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Abstract: Nanosized SSZ-13 was synthesized hydrothermally by applying N,N,N-trimethyl-1-
adamantammonium hydroxide (TMAdaOH) as a structure-directing agent. In the next step,
the quantity of TMAdaOH in the initial synthesis mixture of SSZ-13 was reduced by half. Furthermore,
we varied the sodium hydroxide concentration. After ion-exchange with copper ions (Cu2+ and
Cu+), the Cu-SSZ-13 catalysts were characterized to explore their framework composition (XRD,
solid-state NMR, ICP-OES), texture (N2-sorption, SEM) and acid/redox properties (FT-IR, TPR-H2,
DR UV-Vis, EPR). Finally, the materials were tested in the selective catalytic reduction of NOx with
ammonia (NH3-SCR). The main difference between the Cu-SSZ-13 catalysts was the number of
Cu2+ in the double six-membered ring (6MRs). Such copper species contribute to a high NH3-SCR
activity. Nevertheless, all materials show comparable activity in NH3-SCR up to 350 ◦C. Above 350 ◦C,
NO conversion decreased for Cu-SSZ-13(2–4) due to side reaction of NH3 oxidation.

Keywords: chabazite; SSZ-13; preparation method; copper species; IR spectroscopy; NH3-SCR

1. Introduction

SSZ-13 and SAPO-34 are typical examples of zeolite materials with a chabazite (CHA) structure. SSZ-13
is an aluminosilicate CHA-type material with high Si content and SAPO-34 is its silicoaluminophosphate
counterpart. The CHA framework is composed of four-, six-, and eight-membered rings arranged to
form a tridimensional system of channels perpendicular to each other (0.38 × 0.38 nm; R3m (#166) space
group) [1]. Its structure can be represented as cha cages connected via double six-membered rings and
thus, is a member of the abc-six frameworks family. The incorporation of Cu ions into the CHA zeolite is
a key factor in the preparation of the Cu-CHA catalysts. Techniques such as ion-exchange [2], chemical
vapor deposition [3], solid-state ion-exchange (SSIE) [4], one-pot preparation with Cu ions introduced
by the structure-directing agent [5], and wet mixing and impregnation [6] have been examined for the
preparation of Cu-CHA materials. The most frequently applied ion-exchange method with aqueous
copper salt solution allows more Cu2+ ions to be located at the exchange sites of SSZ-13. In Cu-SSZ-13,
copper species are predominantly present as isolated Cu2+ ions, even at higher ion-exchange degrees [2].
There are four cationic sites in the CHA framework [7]: site I—located at the six-membered ring in the
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elliptical cavity; site II—placed near the center of the elliptical cavity; site III—located in the center of
the hexagonal prism face; site IV—near to the eight-membered ring window. It was observed that the
state of the copper species could be strongly affected by the preparation method. Yan et al. [6] found
that the isolated Cu2+ species are mainly located in the elliptical cavity (site I) for the ion-exchanged
Cu-SAPO-34 (silicoaluminophosphate zeotype isostructural to SSZ-13). Cu2+ located at the site I was
more stable than that located at the site IV. Deka et al. [3] and Xue et al. [7] further investigated the
materials obtained through the ion-exchange method. Their results confirmed that isolated Cu2+

species associated with the six-membered ring window, and placed into the ellipsoidal cavity of
SAPO-34 were the active sites for NH3-SCR. This statement can also be applied to Cu-SSZ-13 [7–9].
Such catalysts show excellent NO conversion and N2 selectivity in a wide temperature window
(250–550 ◦C) in comparison to medium pore zeolites (e.g., Cu-ZSM-5) [10,11].

Furthermore, the size of the CHA crystals might affect the efficiency of the ion-exchange process,
i.e., the quantity of the initial cations, which are exchanged with the needed cations as the surface area
available for direct contact with the solution is determined by the size of the particles. In addition,
depending on the content of copper in Cu-SSZ-13, copper ions can occupy different positions within
the crystal structure. At a lower Cu content, they are mainly positioned at sites in the six-membered
rings and at higher copper content, within the large cages [12]. Overall, the preparation of the
samples with a predominantly single type of Cu species is not straightforward. Additionally,
the relatively high cost of the most frequent and efficient organic structure-directing agent (OSDA)
N,N,N-trimethyl-1-1-adamantammonium hydroxide (TMAdaOH) to prepare CHA-type materials
strongly limits wide applications of Cu-SSZ-13. To date, researchers have concentrated on the
ways of cost reduction of the Cu-SSZ-13 catalysts [13,14]. In general, high quantities of OSDA are
necessary to prepare nanosized crystals (<500 nm) of high-silica zeolite materials [15]. For this reason,
any diminution of an OSDA amount in the synthesis mixture, which at the same time, enables to obtain
a similar effect, i.e., prepare materials of similar properties, is highly advantageous. The benefits of
decreasing the size of zeolite crystals are shorter intra-crystal channels and larger external surface
area and thus, consequently a shorter diffusion path as well as more exposed and available active
sites. Gao et al. [16] first raised that for the Cu-SSZ-13 catalysts the reaction kinetics are controlled by
intra-particle diffusion limitations. They observed a decrease in turnover frequency (TOF) for Cu-SSZ-13
with different copper loadings (1.31–5.15 wt. %). Furthermore, Wang et al. [17] measured the NH3-SCR
rates on (1–2 wt. %)Cu-SSZ-13 with various particle size (0.4–2 µm), achieved by modulating seed
crystals and pH in the synthesis media prior to crystallization. The authors concluded that the NH3-SCR
reaction was free of intra-crystalline diffusion because of the identical TOF. Bates et al. [18] found
that the NH3-SCR rates on Cu-SSZ-13 increased linearly with Cu loading (n(Cu)/n(Al) = 0.04–0.2) and
concluded that the reaction kinetics is not limited by intra-crystalline diffusion. Otherwise, the effect of
particle size (less than 0.5 µm) of Cu-SSZ-13 on its catalytic properties in NH3-SCR was less intensively
investigated [19].

