
ZnO:Co 5% 0.2583 12,495 32.4
ZnO:Cu 1% 0.2601 11,649 32.1
ZnO:Cu 3% 0.2803 9202 29.8
ZnO:Cu 5% 0.3075 5300 27.2

* FWHM: full width at half maximum.
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2.2. Raman Study

The Raman spectra of the catalysts are shown in Figure 2. All the peaks correspond with
wurtzite–ZnO (C4

6v): (i) 97.4 cm−1 (vibrational mode E2L), (ii) 340 cm (E2H–E2L), and (iii) 437.0 cm−1 and
581 cm−1 (A1 vibrational mode) [50,51]. Figure 2a shows the Raman spectra for Cu-doped ZnO thin films.
Signals E2L (~99 cm−1) and E2H (~437 cm−1) widen and decrease after the doping process—a behavior
that can be explained by the incorporation of Cu2+ into the ZnO lattice. Additionally, this behavior
has been associated with reduction of ZnO crystallinity by the formation of nanocomposites [52].
For greater Cu loads, Figure 2a shows two new signals, the first one located at 298 cm−1 and a second
weak one at 614 cm−1. These two signals can be attributed to modes A1g and B2g for CuO, respectively,
and this result suggests the formation of a ZnO–CuO heterojunction during the synthesis process.
The hydrodynamic stability of the suspension is affected by the concentration of reagents; so for
obtaining greater Cu loads, the CuO generation is feasible. This result is in line with previous
reports [39].
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Figure 2. Raman spectra for: (a) ZnO:Cu and (b) ZnO:Co thin films. Inside the figures are the Raman
vibration modes, where (*) corresponds to defects inside the ZnO structure.

Figure 2b shows the Raman spectrum for ZnO:Co; the intensity of A1LO, E2L, and E2H modes
decreases for these films. The ZnO:Co thin films (doping load 5%) show four new signals at 490 cm−1,
526 cm−1, 626 cm−1, and 725 cm−1. These signals could be attributed to the possible presence
of Co3O4, and these results confirm both the doping process and the formation of a heterojunction of
ZnO–Co3O4 [53,54].

2.3. Morphological Study

Figure 3 shows SEM images for the catalysts. Figure 3a shows that the ZnO films formed
microaggregates (~220 nm) composed of quasi-spherical ZnO nanoparticles (around 40 nm in diameter),
and this is a typical result for this material sensitized by the sol–gel method. Figure 3b,c shows that
the morphological properties changed significantly after the doping process. Regarding the ZnO:Cu
thin films, Figure 3b shows the formation of nanorods. Meanwhile, Figure 3c shows the formation
of nanosized elongated particles of various shapes (~100 nm) from the ZnO:Co thin films. Likewise,
Figure 3c shows that the agglomeration on the catalyst surface reduced and the microaggregates
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disappeared. Different nanostructures have been reported for ZnO (e.g., nanorods, nanotubes,
nanobelts, nanosprings, nanospirals, nanorings) [55]. It is known that ZnO’s morphological properties
rely on synthesis conditions, and in our case, it is clear that the metal ions used during synthesis
reduced the agglomeration and changed the thin films’ morphology [56].Catalysts 2020, 10, x FOR PEER REVIEW 5 of 13 
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Figure 3. SEM images: (a) ZnO, (b) ZnO:Cu 5% and (c) ZnO:Co 5% thin films.

2.4. Optical Study

The diffuse reflectance spectra for the catalysts are shown in Figure 4. We used the Kubelka–Munk
(KM) remission function for determining the bandgap energy value of the catalysts [57]. The use of the
KM remission function makes it possible to obtain an analog to Tauc plots [58,59]:

(F(R∝)hv)
1
2 = A

(
hv− Eg

)
(1)

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 13 

 

Figure 3. SEM images: (a) ZnO, (b) ZnO:Cu 5% and (c) ZnO:Co 5% thin films. 

