					(H_2/CO_2)	C	onditio	ns		Reductio	on cond	ition	S		Х	Y	
No.	Cat.	W	Synthesis method	Reactor type	[Dilu./ (Agent)]	р	т	Temp. range	(F/W)	Stream	т	Time	(%	5)	(%)	(%)	Ref.
		(gr)			(%)	(MPa)	(°C)	(°C)	(L/kg.h)		(°C)	(hr)	CH₃OH	CO	CO ₂	CH₃OH	
1	CuO/ZnO/Al ₂ O ₃ (47/47/6 wt%)	1.8 (cm³)	Co-precipitation (Hydrolysis)	Flow reactor	3 [-]	1.3	240	160 - 280	3600*	H_2	300	6.0	57.9	42	48.3	28	[1]
2	CuO/ZnO (47/53 wt%)	1.8 (cm ³)	Co-precipitation	Flow reactor	3 [-]	1.3	240	160 - 280	3600*	H ₂	300	6.0	38.9	56.5	31.6	12.3	[1]
З	CuO/ZnO (50/40 wt%)	0.3	Co-precipitation	Fixed-bed	3 [-]	11	300	250 - 400	6500	H ₂	300	18	92.1	-	31.7	29.2	[2],[3],[4]
4	CuO/ ZnO/MgO (50/40/10 wt %)	0.3	Co-precipitation	Fixed-bed	3 [-]	11	300	250 - 400	6500	H ₂	300	18	99.9	-	23.1	23.1	[2],[3],[4]
5	CuO/ ZnO/La ₂ O ₃ (50/40/10 wt %)	0.3	Co-precipitation	Fixed-bed	3 [-]	11	300	250 - 400	6500	H ₂	300	18	99.9	-	29.5	29.5	[2],[3],[4]
6	CuO/ ZnO/ThO ₂ (50/40/10 wt %)	0.3	Co-precipitation	Fixed-bed	3 [-]	11	300	250 - 400	6500	H ₂	300	18	99.7	-	29.6	29.5	[2],[3],[4]
7	CuO/ ZnO/Nd ₂ O ₃ (50/40/10 wt%)	0.3	Co-precipitation	Fixed-bed	3 [-]	11	300	250 - 400	6500	H ₂	300	18	99	-	32.5	32.2	[2],[3],[4]
8	CuO/ ZnO/Y ₂ O ₃ (50/40/10 wt%)	0.3	Co-precipitation	Fixed-bed	3 [-]	11	300	250 - 400	6500	H ₂	300	18	98.5	-	31.5	31.0	[2],[3],[4]
9	CuO/ ZnO/In ₂ O ₃ (50/40/10 wt%)	0.3	Co-precipitation	Fixed-bed	3 [-]	11	300	250 - 400	6500	H ₂	300	18	91	-	39	35.5	[2],[3],[4]
10	CuO/ZnO (49/51 wt%)	0.7	Deposition— precipitation	Fixed-bed	4 [-]	5.0	240	220 - 280	17100	CO ₂ + H ₂	240	3.0	63	-	7.0	4.4	[2],[3],[5]
11	CuO/ZnO (40 Cu/60 ZnO wt%)	1.0	Co-precipitation	Fixed-bed	3 [-]	5.0	250	240 - 300	-	H ₂	450	5.0	-	-	-	7.5	[6]
12	CuO/ZnO (5.6 Cu/ 94.4 ZnO wt%)	0.5	Decomposition- Impregnation	Fixed-bed	3 [-]	2.0	270	250 - 270	18000	H ₂	300	6.0	100	-	2.2	2.2	[7],[8]
13	CuO/ZnO (Cu= 15 wt%)	0.5	Decomposition & Impregnation	Fixed-bed	9 [-]	0.7	225	160 - 225	2000	H ₂	250	3.0	60	-	4.0	2.4	[9],[10]
14	CuO/ZnO (50/50 wt%)	1.0	Co-precipitation	Fixed-bed	3 [-]	5.0	250	220 - 280	18000	10% H₂/He	250	-	42.1	57.9	-	8.0	[11],[12]
15	CuO/ZnO (42.9 Cu/26.6 Zn wt%)	1 .0 (cm ³)	Co-precipitation	Fixed-bed	3 [-]	5.0	270	210 - 270	4000*	5% H ₂ /N ₂	260	6.0	40.12	57.74	20.47	8.2	[13],[14],[15]