Thus, within the frame of this investigation, a series of SSZ-13 samples with varying particle
sizes (mean values in the range of 216–288 nm) were synthesized. For practical applications,
the Cu-SSZ-13 materials were prepared and characterized to explore their structure and texture
as well as their acidic and redox properties. The Cu-SSZ-13 materials were characterized by
X-ray diffraction (XRD), solid-state nuclear magnetic resonance (NMR) spectroscopy, inductively
coupled plasma optical emission spectrometry (ICP-OES), N2-sorption, scanning electron microscopy
(SEM) with energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FT-IR) spectroscopy,
temperature-programmed reduction (TPR) with H2, diffuse reflectance UV-Vis (DR UV-Vis)
spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The catalytic properties
of the prepared Cu-SSZ-13 were evaluated in NH3-SCR.
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2. Results and Discussion

2.1. Structural and Textural Properties, Morphology of Cu-SSZ-13

Table 1 presents the prepared materials and their compositions. Briefly, SSZ-13(1) was synthesized
hydrothermally by applying TMAdaOH as a structure-directing agent. SSZ-13(2) contains the quantity
of TMAdaOH reduced by half compared to the initial synthesis mixture of SSZ-13(1). In the following
materials—SSZ-13(3, 4) we varied the sodium hydroxide concentration. The XRD patterns (Figure 1a)
of the solid final products—prepared from the studied reaction mixtures hydrothermally treated at
150 ◦C for a certain period, correspond to the CHA-type materials. No impurity phase was observed.
The narrow peaks suggest the high crystallinity degree of the samples. Thus, the changes in the
chemical composition of the reaction mixture did not affect the phase composition of the final product.
Figure 1b shows the XRD patterns of Cu-exchanged SSZ-13, indicating that the chabazite (CHA)
structure was maintained during the ion-exchange. Cu2O and CuO phases at ca. 2θ = 35.29, 36.30,
38.49 and 38.72◦ [20,21] are not observed. The relatively low content of copper (4.4–5.2 wt. %) therefore
can result in either a high copper dispersion or the amorphous nature of Cu2O and CuO.
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SSZ-13(4) 1 SiO2:0.0167 Al2O3:0.3 NaOH:0.125 TMAdaOH:15 H2O 5 CHA 

The SEM images (Figure 2) of the initial sample with the highest TMAdaOH concentration show 
that the crystals have cubic morphology and are rather uniform in both size and shape. However, 
reducing the TMAdaOH content results in crystals having more rounded edges and smoothed 
surfaces. Furthermore, an intergrowth of the crystals and an apparently broader crystal size 
distribution were observed. The crystal size varies from 80 to 600 nm and a tendency towards smaller 
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100-line measurements in corresponding SEM image result in mean values: 288 nm—Cu-SSZ-13(1), 
250 nm—Cu-SSZ-13(2), 266 nm—Cu-SSZ-13(3), 216 nm—Cu-SSZ-13(4). Clearly, the presence of 
higher quantity of sodium in the systems of Cu-SSZ-13(2–4) influences the nuclei formation within a 
longer reaction period, i.e., nuclei formation and crystal growth occurred during a longer period, 
resulting in crystals with a smaller size and a broader size distribution. Moreover, it affects the crystal 
growth process and leads to crystals that are more spherical. Finally, the EDX analysis (10 positions 
on each sample) revealed a homogenous distribution of the elements, i.e., any particles that might 
correspond to isolated copper-containing material were observed. The data are not shown here due 
to the better accuracy of ICP-OES (bulk analysis). 

Figure 1. (a) XRD patterns of the products obtained from the synthesis mixtures hydrothermally treated
at 150 ◦C, (b) XRD patterns of Cu-exchanged SSZ-13 (sample labels as in Table 1).

Table 1. Molar oxide ratio of the studied synthesis mixtures, the time of hydrothermal treatment at
150 ◦C and the phase composition of the end product.

Sample Molar Batch Composition Time/d Product

SSZ-13(1) 1 SiO2:0.0167 Al2O3:0.25 NaOH:0.25 TMAdaOH:15 H2O 6 CHA
SSZ-13(2) 1 SiO2:0.0167 Al2O3:0.25 NaOH:0.125 TMAdaOH:15 H2O 6 CHA
SSZ-13(3) 1 SiO2:0.0167 Al2O3:0.2 NaOH:0.125 TMAdaOH:15 H2O 10 CHA
SSZ-13(4) 1 SiO2:0.0167 Al2O3:0.3 NaOH:0.125 TMAdaOH:15 H2O 5 CHA

The SEM images (Figure 2) of the initial sample with the highest TMAdaOH concentration show
that the crystals have cubic morphology and are rather uniform in both size and shape. However,
reducing the TMAdaOH content results in crystals having more rounded edges and smoothed surfaces.
Furthermore, an intergrowth of the crystals and an apparently broader crystal size distribution were
observed. The crystal size varies from 80 to 600 nm and a tendency towards smaller crystal sizes with
broader crystal size distribution by reducing TMAdaOH content was found. The 100-line measurements
in corresponding SEM image result in mean values: 288 nm—Cu-SSZ-13(1), 250 nm—Cu-SSZ-13(2),
266 nm—Cu-SSZ-13(3), 216 nm—Cu-SSZ-13(4). Clearly, the presence of higher quantity of sodium
in the systems of Cu-SSZ-13(2–4) influences the nuclei formation within a longer reaction period,
i.e., nuclei formation and crystal growth occurred during a longer period, resulting in crystals with
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a smaller size and a broader size distribution. Moreover, it affects the crystal growth process and
leads to crystals that are more spherical. Finally, the EDX analysis (10 positions on each sample)
revealed a homogenous distribution of the elements, i.e., any particles that might correspond to isolated
copper-containing material were observed. The data are not shown here due to the better accuracy of
ICP-OES (bulk analysis).

The data on the elemental composition of the Cu-CHA materials obtained by ICP-OES (Table 2)
show the n(Si)/n(Al) ratio in all samples studied ranging from 13.9 up to 17.8 with its average value
being n(Si)/n(Al) = 15.6. This suggests that in the studied samples, the reduction of the concentration of
the organic structure-directing agent, TMAdaOH, in the reaction mixture does not affect the framework
composition of the final material. Hence, the CHA-type zeolite synthesis approaches demonstrated in
this work represent more economical and environmentally friendly routes than CHA synthesis from
the initial synthesis mixture (using double amount of TMAdaOH). Namely, in general, the organic
structure-directing agents are added to the systems to increase the framework n(Si)/n(Al) ratio. Herein,
a similar framework composition was achieved with half of the amount of TMAdaOH, which is a
costly chemical and its production requires usage of organic solvents.
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Figure 2. SEM images of Cu-exchanged SSZ-13. The crystallite size distribution was constructed by
counting 100 crystallites randomly from SEM images.

Table 2. The results of elemental analysis of the Cu-exchanged chabazite samples, their textural
properties (specific surface area: aS(BET); micropore and total pore volumes: VMIC and VTOT)
determined from the N2-sorption isotherms and the H2 consumption during TPR.