2.4. Optical Study 

The diffuse reflectance spectra for the catalysts are shown in Figure 4. We used the Kubelka–
Munk (KM) remission function for determining the bandgap energy value of the catalysts [57]. The 
use of the KM remission function makes it possible to obtain an analog to Tauc plots [58,59]: ሺࡲሺ࢜ࢎ(∝ࡾ)૚ ૛ൗ ൌ ࢜ࢎ൫࡭ െ   (1)								൯ࢍࡱ

 

Figure 4. Reflectance diffuse spectra for both catalysts. 

Figure 5 shows plots for ሺܨሺܴ∝)݄ݒ)ଵ ଶൗ  versus (hv) and table 2 lists the optical properties of the 
catalysts. Figure 5 shows that ZnO had a bandgap value (Eg) of 3.22 eV, a value that corresponds with 
that reported by Srikant el al. (3.1 eV and 3.2 eV) [60,61]. For doped ZnO catalysts, the Eg value was 
lower, and this behavior is associated with the reduction of the Fermi level of ZnO by the generation 
of intragap states. For ZnO:Cu, the modification of the bandgap can be attributed to the induction of 
3d states of Cu located inside the bandgap of ZnO [37]. Additionally, the visible light absorption 
observed for doped ZnO can be attributed to intragap transitions between Cu 3d and Zn 4s states. 
Furthermore, the ZnO:Co 5% catalyst has a lower bandgap value compared to other catalysts. This 
reduction is attributed to s-d and p-d exchange interactions between ZnO and Co2+ ions [62]. The 3d 
levels of Co2+ are located within the bandgap of ZnO, which can create new bands at larger 
wavelengths [63]. Some photoluminescence studies of the transition metal doping ZnO nanoparticles 
suggest that this important reduction in Eg value is due to oxygen deficiency [64]. Finally, the 
formation of nanoheterojunctions in the catalyst surface leads to an enhanced separation of charge 

400 500 600 700 800
0

10

20

30

40

50

60

70

80

 ZnO
 ZnO:Co 1%
 ZnO:Co 3%
 ZnO:Co 5%

R
ef

le
ct

an
ce

 (%
)

Wavelength (nm)
400 500 600 700 800

0

10

20

30

40

50

60

70

80

 ZnO
 ZnO:Cu 1%
 ZnO:Cu 3%
 ZnO:Cu 5%

R
ef

le
ct

an
ce

 (%
)

Wavelength (nm)

Figure 4. Reflectance diffuse spectra for both catalysts.

Figure 5 shows plots for (F(R∝)hv)
1
2 versus (hv) and Table 2 lists the optical properties of

the catalysts. Figure 5 shows that ZnO had a bandgap value (Eg) of 3.22 eV, a value that corresponds
with that reported by Srikant el al. (3.1 eV and 3.2 eV) [60,61]. For doped ZnO catalysts, the Eg

value was lower, and this behavior is associated with the reduction of the Fermi level of ZnO by the
generation of intragap states. For ZnO:Cu, the modification of the bandgap can be attributed to the
induction of 3d states of Cu located inside the bandgap of ZnO [37]. Additionally, the visible light
absorption observed for doped ZnO can be attributed to intragap transitions between Cu 3d and
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Zn 4s states. Furthermore, the ZnO:Co 5% catalyst has a lower bandgap value compared to other
catalysts. This reduction is attributed to s-d and p-d exchange interactions between ZnO and Co2+

ions [62]. The 3d levels of Co2+ are located within the bandgap of ZnO, which can create new bands
at larger wavelengths [63]. Some photoluminescence studies of the transition metal doping ZnO
nanoparticles suggest that this important reduction in Eg value is due to oxygen deficiency [64]. Finally,
the formation of nanoheterojunctions in the catalyst surface leads to an enhanced separation of charge
carriers, increasing photocatalytic efficiency in addition to the doping process. The generation of these
heterostructures has been reported for photocatalytic applications [65].
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Table 2. Band gap and results of pseudo-first-order model fitting.

