A DFT Insight into the Tuning Effect of Potassium Promoter on

the Formation of Carbon Atoms via carburization gases

dissociation on Iron-Based Catalysts

Juhui Gong¹, Cheng Cao¹, Ruiqin Sun¹, Linxia Cui¹, Rui Gao¹, Haigang Hao^{1*}

¹ College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.

* Correspondences: haohaigang@imu.edu.cn .

Contents:

Figure S1. The energy profiles of C_2H_4 dissociation on Fe(110), as well as the top and side view of the configurations for the corresponding intermediates.

Figure S2. The energy profiles of C_2H_4 dissociation on Fe(110)-K₂O, as well as the top and side view of the configurations for the corresponding intermediates.

Figure S3. The energy profiles of C_2H_4 dissociation on Fe(211), as well as the top and side view of the configurations for the corresponding intermediates.

Figure S4. The energy profiles of C_2H_4 dissociation on Fe(211)-K₂O, as well as the top and side view of the configurations for the corresponding intermediates.

Figure S5. The energy profiles of CO/H_2 dissociation on Fe(110), as well as the top and side view of the configurations for the corresponding intermediates.

Figure S6. The energy profiles of CO/H_2 dissociation on Fe(110)-K₂O, as well as the top and side view of the configurations for the corresponding intermediates.

Figure S7. The energy profiles of CO/H_2 dissociation on Fe(211), as well as the top and side view of the configurations for the corresponding intermediates.

Figure S8. The energy profiles of CO/H_2 dissociation on Fe(211)-K₂O, as well as the top and side view of the configurations for the corresponding intermediates.

Figure S9. The top and side view structures of 2CH+H, C+CH+3H and 2C+4H on Fe(110).

Table S1. The distances between the two atoms (d, Å) be dissociated in the transition states of the element steps for C₂H₄ and CO/H₂ dissociation on Fe(110), Fe(110)-K₂O, Fe(211) and Fe(211)-K₂O surfaces

Figure S1. The energy profiles of C_2H_4 dissociation on Fe(110), as well as the top and side view of the configurations for the corresponding intermediates. The Fe, O, C and H atoms are given in grayish blue, red, black and white, respectively.

Figure S2. The energy profiles of C_2H_4 dissociation on Fe(110)-K₂O, as well as the top and side view of the configurations for the corresponding intermediates. The Fe, K, O, C and H atoms are given in grayish blue, purple, red, black and white, respectively.

Figure S3. The energy profiles of C_2H_4 dissociation on Fe(211), as well as the top and side view of the configurations for the corresponding intermediates. The Fe, O, C and H atoms are given in grayish blue, red, black and white, respectively.

Figure S4. The energy profiles of C_2H_4 dissociation on Fe(211)-K₂O, as well as the top and side view of the configurations for the corresponding intermediates. The Fe, K, O, C and H atoms are given in grayish blue, purple, red, black and white, respectively.

Figure S5. The energy profiles of CO/H_2 dissociation on Fe(110), as well as the top and side view of the configurations for the corresponding intermediates. The Fe, O, C and H atoms are given in grayish blue, red, black and white, respectively.

Figure S6. The energy profiles of CO/H_2 dissociation on Fe(110)-K₂O, as well as the top and side view of the configurations for the corresponding intermediates. The Fe, K, O, C and H atoms are given in grayish blue, purple, red, black and white, respectively.

Figure S7. The energy profiles of CO/H_2 dissociation on Fe(211), as well as the top and side view of the configurations for the corresponding intermediates. The Fe, O, C and H atoms are given in grayish blue, red, black and white, respectively.

Figure S8. The energy profiles of CO/H_2 dissociation on Fe(211)-K₂O, as well as the top and side view of the configurations for the corresponding intermediates. The Fe, K, O, C and H atoms are given in grayish blue, purple, red, black and white, respectively.

Figure S9. The top and side view structures of 2CH+H, C+CH+3H and 2C+4H on Fe(110). The Fe, C and H atoms are given in grayish blue, black and white, respectively.