Sample Si; Al; Cu
Content/wt. %

n(Si)/n(Al);
n(Cu)/n(Al) aS(BET)/m2 g−1 VMIC/cm3 g−1 VTOT/cm3 g−1 H2 Consumption

/mmol H2 g−1

Cu-SSZ-13(1) 37.6; 2.6; 4.4 13.9; 0.72 575 0.268 0.314 1.08
Cu-SSZ-13(2) 38.6; 2.2; 4.9 16.9; 0.95 582 0.265 0.352 1.16
Cu-SSZ-13(3) 37.0; 2.0; 5.2 17.8; 1.10 615 0.275 0.442 1.25
Cu-SSZ-13(4) 34.6; 2.4; 5.1 13.8; 0.90 591 0.262 0.379 1.18

The chemical composition of the prepared materials is similar (n(Si)/n(Al) ≈ 14–18), however,
the differences in the distribution in the framework Al can affect the acid properties, i.e., type,
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concentration and strength of acid sites. Namely, CHA-type zeolite materials, which were synthesized in
the presence of solely TMAdaOH, were found to contain only isolated framework Al [22]. The addition
of Na+ to the zeolite preparation mixture, maintaining the concentration of cations and other preparation
parameters, yielded crystalline SSZ-13 zeolites of a fixed n(Si)/n(Al) ratio, but with paired Al sites
(sequence Al–O(–Si–O)2–Al, based on MAS-NMR). The amount of the paired Al sites has been found as a
linear function of the Na+ incorporated into the crystalline solids [23]. Al distribution within the zeolite
framework determines the ability of the zeolite for ion-exchange with divalent cations. DFT calculations
demonstrated that Cu2+ prefers to site at 6MRs possessing paired Al sites [24]. As aforementioned,
the acidic properties of the materials were studied by NH3 sorption experiments followed by IR
spectroscopy according to the well-known methodology described elsewhere [25,26]. The Brønsted and
Lewis acid sites concentrations in the Cu-SSZ-13 zeolites determined by IR quantitative measurements
are given in Table 3. A reduction of the Brønsted acid sites number is clearly visible for material with
the quantity of TMAdaOH reduced by half, Cu-SSZ-13(2). This decline in the density of protonic
sites is accompanied, however, by an increase in Lewis acid sites density. In addition to Al-atoms,
the exchangeable copper cations can also bond coordinatively ammonia molecules providing a
contribution to the total density of Lewis acid sites detected with this probe. As above, an increase in
the concentration of Lewis sites is easily explained by the higher Cu content for Cu-SSZ-13(2) than
Cu-SSZ-13(1) (4.9 versus 4.4 wt. %, respectively, Table 2). For the Cu-SSZ-13(3,4) materials prepared
with varied sodium hydroxide concentration (0.2–0.3 NaOH), the Brønsted acidity appeared in minor
extent. This can be explained by either the higher n(Cu)/n(Al) ratio of those zeolites or the various
forms of copper sites; the latter is controlled by Al atoms’ location in the zeolite framework. The Al
atoms siting (Al pairs or single Al atoms) can be considered as the factor for stabilization of Cu2+, Cu+

and Cuoxo (e.g., [Cu–O–Cu]2+) species. Most probably, in Cu-SSZ-13(3,4), the hydrolysis leading to
oxide-like species formation is more pronounced, thus the Al framework atoms are balanced by protons,
not by exchangeable copper cations. Finally, in Cu-SSZ-13(3,4) the co-existence of ion-exchange copper
cations and small oligomeric or bulky CuO species is assumed.

Figure 3 shows the 27Al NMR spectra for the H-SSZ-13 samples. The majority of Al is tetrahedrally
coordinated and fully incorporated in the framework, as indicated by the peak at 59 ppm for
Cu-SSZ-13(1) and 60 ppm for Cu-SSZ-13(2–4). Although Al is in tetrahedral coordination in zeolite
framework, its local environment differs among the samples. However, additional experiments
are required to make a more detailed analysis and consequently, precisely designate the Al siting.
Those Al4+ in Si(OH)Al units can provide Brønsted acidity. Only a small amount of extra-framework
octahedral Al at 0 ppm is noticeable [27], indicating that extra-framework Al species are marginally
populated at the same time, suggesting that enhanced Lewis acidity that was observed in the IR spectra
stems from Cu species.
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Figure 4a displays the N2 adsorption-desorption isotherms of the studied Cu-SSZ-13 materials.
According to the IUPAC classification [28], all isotherms of the samples exhibit a mixed Type I and
Type IVa isotherm with an H1 type hysteresis loop in the range of p p0

−1 > 0.9, indicating the presence
of the inter-crystalline meso-/macroporosity. The values of specific micropore volume are similar in
all samples and are common for highly crystalline SSZ-13 material (Table 2). A general trend of an
increase of the specific surface area and total pore volume in the samples prepared from the systems
with a reduced TMAdaOH quantity (Cu-SSZ-13(2–4)) is observed (Table 2) in accordance with the
SEM findings on the decreased crystal size (Figure 2).
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with a reduced TMAdaOH quantity (Cu-SSZ-13(2–4)) is observed (Table 2) in accordance with the 
SEM findings on the decreased crystal size (Figure 2). 
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Figure 4. (a) N2-sorption isotherms and (b) cumulative pore size distribution of Cu-SSZ-13. 
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The quantity of the copper introduced to the chabazite materials varies slightly in the range of
4.4–5.2 wt. % (Table 2). From this constant copper quantity, we can conclude on similar framework
composition; thus, the comparable ion-exchange capacity (n(Cu)/n(Al) = 0.72–1.10) of the studied
chabazites. In all the samples, the copper loading is higher than reported for Cu-SSZ-13 prepared by
the Cu2+ ion-exchange method (3.1–3.6 wt. %) [29,30].

Table 3. Acid site density determined in quantitative IR studies of NH3 sorption (CBrönsted and CLewis),
EPR relative intensities (Rel. Int.) of the fresh samples before dehydration and turnover frequency (TOF).

Sample CBrönsted
/µmol g−1

CLewis
/µmol g−1 Rel. Int. TOF (150 ◦C)

103/s−1

Cu-SSZ-13(1) 180 1150 6.57 0.55
Cu-SSZ-13(2) 0 1395 1.00 0.52
Cu-SSZ-13(3) 20 880 1.27 0.46
Cu-SSZ-13(4) 35 825 1.69 0.42