Catalyst kap × 10−3 (min−1) Degradation (%) Band Gap (eV)

ZnO 0.2 2.7 3.22
ZnO:Co 1% 2.6 30.4 3.17
ZnO:Co 3% 4.2 45.7 2.83
ZnO:Co 5% 7.2 62.6 2.39
ZnO:Cu 1% 3.4 36.2 3.12
ZnO:Cu 3% 3.4 37.7 3.07
ZnO:Cu 5% 4.0 42.5 3.01

2.5. Photocatalytic Study

Figure 6 shows the decrease of MB as a function of time for all tests performed under
visible irradiation. The MB concentration did not change after 140 min under visible irradiation,
verifying the stability of MB dye. Furthermore, ZnO films did not show photocatalytic activity under
visible irradiation (<3%). This result is in accordance with the ZnO bandgap energy value, and this
photocatalyst is active only under UV irradiation. The ZnO:Co 5% catalyst reported the highest
photocatalytic activity. This result can be explained by the lower bandgap value of the ZnO:Co 5%
catalyst compared to other catalysts. The ZnO:Cu catalysts showed less photocatalytic activity than
the Co-doped ZnO films. Compared to the Co-doped ZnO films, the bandgap values of this catalyst
did not change; however, the best photodegradation result for ZnO:Cu was 42.5%, a value greater than
that obtained for the ZnO thin films. The combined effect of the doping process and the heterojunction
can explain this behavior. The photodegradation kinetics of MB on catalysts were studied by using the
pseudo-first-order model [66]:

v[MB] = [MB]oe−kapt (2)
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Time (t) is expressed in minutes and kapp is the apparent reaction rate constant (min−1). Table 2
lists the kinetic parameters for the studied catalysts. Among all the catalysts, the ZnO thin films
(kapp = 0.2 × 10−4 min−1) showed the lowest kap value, while the best results were obtained for ZnO:Co
5% (kapp = 7.2 × 10−3 min−1) and ZnO:Cu 5% (kapp = 4 × 10−3 min−1). In the best case, the kinetic rate
constant was 36 times higher than the ZnO thin films. A combined effect could be present: (i) Cu
doping in ZnO and (ii) the formation of a nanoheterojunction (ZnO–CuO). This synergic effect could
be a reason for the increase in photocatalytic yields. The heterostructure generation for the methyl
orange photodegradation under visible light irradiation has been reported before [67]. Table 3 lists
other reports for the use of doped ZnO with different metals as catalysts. Our results indicate that the
catalysts produced in this study are suitable options for solar photocatalytic applications.

Table 3. kapp values for different catalysts (ZnO doped with different metals) under visible irradiation.

Catalysts/Reference Pollutant/Molar Concentration Degradation (%)/Time Test kap × 10−3 (min−1)

SnS/ZnO [67] Rhodamine B/5 ppm
Methyl Orange/5 ppm

99%/175 min
82%/125 min

21.2
13.9

Carbon-ZnO [68] 2,4-dinitrophenol/25 ppm 92%/140 min 18.3
ZnO:Co [41] Alizarin Red/20 ppm 93%/60 min —
ZnO:Cu [39] Methyl Orange/5 ppm 80%/30 min 23
ZnO:Ag [69] Methylene Blue/10 ppm 65%/140 min 4.1

ZnO:Co/this work Methylene Blue/10 ppm 63%/140 min 7.2
ZnO:Cu/this work Methylene Blue/10 ppm 43%/140 min 4.0

The ZnO films did not show photocatalytic activity under visible irradiation. However, two
different processes can contribute to photocatalytic degradation under visible irradiation: (i) the
intraband transitions as dopants allow the doped ZnO thin films to absorb visible light, generating
charge pairs; (ii) CuO and Co3O4 can absorb visible light after the formation of ZnO–CuO and
ZnO–Co3O4 heterojunctions, generating charge pairs. In this case, the electron can be transferred to the
conduction band of ZnO. After electrons are located at the conduction band of ZnO, different reactive
oxygen species (ROS) can be generated (e.g., O−2 ; OH), starting the MB photodegradation. Scheme 1
shows the general scheme of energetic levels for doped ZnO thin films and the ROS generation.
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Scheme 1. Hypothetical scheme of energetic levels for metal-doped ZnO thin films: (a) Metal
doping process. (b) Metal doping process and the generation of a heterojunction [64,70,71]. After charge
pairs generation, the ROS can be yielded on the catalyst surface and MB degradation starts.