Fe(110)				Fe(110)-K ₂ O			
element steps	d_{CH}	<i>d</i> _{CC}	<i>d</i> _{C0}	element steps	<i>d</i> _{CH}	<i>d</i> _{CC}	<i>d</i> _{C0}
	(Å)	(Å)	(Å)		(Å)	(Å)	(Å)
$C_2H_4 \rightarrow C_2H_3 + H$	1.585	/	/	$C_2H_4 \rightarrow C_2H_3 + H$	1.584	/	/
$C_2H_3+H\rightarrow CHCH+2H$	1.344	/	/	$C_2H_3+H\rightarrow CHCH+2H$	1.463	/	/
$\rm CHCH+2H{\rightarrow}2\rm CH+2H$	/	2.027	/	$\text{CHCH+2H} {\rightarrow} \text{CCH+3H}$	1.544	/	/
$2CH+2H\rightarrow C+CH+3H$	1.418	/	/	CCH+2H→C+CH+3H	1.461	/	/
$C+CH+3H\rightarrow 2C+4H$	1.489	/	/	$C+CH+3H\rightarrow 2C+4H$	/	1.908	/
СО+2Н→СНО+Н	1.536	/	/	СО+2Н→СНО+Н	1.231	/	/
СНО+Н→СН+О+Н	/	/	1.739	СНО+Н→СН+О+Н	/	/	1.844
CH+O+H→C+O+2H	1.410	/	/	$CH+O+H\rightarrow C+O+2H$	1.435	/	/
Fe(211)							
Fe(2	211)			Fe(211))-K ₂ O		
Fe(2	211) d _{Сн}	<i>d</i> _{CC}	<i>d</i> _{C0}	Fe(211) -К₂О <i>d</i> _{СН}	d _{CC}	<i>d</i> _{C0}
Fe(2 element steps	211) d _{Сн} (Å)	d _{CC} (Å)	d _{C0} (Å)	Fe(211) element steps) -К₂О <i>d</i> _{С…Н} (Å)	d _{CC} (Å)	d _{C0} (Å)
Fe(2 element steps C2H4→C2H3+H	211) <i>d</i> _{CH} (Å) 1.585	d _{CC} (Å)	d _{C0} (Å)	Fe(211) element steps $C_2H_4 \rightarrow C_2H_3 + H$)- К₂О <i>d</i> _{С…Н} (Å) 1.555	d _{CC} (Å)	d _{C0} (Å) ∕
Fe(2element steps $C_2H_4 \rightarrow C_2H_3 + H$ $C_2H_3 + H \rightarrow CCH_2 + 2H$	211) <i>d</i> _{CH} (Å) 1.585 1.497	d _{CC} (Å) /	d _{C0} (Å) /	Fe(211element steps $C_2H_4 \rightarrow C_2H_3 + H$ $C_2H_3 + H \rightarrow CHCH + 2H$)- K₂O <i>d</i> _{CH} (Å) 1.555 1.539	d _{CC} (Å) /	d _{C0} (Å) /
Fe(2 element steps $C_2H_4 \rightarrow C_2H_3+H$ $C_2H_3+H \rightarrow CCH_2+2H$ $CCH_2+2H \rightarrow CCH+3H$	211) <i>d</i> _{CH} (Å) 1.585 1.497 1.572	d _{CC} (Å) / /	d _{C0} (Å) / /	Fe(211element steps $C_2H_4 \rightarrow C_2H_3 + H$ $C_2H_3 + H \rightarrow CHCH + 2H$ $CHCH + 2H \rightarrow CCH + 3H$)-К₂О <i>d</i> _{Сн} (Å) 1.555 1.539 1.501	d _{cc} (Å) / /	d _{C0} (Å) / /
Fe(2element steps $C_2H_4 \rightarrow C_2H_3 + H$ $C_2H_3 + H \rightarrow CCH_2 + 2H$ $CCH_2 + 2H \rightarrow CCH + 3H$ $CCH_2 + 3H \rightarrow CC + 4H$	211) d _{CH} (Å) 1.585 1.497 1.572 1.571	d _C c (Å) / /	d _{C0} (Å) / /	Fe(211element steps $C_2H_4 \rightarrow C_2H_3 + H$ $C_2H_3 + H \rightarrow CHCH + 2H$ $CHCH + 2H \rightarrow CCH + 3H$ $CCH + 3H \rightarrow CC + 4H$)-К ₂ О dcн (Å) 1.555 1.539 1.501 1.461	dcc (Å) / /	d _{C0} (Å) / /