2.2. Status of Copper Oxide Species

The copper speciation was broadly evaluated by DR UV-Vis, IR and EPR spectroscopy as well as
TPR-H2 studies to show evidence for the difference in the properties of the Cu moieties dispersed in
zeolites SSZ-13(1–4). Although copper ions were introduced in the form of divalent cations, part of
Cu still could undergo reduction during calcination and the presence of Cu+ is definitely supposed.
Moreover, both vacuum pretreatment (FT-IR experiments) and He-treatment applied before catalytic
tests also provoke partial reduction of Cu2+ species to Cu+. A first insight into the speciation of
copper sites can be provided by DR UV-Vis analysis (Figure 5). All investigated materials have two
distinct bands in DR UV-Vis spectra. The charge transfer band at around 211–215 nm is related to
O → Cu charge transition (CT) from lattice oxygen to isolated Cu+/Cu2+ species stabilized by the
zeolite framework [31,32]. The broad absorption band between 500 and 800 nm is assigned to the
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d→ d transition of Cu2+ [32,33]. An additional band at around 245 nm in the spectra of Cu-SSZ-13
is attributed to CuO species [34], while the band at ca. 325 nm proves the presence of oligomeric
Cu2+–O2−–Cu2+ chains [35]. Based on the DR UV-Vis spectra analysis, it can be concluded that copper
species were introduced to the Cu-SSZ-13(2–4) materials in a similar aggregation state. On the contrary,
the spectra of Cu-SSZ-13(1) revealed mainly the contribution of monomeric cations stabilized by the
chabazite framework in this sample. Similar results were provided by ammonia sorption followed by
IR spectroscopy.
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The reducibility of the Cu-SSZ-13 materials was confirmed by the TPR experiments (Figure 6).
Although it is difficult to differentiate the nature of copper species located in different sites,
the identification of Cu species could be attained by comparing TPR-H2 with the literature data.
All the Cu-containing chabazite samples exhibit three-reduction peaks in the temperature range
of 50–800 ◦C. The low-temperature peaks (<350 ◦C) were assigned to the reduction of isolated
Cu2+ in cha cage to Cu+ ions (Cu2+ + 1/2 H2 → Cu+ + H+) and to the reduction of CuO to Cu0

(Cu2+ + H2→ Cu0 + 2 H+). Namely, the Cu2+ ions located in the pore openings, i.e., inside the cha
cages next to eight-membered rings are expected to be more easily accessed by H2. The reduction
peak in the range of 350–600 ◦C is attributed to the reduction of Cu2+ in the six-membered ring to Cu+

(Cu2+ + 1/2 H2→ Cu+ + H+), while the high-temperature peaks above 600 ◦C were associated with the
reduction of highly stable Cu+ ions to Cu0 (Cu+ + 1/2 H2→ Cu0 + H+) [36,37]. The assignment of the
dimeric Cu centers, i.e., [Cu-O-Cu]2+ is less intensively investigated in the literature. The reduction of
[Cu–O–Cu]2+ also occurs in two stages as isolated monomeric Cu2+ ions [38]. Moreover, Verma et al. [39]
claimed that the [Cu–O–Cu]2+ preferred coordination in eight-membered rings. Thus, in our case,
such species appear to be reduced below <350 ◦C. The amount of H2 consumed during TPR-H2

provides qualitative information on the number of reducible Cu ions in the studied samples (Table 2).
Verma et al. [39] also evaluated the Cu species in Cu-SSZ-13 catalysts with an n(Si)/n(Al) atomic ratio
of 4.5 and found that there is a limit for the density (n(Cu)/n(Al) = 0.2) of the isolated Cu2+ at the
six-membered rings in SSZ-13. Beyond this limit, a part of the isolated Cu2+ ions converts to Cu dimers.
In our case, all Cu-SSZ-13(1–4) materials revealed n(Cu)/n(Al) in the range of 0.72–1.10 which indicates
the formation of Cu dimers of oxide nature, in line with DR UV-Vis spectra.
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To further elucidate the presence of various copper speciation forms in Cu-SSZ-13(1–4), IR studies
of CO sorption were carried out. At room temperature, the CO molecule is able to interact with
exchangeable Cu+ to form monocarbonyls (2155 cm−1) or dicarbonyls (2150 and 2178 cm−1) and Cu+

in oxide-like phase (2140 cm−1). Stable carbonyls formed with the participation of Cu2+ ions can
be observed only at temperatures as low as −100 ◦C [40–42]. The sorption of CO at −130 ◦C on the
all samples studied reveals the bands (2250–2190 cm−1) originating from Cu2+ carbonyl species in
Cu-SSZ-13(2) only (Figure 7a). The monocarbonyl Cu2+

oxo(CO) band (ca. 2210 cm−1) is characterized
by the very low value of the absorption coefficient. Moreover, the intensity of 2210 cm−1 band can be
influenced by neighboring Cu+ carbonyl originated bands. Finally, the amount of Cu2+ species cannot
be easily estimated from the low-temperature IR spectrum. Such species are, however, undoubtedly
present in the zeolites studied. If they cannot be detected with CO in other catalysts studied, it can
be supposed that the electron-acceptor properties of Cu2+

oxo species are not sufficiently strong to
effectively bond CO molecules.

The spectra of CO adsorbed at room temperature (RT) on Cu-SSZ-13 up to maximum intensities
of the Cu+(CO) and Cu+

oxo(CO) monocarbonyl bands are presented in Figure 7b. The Cu+(CO)
monocarbonyl bands in chabazite are shifted towards lower frequencies (2155 cm−1) compared to
ZSM-5 (n(Si)/n(Al) = 27; 2158 cm−1) and have a broader half-width [43]. This indicates a stronger
neutralization of Cu+ by oxygen atoms of the chabazite framework, which is related to the higher
abundance of aluminium atoms in chabazite than in ZSM-5. In turn, the broader half-width of Cu+(CO)
band indicates the high heterogeneity of Cu+ sites, i.e., the presence of Cu+ exchangeable cations
located in various position in the CHA framework, therefore, offering differentiated electron-donor
properties. The maximum intensity of the moncarbonyls bands, both Cu+(CO) and Cu+

oxo(CO) can be
taken as the measure of the Cu+ ions concentration in both forms. From the spectra of CO interacting
with redox sites in chabazites, we can confirm the presence of exchangeable copper cations (2156 cm−1)
as the main species. The only exception is the Cu-SSZ-13(2) material accommodating also copper oxide
Cu+ forms, identified by the presence of the Cu+

oxo(CO) band - 2140 cm−1 (Cu+ from oxide-like phase).
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and, thus, is responsible for the anisotropic components. The relative intensities of the samples were 
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measured sample. The values changed from 6.57 for Cu-SSZ-13(1) to 1.00 for Cu-SSZ-13(2). For Cu-
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13(4), respectively (Table 3). 
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Figure 7. (a) The FTIR transmission spectra of CO adsorbed at −130 ◦C and room temperature (RT) in
the Cu-SSZ-13 zeolites. (b) The maximum intensity of the Cu+(CO) and Cu+

oxo(CO) monocarbonyl
bands (RT).

At room temperature, the mono Cu+(CO) and dicarbonyl Cu+(CO)2 complexes are stable,
which emerge to tricarbonyl Cu+(CO)3 adducts at −130 ◦C. For all the samples studied, the dicarbonyl
species are still detected at −130 ◦C; they are not transformed in tricarbonyl moieties. This evidences
that some fraction of Cu+ is the least accessible or cannot be withdrawn from these more shielded
position sites in spite of the solvatation by CO molecules. Still, two coordination of Cu+ are accessible
to reagent molecules as NH3 and NO in NH3-SCR; thus, all the Cu+ cations can be considered as
providing catalytic activity in real process.