16	CuO/ZnO (atomic ratio: Cu/Zn= 2/1)	0.3	Ammonia hydrothermal process	Fixed-bed	3 [-]	3.0	240	220 - 280	0.54**	H ₂	270	1.0	78.2		16.5	12.9	[16]
17	Cu/Zn	0.2	Commercial (Süd- Chemie AG)	Membrane reactor (MR)	3 [-]	4.3	200	200	5000*	-	-	-	-	-	-	2.3	[17]

18	Cu/Zn	0.2	Commercial (Süd- Chemie AG)	Fixed bed	3 [-]	4.3	200	200	5000*	-	-	-	-	-	-	2.5	[17]
19	Cu/Zn	5.0	Commercial	Fixed-bed	2 [-]	2.1	280	270 - 350	0.2**	H ₂	300	3.0	19.3	80	15.1	2.9	[2],[18]
20	CuO/ZnO/ Al ₂ O ₃ (50/40/10 wt %)	0.3	Co-precipitation	Fixed-bed	3 [-]	11	300	250 - 400	6500	H ₂	300	18	93.9	-	27.9	26.2	[2],[3],[4]
21	CuO/ZnO/Al ₂ O ₃ (CuO/ZnO= 2 molar ratio)	1.0 (cm ³)	Co-precipitation	Microreactor	4.5 [(6% CO)]	4.0	230	200 - 250	6000*	H ₂	170, 250	-	-	-	-	22-24	[11],[19]
22	CuO/ZnO/Al ₂ O ₃ (60 Cu/30 Zn/10 Al mol%)	3.0	Oxalate-gel Co- precipitation	Autoclave semi-batch reactor	2.8 [2.75% Ar]	5.0	170	170 - 300	400	5% H₂/Ar	220	10	72.9	27.1	25.9	18.9	[20],[21],[22]
23	CuO/ZnO/Al ₂ O ₃ (Citric acid/ salt molar ratio = 1.25)	2.0	Direct combustion method	Fixed-bed	3 [-]	3.0	240	210 - 290	3600*	H ₂	270	1.0	63.8	-	16.2	10.3	[9],[23]
24	CuO/ZnO/Al₂O₃ (45 Cu/45 Zn/10 Al wt%)	0.5 (cm ³)	Gel-network- coprecipitation	Fixed-bed	3 [-]	2.0	240	180 - 300	3600*	5% H₂/Ar	240	10	31.3	-	20.1	6.3	[24], [25]
25	CuO/ZnO/Al ₂ O ₃	8.0	Commercial (MK- 101, Haldor Topsoe)	Membrane reactor (MR)	3 [-]	2.0	206	180 - 280	6000*	6.4% H ₂ /N ₂	250	24	75	-	11.6	8.7	[24], [26]
26	CuO/ZnO/Al ₂ O ₃	8.0	Commercial (MK- 101, Haldor Topsoe)	Fixed bed reactor	3 [-]	20	210	180 - 280	6000*	6.4% H ₂ /N ₂	250	24	48	-	5	2.4	[24], [26]
27	CuO/ZnO/Al ₂ O ₃ (mass ratio: 1/1/6)	0.5	Impregnation	Fixed-bed	3 [11% N ₂]	5.0	270	250 - 270	3600*	10% H ₂ /N ₂	290	3.0	55.3	-	14	7.7	[27]
28	CuO/ZnO/Al ₂ O ₃ /Cr ₂ O ₃ (43/20/34/3 wt%)	1.0	Co-precipitation	Fixed-bed	3 [10% Ar]	3.0	190	190 - 280	12000	H ₂	250	0.5	83.3	16.7	4.6	3.8	[2],[28]
29	CuO/ZnO/Al ₂ O ₃ /Cr ₂ O ₃ (43/20/34/3 wt%)	1.0	Co-precipitation	Fixed-bed	3 [10% Ar]	7.0	250	190 - 280	1800*	H ₂	250	0.5	78.9	20.5	-	19.9	[11],[28]
30	CuO/ZnO/Al ₂ O ₃ (42/47/11 wt%)	0.2 - 0.5	coprecipitating metals on alumina	Flow reactor	5 [-]	0.1	190	190 - 280	5400	20% H ₂ /N ₂	280	-	18.7	81.3	-	0.4	[11],[29]
31	CuO/ZnO/Al ₂ O ₃ (50/45/5 wt%)	1.0	Co-precipitation	Fixed-bed	3 [-]	5.0	250	220 - 280	18000	10% H₂/He	250	-	52.3	47.7	-	11.2	[11],[12]