Fe(2element steps $C_2H_4 \rightarrow C_2H_3 + H$ $C_2H_3 + H \rightarrow CCH_2 + 2H$ $CCH_2 + 2H \rightarrow CCH + 3H$ $CCH_2 + 2H \rightarrow CCH + 3H$ $CCH + 3H \rightarrow CC + 4H$ $CC + 4H \rightarrow 2C + 4H$	211) d _{CH} (Å) 1.585 1.497 1.572 1.571 /	d _C c (Å) / / / 1.939	d _{co} (Å) / / /	Fe(211element steps $C_2H_4 \rightarrow C_2H_3 + H$ $C_2H_3 + H \rightarrow CHCH + 2H$ $CHCH + 2H \rightarrow CCH + 3H$ $CCH + 3H \rightarrow CC + 4H$ $CC + 4H \rightarrow 2C + 4H$)-К ₂ О d _{Cн} (Å) 1.555 1.539 1.501 1.461	dcc (Å) / / / 2.009	d _{C0} (Å) / / /
Fe(2element steps $C_2H_4 \rightarrow C_2H_3 + H$ $C_2H_3 + H \rightarrow CCH_2 + 2H$ $CCH_2 + 2H \rightarrow CCH + 3H$ $CCH_3H \rightarrow CC+4H$ $CC+4H \rightarrow 2C+4H$ $CC+2H \rightarrow CHO+H$	211) d _{CH} (Å) 1.585 1.497 1.572 1.571 / /	dcc (Å) / / / 1.939 /	dco (Å) / / / /	Fe(211element steps $C_2H_4 \rightarrow C_2H_3 + H$ $C_2H_3 + H \rightarrow CHCH + 2H$ $CHCH + 2H \rightarrow CCH + 3H$ $CCH + 3H \rightarrow CC + 4H$ $CC + 4H \rightarrow 2C + 4H$)-К ₂ О <i>d</i> _{Сн} (Å) 1.555 1.539 1.501 1.461 /	d _{cc} (Å) / / / 2.009	dco (Å) / / /
Fe(2element steps $C_2H_4 \rightarrow C_2H_3 + H$ $C_2H_3 + H \rightarrow CCH_2 + 2H$ $CCH_2 + 2H \rightarrow CCH + 3H$ $CCH_2 + 2H \rightarrow CCH + 3H$ $CCH + 3H \rightarrow CC + 4H$ $CC + 4H \rightarrow 2C + 4H$ $CO + 2H \rightarrow CHO + H$ $CHO + H \rightarrow CH + O + H$	211) d _{CH} (Å) 1.585 1.497 1.572 1.571 / / /	d _C c (Å) / / / 1.939 /	d _{C0} (Å) / / / / / 1.819	Fe(211element steps $C_2H_4 \rightarrow C_2H_3 + H$ $C_2H_3 + H \rightarrow CHCH + 2H$ $CHCH + 2H \rightarrow CCH + 3H$ $CCH + 3H \rightarrow CC + 4H$ $CC + 4H \rightarrow 2C + 4H$ $CO + 2H \rightarrow C + O + 2H$)-К ₂ О d _{Сн} (Å) 1.555 1.539 1.501 1.461 /	dcc (Å) / / / 2.009	d _{C0} (Å) / / / / 1.887

Table S1. The distances between the two atoms (d, Å) be dissociated in the transition states of the element steps for C₂H₄ and CO/H₂ dissociation on Fe(110), Fe(110)-K₂O, Fe(211) and Fe(211)-K₂O surfaces