EPR allows identifying the coordination environment of isolated Cu2+ ions because all the other
Cu species ([Cu–O–Cu]2+ or Cu+) are EPR silent [30,44]. Figure 8a shows very similar EPR spectra
characterized by a single isotropic peak centered at giso ≈ 2.17, comparable to the one observed
for copper in aqueous solutions, in agreement with previous studies [45]. In the hydrated zeolites
(i.e., calcined in the air), the presence of water molecules in the coordination sphere of Cu2+ ions leads
to their detachment from the framework. As a result, the EPR spectra show an overlap of isotropic
and anisotropic features. The former is due to aqueous complexes, which tend to move towards large
cavities of the zeolite where they can freely rotate on the timescale of an EPR experiment: in this case,
the hyperfine and g tensors are averaged. The latter comes from Cu ions attached to the framework
and, thus, is responsible for the anisotropic components. The relative intensities of the samples
were calculated as the double integral of the RT signal and normalized with respect to the weight
of each measured sample. The values changed from 6.57 for Cu-SSZ-13(1) to 1.00 for Cu-SSZ-13(2).
For Cu-SSZ-13(2) and Cu-SSZ-13(4), the relative intensity reached 1.27 for Cu-SSZ-13(3) and 1.69 for
Cu-SSZ-13(4), respectively (Table 3).

After the samples dehydration, a well-defined parallel hyperfine structure of Cu2+ appeared
for all the spectra (Figure 8b), although the intensity of the signal decreased about 70% compared
to the intensity of the initial zeolites. These results are in line with previous investigations over
Cu-containing zeolites ZSM-5 and Y [46,47]. The Cu2+ cations interact with the framework oxygen
atoms more strongly than with oxygen atoms in water molecules. In other words, the positive charge
of Cu+ cations is more effectively balanced by the zeolite framework than by water molecules from the
coordination sphere.
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The presence of more than one Cu species can be also deduced from the EPR signals (Figure 8).
Upon hydration sphere removal, the isolated Cu2+ species migrate within the extra-framework
positions, therefore, the dehydrated samples are enriched in Cu species in comparison with the fresh,
hydrated material [45]. In particular, three different Cu sites (namely A, B and C) were identified
by the spectral simulations illustrated in Figure 9 (Table 4 for the spin Hamiltonian parameters).
The distribution of the sites is different for the four Cu-SSZ-13 samples (Table 5) and is given by the
weight with which the simulations were performed. The EPR parameters of A and B are very similar
to the ones found for the Cu-CHA zeolites in earlier studies [48,49]. They are usually associated with
Cu2+ ions strongly bound to the oxygen of the framework in six-membered ring (6MRs) sites with two
aluminum atoms that compensate the copper charge.
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field part of the experimental and simulated spectrum is reported on the bottom left of each spectrum.
The simulation is obtained by summing the spectra of three different Cu species (A in blue, B in green
and C in violet) with a proper weight.

Table 4. Spin Hamiltonian parameters and broadening values (lwpp) used for the simulations of Cu
species in the activated Cu-SSZ-13(1–4) samples.

Cu Site g⊥ g// A⊥/MHz A///MHz lwpp/mT

A 2.055 ± 0.003 2.347 ± 0.002 45 ± 8 459 ± 10 2.8 ± 0.3
B 2.058 ± 0.003 2.316 ± 0.004 38 ± 8 488 ± 7 2.8 ± 0.3
C 2.063 ± 0.003 2.252 ± 0.003 44 ± 5 490 ± 8 2.8 ± 0.3

Table 5. Percentage composition of the different Cu species used for the spectra simulations of the
activated Cu-SSZ-13(1–4) samples.*

Sample A/% B/% C/%

Cu-SSZ-13(1) 80 10 10
Cu-SSZ-13(2) 64 24 12
Cu-SSZ-13(3) 64 24 12
Cu-SSZ-13(4) 70 15 15

* An uncertainty of 2 % has been estimated during the spectral simulations.

Species A shows a higher g// component and a lower A// parameter with respect to B (2.347 and
459 MHz for A versus 2.316 and 488 MHz for B). This variation in the two spin Hamiltonian models
can be explained by considering essentially two factors: the coordination environment and the charge
at the Cu centers. A decrease of the parallel component of the g tensor and an increase of the A// could
be linked to a decrease of the coordination number and a change of the local geometry of the copper
ions [50]. However, also the formal charge experienced by the cupric ions plays a remarkable role on
the correlation between A// and g//: in particular, it was proven that an increase of the negative charge
or the delocalization of the charge on the Cu center corresponds to an increase in A// and a decrease in
g// [51]. Thus, the difference in the EPR values for sites A and B could be caused by different charges at
the Cu centers as well as the coordination number. Regarding the C species, their assignment is more
challenging: the g// value is too low in respect to the one possessed by the copper in 6MRs. Moreover,
these sites represent the 10%–15% of the total signal obtained from the simulations. Kwak et al. [12]
suggested that the 6MRs sites are preferred at low copper loading, whereas other sites, likely located
in the 8MRs can be populated only at high copper content. Since the four samples are characterized
by a high amount of Cu, the chance to have Cu ions also in other sites is not negligible. According
to literature reports [12] and the TPR analysis, we assigned the signal from C to cupric ions located
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in 8MRs. Finally, the difference among the four samples synthesized depends on the distribution of
the three species: in particular, Cu-SSZ-13(1) and Cu-SSZ-13(4) have a higher amount of A sites with
respect to the other two in which the amount of B species is slightly larger.