3. Materials and Methods

3.1. Synthesis and Characterization

The ZnO synthesis was carried out according to a previous report [69]: Twenty five mL of
ammonium hydroxide (NH4OH) (25–35% w/w) reactive grade (Merck) was placed in a 250 mL glass
beaker, then 0.500 M (Zn(CH3COO)2·2H2O) (Merck) was added dropwise at a rate of 1.7 mL.min−1

for 1 h, at a temperature of 85 ◦C under constant agitation at 300 rpm. After that, the suspension stood
for three days at room temperature then the solid was filtered and dried for 5 h at 100 ◦C [72,73].

For the ZnO doping process, we used a similar procedure as previously described. While adding
Zn2+ ions, we also added salts of the doping metals (CuSO4·5H2O) (Merck) for copper doping and
(Co(CH3COO)2·4H2O) (JT Baker) for the cobalt doping processes. The synthesis of doped ZnO powder
was performed at 1.0%, 3.0%, and 5.0%. The thin films were deposited using the doctor blade method,
and the suspension was placed in a glass measuring 2 cm high and 2 cm wide. The thin films were
heated for 30 min at 90 ◦C to evaporate the solvent, and finally, the sintering process was performed at
500 ◦C for 2 h [73,74]. Using this procedure, we obtained thin films (6 µm thickness). The film thickness
was measured through a Veeco Dektak 150 profilometer. The physical chemistry properties of the films
were studied by X-ray diffraction, diffuse reflectance spectrophotometry, and Raman spectroscopy
assay. X-ray diffraction patterns were obtained using a Shimadzu 6000 diffractometer using Cu Kα

radiation (λ = 0.15406 nm) as an X-ray source with a diffraction angle in the 2θ range (20–80◦). Diffuse
reflectance spectra were obtained with a Lambda 4 Perkin–Elmer spectrophotometer equipped with an
integration sphere. The compositional properties of the materials were studied by Raman spectroscopy
in a DXR device equipped with a 780 nm laser. The morphological properties were studied by scanning
electron microscopy, under an excitation energy of 5 and 1 kV. The metallic content of the films was
determined by plasma emission spectroscopy using the SM 3120 B technique, EPA 3015A modified for
solids (see Supporting Information).

3.2. Photocatalytic Test

Methylene blue (MB) was chosen as the pollutant model in this study. The experiments were
carried out in a batch reactor using an LED tape as a source of visible radiation (cold white light 17 watts),
and the incident photon flow per unit volume Io was 5.8 × 10−7 Einstein*L−1s−1. Before irradiation,
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the MB solution was kept in the dark for 90 min at 250 rpm to reach adsorption–desorption equilibrium
on the catalysts’ surface. Photodegradation was carried out using 50 ± 0.025 mL of an MB solution
(10 mg·L−1) saturated with oxygen at pH 7.0. The concentration of dye was determined through the
spectrophotometric method (Thermo Scientific–Genesys 10S) using 665 nm as a fixed wavelength,
with a calibration curve (correlation coefficient R = 0.997) for the use of the Lambert–Beer equation.

4. Conclusions

We synthesized and characterized ZnO thin films doped with Co and Cu. Raman results
corroborated the doping process, which suggested the generation of a heterostructure. For the
doped ZnO catalysts, the results show a reduction in the Eg values (from 3.22 to 2.42 eV for the
best catalyst). This behavior is associated with a reduction of the Fermi level of ZnO by the presence of
intragap states. The photocatalytic test indicated that doped catalysts had greater photocatalytic activity
than unmodified catalysts, which could be attributed to (i) the generation of intraband states for the
insertion of Co and Cu into ZnO, and (ii) the generation of ZnO–CuO and ZnO–Co3O4 heterojunctions.
Furthermore, the rate of the photodegradation process (ZnO:Co 5%) was 36 times greater than the
rate for unmodified ZnO, and the kapp values for the catalysts synthesized in this study had a suitable
photocatalytic activity compared to other reports.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/5/528/s1.
Figure S1: ICP calibration curve for: (a) Co and (b) Cu content. Table S1: Results ICP for catalysts. Fitting curves
of kinetic model.
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