32	CuO/ZnO/Al ₂ O ₃ (50 Cu/25 Zn/25 Al mol%)	0.5	Co-precipitation	Fixed-bed	3	5.0	250	230 - 270	12000	H ₂	300	8.0	39.7	59.7	19.7	7.8	[2],[30]
33	CuO/ZnO/Al ₂ O ₃	0.5	Commercial (Süd- Chemie AG)	Microrector	3 [10% N ₂]	3.0	240	180 - 250	4400	H ₂	300	1.0	48.4	-	15.9	7.7	[7],[31]
34	CuO/ZnO/Al₂O₃ (45 Cu/45 Zn/10 Al mol%)	0.5 (cm ³)	Oxalate gel Co- precipitation	Fixed-bed	3 [-]	2.0	240	180 - 300	3600*	5% H ₂ /Ar	240	10	36.3	63.7	19.3	7.0	[2],[32]

35	CuO/ZnO/Al ₂ O ₃	-	Commercial (Süd- Chemie AG)	Fixed-bed	3 [4% Ar]	4.1	250	250	0.16**	H ₂	300	2.0	36	64	17	6.1	[33]
36	Cu/ZnO/Al ₂ O ₃ (37.5/41/21.5 wt%)	0.135	Co-precipitation	Fixed-bed	3.9 [12.4% N ₂]	5.0	240	200 - 240	7800*	H ₂	280	12.0	36	64	17.2	6.1	[34]
37	Cu/ZnO/Al ₂ O ₃ (60 Cu/30 Zn/10 Al mol%)	0.5 (cm ³)	Complexes decomposition	Fixed-bed	3 [1% N ₂]	3.0	240	200 - 260	12000*	5% H ₂ /N ₂	302	6.0	42.5	-	12	5.1	[35]
38	CuO/ZnO/Al ₂ O ₃ (49/36/15 wt%)	0.5	Convential co- precipitation	Fixed-bed	4 [-]	3.0	250	180 - 320	6000	H_2	250	3.5	50	-	5.05	2.5	[36]
39	CuO/ ZnO/Al ₂ O ₃ (9.51 Cu/ 4.70 Zn wt%, mole ratio: Cu/Zn= 2.07)	-	Hydrothermal	Microreactor	3 [3% N ₂]	5.0	250	220 - 260	10000	10% H ₂ /N ₂	250	5.0	77.9	22	19.7	15.3	[37]
40	CuO/ ZnO/Al₂O₃ (50.6 Cu/ 22 Zn/3.5 Al wt%)	1.0	Co-precipitation	Fixed-bed	3 [-]	3.0	250	220 - 350	2730*	H_2	350	4.0	-	-	10.1	7.9	[38]
41	CuO/ZnO/ γ-Al ₂ O ₃	0.7	Ammonia deposition- precipitation	Fixed-bed	3 [3% N ₂]	4.0	240	220 - 240	1500	H ₂	240	6.0	56.5	43.5	18.3	10.3	[39]
42	CuO/ZnO/ γ-Al ₂ O ₃ (30 CuO/30 ZnO/40 Al ₂ O ₃ wt%)	0.5	precipitation	Fixed-bed	3 [-]	5.0	280	280	36000	30% H ₂ /N ₂	400	2.0	31.5	-	3.1	1	[40]
43	CuO/ZnO/Al ₂ O ₃ /ZrO ₂	1.0	Co-precipitation	Fixed-bed flow reactor	3 [-]	5.0	250	250	18000	10% H₂/He	250	-	-	-	-	11.9	[11],[41]
44	CuO/ZnO/Al ₂ O ₃ /ZrO ₂ (2 Cu/1 Zn/1.2 Al/0.1 Zr atomic ratio)	1.5 (cm ³)	Co-precipitation	Fixed-bed	3 [3% N ₂]	5.0	190	190	4000*	H ₂	280	6.0	81.8	18.2	10.7	8.8	[42]
45	CuO/ZnO/ZrO ₂ /Al ₂ O ₃ (50 Cu/25 Zn/18.75 Zr/6.25 Al mol %)	1.0	Co-precipitation	Fixed-bed	4 [-% He]	3.0	250	250	-	10% H ₂ /N ₂	430	3.0	66.4	-	15.4	10.2	[43]
46	CuO/ZnO/Al ₂ O ₃ /ZrO ₂ (2 Cu/1 Zn/1.2 Al/0.9Zr molar ratio)	1.5	Co-precipitation & spray drying	Fixed-bed	3 [3% N ₂]	5.0	250	250	4000	H ₂	300	8.0	61.5	38.5	25.9	15.9	[44]