2.3. Catalytic SCR Studies

Figure 10 shows the comparison of NO conversion and N2O yield over the studied Cu-SSZ-13
catalysts. The activity (Figure 10a) is almost the same for all catalysts up to 350 ◦C, but there is a
large difference in activity of the catalyst above this temperature. The activity of the Cu-SSZ-13(1)
is higher than that of Cu-SSZ-13(2–4) at >350 ◦C. NO conversion decreased for Cu-SSZ-13(2–4) due
to side-reaction of NH3 oxidation. The amount of N2O formed did not exceed 55 ppm in the whole
studied temperature range. Similarly to the activity order, we observe the lowest yield of N2O for
Cu-SSZ-13(1). Turnover frequency (TOF, Table 3) was defined as the moles of NO molecules converted
over the individual Cu site per second in NH3-SCR. We assumed that each Cu atom (ICP-OES analysis)
acts as an active center. Clearly, we observed a decrease in TOF values form 0.55 × 103 s−1 for
Cu-SSZ-13(1) to 0.42–0.52 × 103 s−1 for Cu-SSZ-13(2–4) prepared with lower quantity of TMAdaOH.
Since the Cu content in all catalysts is almost the same and varied in the range of 4.4–5.2 wt. %,
while the highest activity is achieved by materials with the lowest copper loading (i.e., 4.4 wt. %),
we aimed to understand the nature of Cu species in Cu-SSZ-13 catalysts. TPR and EPR revealed more
Cu2+ located in the six-membered ring of Cu-SSZ-13(1) and less CuO species, which lead to its higher
operating temperature up to 450 ◦C compared to other materials. Furthermore, the Cu-SSZ-13(2–4)
catalysts show a high amount of CuO species. It is well known that these species are the copper active
species for NH3 oxidation at high temperature [52]. The accurate quantification of the content of Cu2+

located in different sites of the CHA structure is within the scope of such studies. The catalysts with
stronger Brønsted acid sites, i.e., isolated Al atoms, were found to exhibit high selectivity to nitrogen,
especially in the high temperature range. The ammonia chemisorbed on the Brønsted acid sites is
protected against oxidation and thus possesses ability to reduce the nitrogen oxides [53]. Together
these factors determine the higher activity of Cu-SSZ-13(1) and lower yield of N2O.
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Figure 10. (a) NO conversion and (b) N2O yield during SCR over the Cu-SSZ-13 catalysts (reaction 
conditions: 0.1 g of catalyst, 60 mL min−1, 500 ppm NO, 575 ppm NH3, 4 Vol. % O2 and He balance, 
GHSV = 60 000 h−1). 
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revealed that the cage-type zeolite catalysts (e.g., Cu-SSZ-13, Cu-SSZ-16, Cu-SSZ-17) showed superior 

Figure 10. (a) NO conversion and (b) N2O yield during SCR over the Cu-SSZ-13 catalysts (reaction
conditions: 0.1 g of catalyst, 60 mL min−1, 500 ppm NO, 575 ppm NH3, 4 Vol. % O2 and He balance,
GHSV = 60 000 h−1).

The comparative studies of NH3-SCR over Cu-containing zeolites with different topologies
revealed that the cage-type zeolite catalysts (e.g., Cu-SSZ-13, Cu-SSZ-16, Cu-SSZ-17) showed superior
SCR activity as compared to the straight-channel frameworks (e.g., Cu-ZSM-5, Cu-Beta, Cu-Y) and
hybrid types (e.g., Cu-ZSM-34, Cu-UZM-12) [54,55]. Thus, in Table 6, we compare the studied
Cu-SSZ-13 with those reported in the scientific literature (concerning only Cu-containing SSZ-13) in
terms of operation temperature for achieving > 80% of NO conversion. The formation on products
(N2, N2O and NO2) was also provided.
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Table 6. Comparison of the catalytic activity of Cu-SSZ-13 catalysts prepared with those reported in the literature.

Sample Reaction Conditions Operation Temperature for
Achieving > 80% NO Conversion Formation of By-Products Ref.

Cu-SSZ-13(1)
500 ppm NO, 575 ppm NH3, 4 Vol. %

O2 and balance He,
GHSV = 60,000 h−1

175–450 ◦C <6% N2O yield; <45 ppm N2O

This work
Cu-SSZ-13(2–4)
Ion-exchange;

4.4–5.3 wt. % of Cu
175–400 ◦C <10% N2O yield; <55 ppm N2O

Cu-SSZ-13
Ion-exchange;

2.9 wt. % of Cu

500 ppm NO, 500 ppm NH3, 10 Vol.-%
O2 and balance N2,
GHSV not provided

200–500 ◦C not shown [56]

Cu-SSZ-13
Ion-exchange;

2.2–2.8 wt. % of Cu

500 ppm NO, 500 ppm NH3, 5 Vol.-%
O2, 5 Vol. % H2O and balance N2,

GHSV = 400,000 h−1
225–525 ◦C <10 ppm N2O [57]

Cu-SSZ-13
Ion-exchange;

4.76 wt. % of Cu

1000 ppm NO, 1000 ppm NH3, 6 Vol. %
O2, 5 Vol. % H2O and balance He,

GHSV = 300,000 h−1
175–500 ◦C <3% N2O yield [54]

Cu-SSZ-13
Ion-exchange;

4.0–4.9 wt. % of Cu

500 ppm NO, 500 ppm NH3, 10 Vol. %
O2 and balance N2,
GHSV = 30,000 h−1

200–500 ◦C <25 ppm N2O [58]

Cu-SSZ-13
Ion-exchange;

3.97 wt. % of Cu

500 ppm NO, 500 ppm NH3, 10 Vol. %
O2 and balance N2,

GHSV = 100,000 h−1
175–450 ◦C >95% N2 selectivity [59]

Cu-SSZ-13
Ion-exchange;

3.97 wt. % of Cu

300 ppm NO, 300 ppm NH3, 5 Vol. %
O2, 3 Vol. % H2O and balance N2,

GHSV not shown
200–550 ◦C not shown [60]

Cu-SSZ-13
Ion-exchange;

1.00–1.17 wt. % of Cu

500 ppm NO, 500 ppm NH3, 10 Vol. %
O2, 3 Vol. % H2O and balance N2,

GHSV = 40,000 h−1
250–550 ◦C <6 ppm N2O [17]

Cu-SSZ-13
Ion-exchange;

1.45–1.62 wt. % of Cu

350 ppm NO, 350 ppm NH3, 14 Vol. %
O2, 2.5 Vol. % H2O and balance N2,

GHSV = 200,000 h−1
200–500 ◦C not shown [19]
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Table 6. Cont.

Sample Reaction Conditions Operation Temperature for
Achieving > 80% NO Conversion Formation of By-Products Ref.

Cu-SSZ-13
Hydrothermal

synthesis;
2.5 wt. % of Cu

500 ppm NO, 500 ppm NH3, 5 Vol. %
O2 and balance Ar,

GHSV = 180,000 h−1
200–600 ◦C not shown [36]

Cu-SSZ-13
One-pot synthesis;

3.8 wt. % of Cu

500 ppm NO, 500 ppm NH3, 5 Vol. %
O2 and balance N2,

GHSV = 200,000 h−1
175–550 ◦C >90% N2 selectivity [13]

Cu-SSZ-13
Ion-exchange;

3.1 wt. % of Cu
monolith, aged

400 ppm NO, 500 ppm NH3, 8 Vol. %
O2, 5 Vol. % H2O and balance Ar,

GHSV = 30,300 h−1
200–600 ◦C <10 ppm N2O [30]

Cu-SSZ-13
Ion-exchange;

Content of copper not
shown

350 ppm NO, 350 ppm NH3, 14 Vol. %
O2, 2 Vol. % H2O and balance N2,

GHSV = 30,000 h−1
200–550 ◦C <30 ppm NO2

<30 ppm N2O [55]

Cu-SSZ-13
Ion-exchange;

1.2 wt. % of Cu

1000 ppm NO, 1000 ppm NH3, 10 Vol.
% O2, 5 Vol. % H2O and balance N2,

GHSV = 200,000 h−1
300–550 ◦C <10 ppm N2O [61]
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It can be found that the NO conversion achieved in the low temperature range (175–200 ◦C) in our
catalysts is similar to the one reported for Cu-SSZ-13 prepared by ion-exchange [59] as well as one-pot
synthesized Cu-SSZ-13 [13]. However, in our case, the operation temperature range is narrower
(450 for our materials versus 550 ◦C reported in [13]). In addition, other listed examples showed more
than 80% NO conversion up to 600 ◦C (even in the presence of H2O) [30,61]. Prodinger et al. [19]
focused (among others) on the effect of the particle size of the Cu-SSZ-13 in NH3-SCR. In their studies,
below 400 ◦C, all catalysts revealed a similar activity. Above 400 ◦C, the activity decreased due to
competitive ammonia oxidation. Interestingly, the material with a higher particle size (mean particle
diameter of 1.3 µm, 1.47 wt. % of Cu) revealed a slightly lower activity for NH3 oxidation than other
catalysts (average particle sizes of 260 and 450 nm, 1.45–1.62 wt. % of Cu). A similar trend was
observed in our studies.

Since our Cu-SSZ-13(2–4) catalysts exhibited a high activity for NH3 oxidation at high temperature
due to the presence of CuO species, our next goal will be the application of selected materials in the
selective catalytic ammonia oxidation into nitrogen and water vapor (NH3-SCO). This statement can by
supported by the investigations of Guo et al. [62] and Yu et al. [63], who reported that NH3 is oxidized
to NOx by surface CuO, and subsequently, NOx are reduced to N2 and H2O by unreacted NH3 on
isolated Cu2+ sites of Cu/SSZ-13 and Cu/SAPO-34, respectively.

3. Materials and Methods

3.1. Catalyst Preparation

Chabazite-type zeolite samples (CHA) have been prepared using commercial FAU-type zeolite
material CBV760 (Zeolyst, Delfzijl, The Netherlands), sodium hydroxide (NaOH, pellets, 97 wt. %,
Acros organics, Geel, Belgium), N,N,N-trimethyl-1-adamantammonium hydroxide (TMAdaOH, 20 wt.
% solution, Sachem, Austin, TA, USA) and doubly distilled water. The needed amounts of the chemicals
were mixed in order to prepare the synthesis mixtures of molar oxide compositions presented in
Table 1. Briefly, for the synthesis of SSZ-13(1) 0.168 g of NaOH was dissolved in 0.975 g of water
followed by the addition of 4.349 g TMAdaOH and 1 g of zeolite Y. The mixtures were transferred into
polyterafluoroethene (PTFE)-lined autoclaves and subjected to hydrothermal treatment at 150 ◦C for a
period of time from 5 to 10 days. The final product was recovered by filtration and washed repeatedly
until the pH value of the supernatant had reached 7. The obtained solid has been calcined at 550 ◦C for
4 h and was subsequently subjected to three consecutive ion-exchanges with 0.5 M aqueous solution of
ammonium nitrate (VWR, Leuven, Belgium) at 80 ◦C for 1 h. The protonic zeolite forms were obtained
by calcining the ammonium-exchanged CHA-type materials at 550 ◦C for 4 h in static air. Further,
the samples were ion-exchanged with 0.05 M aqueous solution of copper(II) acetate (Alfa Aesar, Kandel,
Germany) at room temperature for 24 h. Finally, the materials were calcined at 550 ◦C for 4 h.

3.2. Catalyst Characterization

The chabazite materials were characterized by powder X-ray diffraction (XRD diffractometer,
Panalytical Aeris Research Edition, Malvern, UK) using Cu Kα radiation (λ = 0.15418 nm) in the 2θ
range from 5◦ to 50◦ with a step size of 0.02◦. The Cu-exchanged chabazite materials were characterized
by powder X-ray diffraction (XRD diffractometer, HUBER G670, Rimsting, Germany) using Cu Kα

radiation (λ = 0.15418 nm) in the 2θ range from 5◦ to 80◦ with a step size of 0.05◦.
The morphology of the samples was observed with a scanning electron microscope (SEM) LEO

Gemini 1530 SEM from Zeiss (Oberkochen, Germany) using an acceleration voltage of 10 kV and
a working distance of 10 mm. SEM-EDX experiments were performed at 20 kV. The metal loading
of the samples was determined by an elemental analysis via optical emission spectrometry with
inductively coupled plasma (ICP-OES, Optima 8000, Perkin Elmer, Rodgau, Germany). The samples
(ca. 20 mg) were dissolved in a mixture of 2 cm3 HF (47–51 wt. %, NORMATOM®, Leuven,
Belgium), 3 cm3 of HNO3 (69 wt. %, ROTIPURAN® Supra, Karlsruhe, Germany) and 3 cm3 of HCl
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(35 wt. %, ROTIPURAN® Supra, Karlsruhe, Germany) in a sealed PTFE vessel at 1100 W for 60 min
in in a microwave oven (Multiwave 3000 Anton Paar). The local aluminum environment in the
Cu-CHA samples was investigated through solid-state NMR spectroscopy using a Bruker Avance
750 spectrometer (magnetic field 17.6 T, Rheinstetten, Germany) at a frequency of 195.06 MHz for 27Al.
The 27Al experiments were recorded at a spinning frequency of 12 kHz and a recycle delay of 0.1 s.
A 1-µs pulse was used that corresponds to about a 30◦ pulse angle.

Textural properties of the H-CHA samples were determined from the N2-sorption at −196 ◦C.
The experiments were performed using an ASAP 2010 from Micromeritics (Norcross, GA, USA).
The total pore volume was taken from the point p p0

−1 = 0.995. The specific surface area was calculated
using the Brunauer–Emmett–Teller (BET) method and the pore width distribution was obtained using
the Barret–Joyner–Halenda (BJH) method.