47	CuO/ZnO/Al ₂ O ₃ /ZrO ₂ (2 Cu/1 Zn/1.2 Al/0.9Zr molar ratio & 10 wt% alumina sol)	15	Co-precipitation & spray drying	Slurry phase continuous stirred reactor	3 [3% N ₂]	3	220	220	2000	H ₂	300	8.0	61.7	38.2	13.6	8.4	[44]
48	CuO/ZnO/Al ₂ O ₃ /ZrO ₂ (60 Cu/30 Zn/5 Al/5 Zr moL%)	-	Co-precipitation	Fixed-bed	3 [-]	4.0	240	200 - 280	9742*	5% H ₂ /N ₂	240	10	47.2	52.76	18.79	8.9	[20],[21],[45]
49	CuO/ZnO/Al ₂ O ₃ /ZrO ₂ (Cu/Zn/Al/Zr: 50/25/17.5/7.5 mol %)	1.5 (cm ³)	Co-precipitation	Fixed-bed	3 [-]	5.0	250	230 - 270	4000*	H ₂	330	8.0	47.40	52.6	22.5	10.6	[46],[47]

$CuO/ZnO/Al_2O_3/ZrO_2$ ($Cu^{2+}/Zn^{2+}/Al^{3+}/Zr^{4+}$: atomic ratio= 6/3/0.5/0.5)	1.0	Liquid reduction	Fixed-bed	3 [-]	5.0	270	230 - 270	4600*	H ₂	230	4.0	57.6	42.4	24.5	14.1	[48]
CuO/ZnO/Al ₂ O ₃ /ZrO ₂ (Cu= 54.62 wt%)	1.5 (cm ³)	Co-precipitation	Fixed-bed	3 [-]	5.0	250	230 - 290	4000*	H ₂	350	8.0	55	44.4	23.9	13.1	[49]
CuO/ZnO/Al ₂ O ₃ /ZrO ₂ (molar ratio: 2/1/1.2/0.1)	1.5 (cm³)	Co-precipitation	Fixed-bed	3 [3% N ₂]	5.0	250	170 - 310	4000*	H ₂	350	6.0	61.3	38.2	25.6	15.7	[2],[50]
CuO/ZnO/Al ₂ O ₃ /ZrO ₂ (50 Cu/25 Zn/22.5 Al/2.5 Zr mol%)	0.5	Co-precipitation	Fixed-bed	3 [-]	5.0	250	230 - 270	12000	H ₂	300	8.0	48	51.5	24.7	11.9	[2],[30]
CuO/ ZnO/ Al ₂ O ₃ /TiO ₂ /SiO ₂ (49/39.2/9.8/1/1 wt%)	1.0	Co-precipitation	Fixed-bed	3 [-]	2.6	260	260	3600*	10% H ₂ /N ₂	270	2.0	41.17	-	40.7	16.7	[1],[51]
CuO/ZnO/ZrO ₂ /Al ₂ O ₃ /reduced graphene oxide (8/6/3/3/80 wt%)	0.8	Co-precipitation	Fixed-bed	3 [-]	2.0	240	200 - 280	6075*	10% H ₂ /N ₂	250	2.0	-	-	14.7	11.6	[52]
CuO/ZnO/ZrO ₂ /Al ₂ O ₃ (Cu/ZnO/ZrO2/Al2O3= 40/30/15/15 wt%)	1.0	Conventional co- precipitation	Fixed-bed	3 [-]	3.0	230	180 - 250	0.1**	5% H ₂ /N ₂	250	4.0	60.3	-	23.2	14	[53]
CuO-ZnO-ZrO ₂ -MgO/Al ₂ O ₃ (2 Cu/1 Zn/0.9 Zr/0.1 Mg molar ratio & Cu/Al ₂ O ₃ =10 wt%)	5.0	Impregnation	Fixed-bed	3 [-]	2.0	250	230- 310	1400*	H ₂	350	6.0	36.0	61.61	12.12	4.36	[54]
CuO/ZnO/Al ₂ O ₃ -(CHT-F) (41.34 Cu/21.09 Zn/8.14 Al/0.7 F wt%)	1.5 (cm³)	Co-precipitation	Fixed-bed	3 [-]	5.0	270	230 - 270	4000*	H ₂	330	8.0	43.7	56.3	23.7	10.3	[55]
Fluorine-modified $CuO/ZnO/Al_2O_3/ZrO_2$ [atomic ratio: $Cu^{2+}/Zn^{2+}/(Al^{3+}+Zr^{4+})=2/1/1$]	1.5 (cm³)	Co-precipitation	Fixed-bed	3 [-]	5.0	250	200 - 300	4000*	H ₂	330	8.0	53.5	-	21.1	11.3	[56]
CuO/ZnO/Al ₂ O ₃ /MnO ₂ (50 Cu/25 Zn/22.5 Al/2.5 Mn mol%)	0.5	Co-precipitation	Fixed-bed	3 [-]	5.0	250	230 - 270	12000	H ₂	300	8.0	43	56.5	22.3	9.6	[2],[30]