The acid properties (nature, concentration and strength of acid sites) of the catalysts were studied
by FT-IR spectroscopy. Prior to measurements, all samples were pressed into self-supporting wafers
(ca. 5 mg−1 cm2) and in situ thermally treated in a home-made quartz IR cell at 550 ◦C under high
vacuum (p = 10−5 bar) for 1 h. As ammonia is the substrate molecules in NH3-SCR, the acidic feature
assessment was done in quantitative IR experiments with the use of ammonia as a probe molecule.
The measurements were realized by saturation of all acid sites in the catalysts with ammonia (POCh,
Gliwice, Poland) at −130 ◦C. Subsequently, physisorbed ammonia molecules were removed by 20 min
evacuation. The concentrations of both Brønsted and Lewis acid sites were calculated from the
maximum intensities of the NH4

+ and NH3-L bands and corresponding values of the absorption
coefficients [19]. Additionally, the redox copper sites speciation was assessed in quantitative IR studies
of CO sorption. The sorption of CO (Linde Gas, Kraków, Poland, 99.5 Vol. %) was performed on
the vacuum pre-treated samples (550 ◦C, 1 h, p = 10−5 bar). Spectra were recorded with a Bruker
Tensor 27 spectrometer (Karlsruhe, Germany) equipped with an MCT detector. The spectral resolution
was 2 cm−1.

The species and aggregation state of Cu-exchanged chabazite materials were studied by diffuse
reflectance UV-Vis (DR UV-Vis) spectroscopy at room temperature on a Perkin Elmer Lambda 650 S
instrument (Rodgau, Germany) equipped with a 150 mm integrating sphere using spectralon® (PTFE,
reflective value 99%, Rodgau, Germany) as a reference.

The reducibility of the Cu-exchanged materials was investigated using temperature-programmed
reduction (TPR) with H2. The TPR-H2 experiments were carried out on an AMI-100 apparatus,
manufactured by Altamira Instruments (Pittsburgh, PA, USA). Prior to reduction, approximately 25 mg
of the sample was oxidized in flowing synthetic air (30 cm3 min−1). Then the sample was reduced with
5 Vol. % H2 diluted in an argon stream in the temperature range between 313 and 923 K and a heating
ramp of 5 K min−1. Thermal conductivity detector (TCD) was used to measure the H2 consumption.
For every experiment, a pulse calibration of the TCD was performed.

The concentration, structure and coordination environment of isolated Cu2+ ions were investigated
using electron paramagnetic resonance spectroscopy (EPR). The EPR spectra were recorded at room
temperature with a Bruker EMXmicro X-band spectrometer (Rheinstetten, Germany). The modulation
amplitude and the microwave power were kept at 10 G and 2 mW, respectively. The spectra were
simulated by using the Easyspin software (version 6.0.0-dev.20) [64]. An axial spin Hamiltonian model
was used for the simulation of each spectrum with a Voigtian line shape and an equal line width for all
the species. The EPR spectra were recorded at room temperature for all Cu-SSZ-13 samples also in
their dehydrated form.

The dehydrated samples were obtained by placing about 3–20 mg of Cu-SSZ-13 into a 4-mm EPR
quartz tube sealed to a vacuum valve which was connected to a vacuum line and dehydrated under
dynamic vacuum at 400 ◦C for 2 h, reaching a final pressure of 10−3 mbar.
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3.3. Catalyst Experiments

The catalytic experiments were carried out in a fixed-bed quartz tube reactor (inner diameter:
6 mm, length: 200 mm). For catalytic experiments, a particle size fraction in the range of 0.200–0.400 mm
was used. Prior to each experiment, the catalysts (100 mg) were outgassed at 350 ◦C for 1.5 h under
50 mL min−1 of He and then cooled down to 50 ◦C. After that, the simulated flue gas, with a total
flow rate of 60 mL min−1 composed of 500 ppm NO, 575 ppm NH3 and 4 Vol. % O2 and balance
He, was switched on to pass through the catalyst bed. The gas hourly space velocity (GHSV) was
~ 60,000 h−1. The reaction was carried out at atmospheric pressure and in a range of temperatures
from 50 ◦C to 450 ◦C with an interval of 25–50 ◦C. At each temperature, a steady state was reached
within 70 min before quantification of NO and N2O concentration. The gas leaving the reactor was
washed in a gas-washing bottle filled with concentrated phosphoric acid. A NOx-converter was used
to reduce NO2 to NO, in order to measure the total concentration of NOx. An analysis of the NO
and N2O was performed using a non-dispersive infrared sensor (NDIR) URAS 10E (Fa. Hartmann
and Braun, Frankfurt a. M., Germany). The conversion of NO (X(NO)) was determined according to
X(NO) = ((c(NO)in − c(NO)out)/c(NO)in) × 100%, where: c(NO)in and c(NO)out are the concentration
of NO in the inlet gas and the concentration of NO in the outlet gas, respectively. The yield of N2O
(Y(N2O)) was calculated based on the following equation: Y(N2O) = (2 × c(N2O)/(c(NO)in + c(NH3)in))
× 100%, where: c(N2O), c(NO)in, c(NH3)in are concentration of N2O in the outlet gas, concentration of
NO and NH3 in the inlet gas, respectively. The experimental uncertainty of the calculated conversion
was ± 2%, as indicated by repeated measurements of identical catalysts.

The turnover frequency (TOF) values for NH3-SCR were calculated by the following equation:
TOF (s−1) = (c(NO) × X(NO) × F)/(m/mW), where c(NO), X(NO) and F are concentration of NO
(mol ml−1), NO conversion (%), volumetric flow rate (ml s−1), respectively. Moreover, m and mW are
the copper loading (g) on the catalyst and the molecular weight (63.54 g mol−1) of copper, respectively.

4. Conclusions

SSZ-13 samples with TMAdaOH were successfully synthesized and applied as Cu-exchanged
SSZ-13 to study their activity in NH3-SCR. The synthesis of nanosized SSZ-13 (ca. 216–288 nm) was
attained even with reduced TMAdaOH content. The benefit of decreasing the size of zeolite crystals
is in our studies larger external surface area. The size of the crystals affects also the efficiency of the
ion-exchange process, i.e., the quantity of the initial cations, which are exchanged with copper cations
since the surface area available for direct contact with the solution depends on the size. Thus, the content
of introduced Cu in all of the studied materials ranges from 4.4 to 5.2 wt. %. We vary the NaOH content
in the the synthesis mixtures with the purpose to potentially have different Cu-exchange capacity
together with different distribution of Cu species. All Cu-SSZ-13 materials exhibit the characteristic
CHA structure, and Cu species are classified to unstable Cu2+ cations inside the large cages of the
CHA framework, CuO species and stable Cu2+ in the six-membered rings. Since Cu2+ cations located
in the six-membered ring of the CHA framework are the active sites of catalyst, more Cu2+ in the
six-membered ring of Cu-SSZ-13(1) and less CuO species lead to its higher activity in NH3-SCR
compared to other materials. Cu-SSZ-13(2–4), which possess higher amount of CuO species is, thus,
considered as the efficient catalyst of the selective ammonia oxidation into nitrogen and water vapor
(NH3-SCO) in the following studies.
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