CuO/ZnO/Al ₂ O ₃ /La ₂ O ₃ (50 Cu/25 Zn/22.5 Al/2.5 La mol%)	0.5	Co-precipitation	Fixed-bed	3 [-]	5.0	250	230 - 270	12000	H ₂	300	8.0	43.8	55.7	23.3	10.2	[2],[30]
CuO/ZnO/Al ₂ O ₃ /CeO ₂ (50 Cu/25 Zn/22.5 Al/2.5 Ce mol%)	0.5	Co-precipitation	Fixed-bed	3 [-]	5.0	250	230 - 270	12000	H ₂	300	8.0	45.9	53.6	23.6	10.8	[2],[30]
CuO/ZnO/Al ₂ O ₃ /Y ₂ O ₃ (50 Cu/25 Zn/22.5 Al/2.5 Y mol%)	0.5	Co-precipitation	Fixed-bed	3 [-]	5.0	250	230 - 270	12000	H ₂	300	8.0	47.1	52.4	26.9	12.7	[2],[30]
	$\begin{array}{c} {\rm CuO/ZnO/Al_2O_3/ZrO_2} \\ ({\rm Cu}^{2+}/{\rm Zn}^{2+}/{\rm Al}^{3+}/{\rm Zr}^{4+}: {\rm atomic} \\ {\rm ratio} = 6/3/0.5/0.5) \\ {\rm CuO/ZnO/Al_2O_3/ZrO_2} \\ ({\rm Cu} = 54.62~{\rm wt}\%) \\ {\rm CuO/ZnO/Al_2O_3/ZrO_2} \\ ({\rm molar~ratio}: 2/1/1.2/0.1) \\ {\rm CuO/ZnO/Al_2O_3/ZrO_2} \\ (50~{\rm Cu}/25~{\rm Zn}/22.5~{\rm Al}/2.5~{\rm Zr} \\ {\rm mol}\%) \\ {\rm CuO/ZnO/Al_2O_3/TiO_2/SiO_2} \\ (49/39.2/9.8/1/1~{\rm wt}\%) \\ {\rm CuO/ZnO/ZrO_2/Al_2O_3} \\ ({\rm reduced~graphene~oxide} \\ (8/6/3/3/80~{\rm wt}\%) \\ {\rm CuO/ZnO/ZrO_2/Al_2O_3} \\ ({\rm Cu}/{\rm ZnO}/{\rm ZrO_2/Al_2O_3} \\ ({\rm Cu}/{\rm ZnO}/{\rm ZrO_2/Al_2O_3} \\ ({\rm Cu}/{\rm ZnO}/{\rm ZrO_2/Al_2O_3} \\ ({\rm Cu}/{\rm ZnO}/{\rm ZrO_2/{\rm Al_2O_3}} \\ ({\rm Cu}/{\rm ZnO}/{\rm ZrO_2/{\rm Al_2O_3}} \\ ({\rm Cu}/{\rm ZnO}/{\rm ZrO_2/{\rm Al_2O_3}} \\ ({\rm CuO}/{\rm ZnO}/{\rm ZrO_2/{\rm Al_2O_3}} \\ ({\rm CuO}/{\rm ZnO}/{\rm Al_2O_3-({\rm CHT-F})} \\ ({\rm 41.34~{\rm Cu}/21.09~{\rm Zn}/8.14} \\ {\rm Al}/0.7~{\rm F~wt}\%) \\ \\ {\rm Fluorine-modified} \\ {\rm CuO/{\rm ZnO}/{\rm Al_2O_3/{\rm ZrO_2}} \\ [{\rm atomic~ratio}: \\ {\rm Cu}^{2+}/{\rm Zn}^{2+}/({\rm Al}^{3+}+{\rm Zr}^{4+}) = 2/1/1] \\ {\rm CuO/{\rm ZnO}/{\rm Al_2O_3}/{\rm MnO_2} \\ ({\rm 50~{\rm Cu}/25~{\rm Zn}/22.5~{\rm Al}/2.5~{\rm Mn} \\ {\rm mol}\%) \\ \\ {\rm CuO/{\rm ZnO}/{\rm Al_2O_3/{\rm La_2O_3} \\ ({\rm 50~{\rm Cu}/25~{\rm Zn}/22.5~{\rm Al}/2.5~{\rm La} \\ {\rm mol}\%) \\ \\ \\ {\rm CuO/{\rm ZnO}/{\rm Al_2O_3/{\rm Y_2O_3} \\ ({\rm 50~{\rm Cu}/25~{\rm Zn}/22.5~{\rm Al}/2.5~{\rm La} \\ {\rm mol}\%) \\ \\ \\ {\rm CuO/{\rm ZnO}/{\rm Al_2O_3/{\rm Y_2O_3} \\ ({\rm 50~{\rm Cu}/25~{\rm Zn}/22.5~{\rm Al}/2.5~{\rm Y} \\ {\rm mol}\%) \\ \\ \end{array}$	$\begin{array}{c c} CuO/ZnO/Al_2O_3/ZrO_2 \\ (Cu^{2+}/Zn^{2+}/Al^{3+}/Zr^{4+:} atomic \\ ratio = 6/3/0.5/0.5) \\ \hline 1.0 \\ \hline ratio = 6/3/0.5/0.5) \\ \hline CuO/ZnO/Al_2O_3/ZrO_2 \\ (Cu = 54.62 wt%) \\ \hline CuO/ZnO/Al_2O_3/ZrO_2 \\ (50 Cu/25 Q_1/2.5 Al/2.5 Zr \\ mol%) \\ \hline CuO/ZnO/Al_2O_3/TiO_2/SiO_2 \\ (49/39.2/9.8/1/1 wt%) \\ \hline CuO/ZnO/ZrO_2/Al_2O_3 \\ (reduced graphene oxide \\ (8/6/3/3/80 wt%) \\ \hline CuO/ZnO/ZrO_2/Al_2O_3 \\ (Cu/ZnO/ZrO_2/Al_2O_3 \\ (Cu/ZnO/ZrO_2/Al_2O_3 \\ (Cu/ZnO/ZrO_2/Al_2O_3 \\ (Cu/ZnO/ZrO_2/Al_2O_3 \\ (Cu/ZnO/ZrO_2/Al_2O_3 \\ (Cu/ZnO/ZrO_2/Al_2O_3 \\ (2 Cu/1 Zn/0.9 Zr/0.1 Mg \\ molar ratio & Cu/Al_2O_3=10 \\ wt% \\ \hline CuO/ZnO/Al_2O_3-(CHT-F) \\ (41.34 Cu/21.09 Zn/8.14 \\ Al/0.7 F wt%) \\ \hline CuO/ZnO/Al_2O_3/CrO_2 \\ [atomic ratio: (cm^3) \\ Cu^{2+}/Zn^{2+}/(Al^{3+}Zr^{4+}) = 2/1/1] \\ \hline CuO/ZnO/Al_2O_3/ZrO_2 \\ (50 Cu/25 Zn/22.5 Al/2.5 Mn \\ mol\%) \\ \hline CuO/ZnO/Al_2O_3/La_2O_3 \\ (50 Cu/25 Zn/22.5 Al/2.5 Ce \\ mol\%) \\ \hline CuO/ZnO/Al_2O_3/Y_2O_3 \\ (50 Cu/25 Zn/22.5 Al/2.5 Y \\ mol\%) \\ \hline \end{array}$	$ \begin{array}{c c} CuO/ZnO/Al_2O_3/ZrO_2 \\ (Cu^{2+}/Zn^{2+}/Al^{3+}/Zr^{4+:} atomic ratio= 6/3/0.5/0.5) \\ \hline \end{tisty} \label{eq:current} \end{tisty} \label{eq:current} \lab$	$ \begin{array}{c} CuO/ZnO/Al_2O_3/ZrO_2 \\ (Cu^{2+}/Zn^{2+}/Al^{3+}/Zr^{4+}: atomic ratio = 6/3/0.5/0.5) \\ \hline \end{tabular}{lllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} {\rm CuO/ZnO/Al_{2}O_{3}/ZrO_{2} \\ ({\rm Cu}^{2+}/Zn^{2+}/{\rm Al}^{3+}/Zr^{4+}: atomic ratio = 6/3/0.5/0.5) \\ {\rm CuO/ZnO/Al_{2}O_{3}/ZrO_{2} \\ ({\rm cu}^{3}) \\ {\rm CuO/ZnO/Al_{2}O_{3}/ZrO_{2} \\ ({\rm cm}^{3}) \\ {\rm CuO/ZnO/Al_{2}O_{3}/TiO_{2}/SiO_{2} \\ ({\rm rd}^{3}) \\ {\rm CuO/ZnO/Al_{2}O_{3}/I1 \\ ({\rm rd}^{3}) \\ ({\rm rd}^{3}) \\ {\rm CuO/ZnO/Al_{2}O_{3}} \\ ({\rm rd}^{3}) \\ {\rm CuO/ZnO/Al_{2}O_{3}/I1 \\ ({\rm rd}^{3}) \\ ({\rm rd}^{3}) \\ ({\rm rd}^{3}) \\ {\rm cuO/ZnO/ZrO_{2}/Al_{2}O_{3} \\ ({\rm cu}^{2}/ZnO_{2}/Al_{2}O_{3} \\ ({\rm cu}^{2}/ZnO_{2}/Al_{2}O_{3}/Al_{2} \\ ({\rm cu}^{2}/ZnO_{2}/Al_{2}O_{3}/Al$	$ \begin{array}{c cl} CuO/ZnO/Al_2O_3/ZrO_2 \\ (Cu^{2+}/Zn^{2+}/Al^{3+}/Zr^{4+}; atomic ratio = 6/3/0.5/0.5) \\ (CuO/ZnO/Al_2O_3/ZrO_2 \\ (CuO/ZnO/Al_2O_3/ZrO_2 \\ (CuO/ZnO/Al_2O_3/ZrO_2 \\ (CuO/ZnO/Al_2O_3/ZrO_2 \\ (SO Cu/2S Zn/22.5 Al/2.5 Zr \\ CuO/ZnO/Al_2O_3/CO_2 \\ (SO Cu/2S Zn/22.5 Al/2.5 Zr \\ CuO/ZnO/Al_2O_3/CO_2 \\ (CuO/ZnO/Al_2O_3/ZrO_2 \\ (SO Cu/2S Zn/22.5 Al/2.5 Zr \\ CuO/ZnO/Al_2O_3/CO_2 \\ (CuO/ZnO/Al_2O_3/ZrO_2 \\ (CuO/ZnO/Al_2O_3/ZrO_2 \\ (CuO/ZnO/Al_2O_3/ZrO_2 \\ (CuO/ZnO/Al_2O_3/ZrO_2 \\ (CuO/ZnO/Al_2O_3) \\ (CuO/ZnO/Al_2O_3) \\ (CuO/ZnO/ZrO_2/Al_2O_3 \\ (CuO/ZnO/ZrO_2/Al_2O_3 \\ (CuO/ZnO/ZrO_2/Al_2O_3 \\ (CuO/ZnO/ZrO_2/Al_2O_3 \\ (CuO/ZnO/ZrO_2/Al_2O_3 \\ (CuO/ZnO/Al_2O_3-(CHT-F) \\ (4.134 Cu/21.09 Zr/0.1 Mg molar ratio & Cu/Al_3O_3-10 \\ Mt% \\ (CuO/ZnO/Al_2O_3-(CHT-F) \\ (4.134 Cu/21.09 Zr/0.1 Mg molar ratio & Cu/Al_3O_3-10 \\ Mt% \\ (CuO/ZnO/Al_2O_3/ZrO_2 \\ (ZuO/ZnO/Al_2O_3/ZrO_2 \\ (ZuO/ZnO/Al_2O_3/ZrO_2 \\ (ZuO/ZnO/Al_2O_3/ZrO_2 \\ (ZuO/ZnO/Al_2O_3/ZrO_2 \\ (ZuO/ZnO/Al_2O_3/ZrO_2 \\ (ZuO/ZnO/Al_2O_3/ZrO_2 \\ (SO Cu/2S Zn/22.5 Al/2.5 La \\ O.5 \\ Co-precipitation \\ CuO/ZnO/Al_2O_3/ZrO_2 \\ (SO Cu/2S Zn/22.5 Al/2.5 La \\ O.5 \\ Co-precipitation \\ Fixed-bed \\ 3 [-] \\ S.0 \\ CuO/ZnO/Al_2O_3/ZrO_2 \\ (SO Cu/2S Zn/22.5 Al/2.5 La \\ O.5 \\ Co-precipitation \\ Fixed-bed \\ 3 [-] \\ S.0 \\ CuO/ZnO/Al_2O_3/ZrO_2 \\ (SO Cu/25 Zn/22.5 Al/2.5 La \\ O.5 \\ Co-precipitation \\ Fixed-bed \\ 3 [-] \\ S.0 \\ CuO/ZnO/Al_2O_3/ZO_2 \\ (SO Cu/25 Zn/22.5 Al/2.5 La \\ O.5 \\ Co-precipitation \\ Fixed-bed \\ 3 [-] \\ S.0 \\ CuO/ZnO/Al_2O_3/YCO_3 \\ (SO Cu/25 Zn/22.5 Al/2.5 La \\ O.5 \\ Co-precipitation \\ Fixed-bed \\ 3 [-] \\ S.0 \\ CuO/ZnO/Al_2O_3/YCO_3 \\ (SO Cu/25 Zn/22.5 Al/2.5 V \\ O.5 \\ Co-precipitation \\ Fixed-bed \\ 3 [-] \\ S.0 \\ CuO/ZnO/Al_2O_3/YCO_3 \\ (SO Cu/25 Zn/22.5 Al/2.5 V \\ O.5 \\ Co-precipitation \\ Fixed-bed \\ 3 [-] \\ S.0 \\ CuO/ZnO/Al_2O_3/YCO_3 \\ (SO Cu/25 Zn/22.5 Al/2.5 V \\ O.5 \\ Co-precipitation \\ Fixed-bed \\ 3 [-] \\ S.0 \\ CuO/ZnO/Al_2O_3/YCO_3 \\ (SO Cu/25 Zn/22.5 Al/2.5 V \\ O.5 \\ Co-precipitation \\ Fixed-bed \\ 3 [-] \\ S.0 \\ CuO/ZnO/Al_2O_3/YCO_3 \\ (SO Cu/25 Zn/22.5 Al/2.5 V$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c cccc} CuO/ZnO/Al_{2}O_{2}/ZrO_{2} \\ (Cu^{2+}/Zn^{2+}/Al^{2+}/Zn^{2+}, atomic ratio = 6/3/O, 5/0.5) \\ CuO/ZnO/Al_{2}O_{3}/ZrO_{2} \\ (Cu = 5/4.62 wt%) \\ (Cm^{3}) \\ CuO/ZnO/Al_{2}O_{3}/ZrO_{2} \\ (Cu^{2+}/Zn^{2+}/Al^{2+}/Zn^{2+}, atomic ratio = 7/2, 0.5) \\ Co-precipitation \\ CuO/ZnO/Al_{2}O_{3}/ZrO_{2} \\ (Cu/2) \\ CuO/ZnO/Al_{2}O_{3}/ZrO_{2} \\ (Cu^{2+}/Zn^{2+}/Al^{2+}/Zn^{2+}) \\ (Cm^{3}) \\ CuO/ZnO/Al_{2}O_{3}/ZrO_{2} \\ (Cu^{2+}/Zn^{2+}/Al^{2+}/Zn^{2+}) \\ (Cm^{3}) \\ CuO/ZnO/Al_{2}O_{3}/TO_{2} \\ (Cu^{2+}/Zn^{2+}/Al^{2+}/Zn^{2+}) \\ (Cu^{3+}/ZnO_{2}/ZnO_{2} \\ (Cu/2) \\ (Cu/2)$	$ \begin{array}{c} {\rm Cu0/Zn0/Al_OJ_ZrO_2} \\ {\rm (Cu^{2+}, 7_{A}^{1+}/Al^{1+2}, r^{2++}, atomic ratios 6/3/O_5/0.5)} \\ {\rm Cu0/Zn0/Al_OJ_2/TO_2} \\ {\rm (Cu^{3-}, 64.62 wK)} \\ {\rm (Cu0/Zn0/Al_OJ_2/TO_2} \\ {\rm (Cu0/Zn0/Al_OJ_2/TO_2/SlO_2} \\ {\rm (20/Zn0/Al_OJ_2/TO_2/SlO_2} \\ {\rm (20/Zn0/Al_OJ_2/TO_2/SlO_2} \\ {\rm (20/Zn0/Al_OJ_2/TO_2/Al_OJ_2 \\ {\rm (Cu0/Zn0/Al_OJ_2} \\ {\rm (Cu0/Zn0/Al_OJ_2} \\ {\rm (Cu0/Zn0/Al_OJ_2) \\ {\rm (Cu0/Zn0/Al_OJ_2$	$ \begin{array}{c ccccc} Cu0/2n0/Al_{D}O_{2}CD_{3} \\ (Cu^{1/}Zn^{1/}Al^{1+}Zr^{1+}; atomic \\ Cu0^{1/}Zn^{1/}Al^{1+}Zr^{1+}; atomic \\ Cu0/2n0/Al_{D}O_{2}CD_{3} \\ (Curs 54.62 wt%) \\ (Cu0/2n0/Al_{D}O_{2}CD_{2} \\ (Cu0/2n0/2nO_{2}Al_{D}O_{2} \\ (Cu0/2n0/2nO_{2}Al_{D}O_{2} \\ (Cu0/2n0/2nO_{2}Al_{D}O_{2} \\ (Cu0/2n0/Al_{D}O_{2}CD_{2} \\ (Cu0/2n0/Al_{D}O_{2}CD_{2}$	$ \begin{array}{c} {\rm Lu}(2,m2/{\rm In}^{1}/{\rm AP})_{2}/{\rm Ir}^{1}/{\rm Ir}^{1}/{\rm Ir}/{\rm Ir}^{1}/{\rm Ir}/{\rm Ir})_{2}/{\rm Ir})_$	$ \begin{array}{c} \text{Lu}(2n/2n^{3}/4n^{3}$	$ \begin{array}{c} \text{Lu}(2\pi)(2\pi)(A_{10}C_{12}/2\pi) \\ (Lu^{+7}(2\pi^{+7})(A^{10}/2\pi^{+2}) \\ (Lu^{+7}(2\pi^{+7})(A^{10}/2\pi^{+2}) \\ (Lu^{+7}(2\pi^{+7})(A^{10}/2\pi^{+7}) \\ (Lu^{+7}(2\pi^{+7})(A^{10}/$	$ \begin{array}{c} \mathrm{Lor}(2\pi0/2h) \mathrm{C}_{270}(2\pi) \mathrm{C}_{270}(2\pi$	$ \begin{array}{c} \text{Lu}(2m/2n/k)O_{17}(2m) \\ \text{ratios} f_{2}/(2m) \\ \text{ratios} $	$ \begin{array}{c} cu027n0/AiO_{2}$

64	$CuO/ZnO/ZrO_2/Al_2O_3/Ga_2O_3$	1.0	Co-precipitation	Fixed-bed	3 [-]	5.0	250	250	18000	10% H₂/He	250	-	-	-	-	12.2	[11],[41]
65	CuO/ZnO/ZrO ₂ /Al ₂ O ₃ /Ga ₂ O ₃	1.0	Co-precipitation	Fixed-bed	3.4 [(3% CO)]	5.0	250	250	10000*	10% H ₂ /He	250	-	-	-	-	21	[11],[41]
66	CuO/ZnO/Cr ₂ O ₃ (34.5/34.5/31 wt%)	1.8 (cm³)	Co-precipitation	Flow reactor	3 [-]	1.3	340	300 to 380	3600*	H ₂	300	6.0	14.8	73.2	11	1.6	[1]
67	CuO/ZnO/MgO (47/47/6 wt%)	1.8 (cm ³)	Co-precipitation	Flow reactor	3 [-]	1.3	240	160- 280	3600*	H ₂	300	6.0	41.2	58.9	30.7	12.6	[1]
68	CuO/ZnO/TiO ₂ (30/30/40 wt%)	0.5	Co-precipitation	Fixed-bed	4 [-]	1.0	240	150- 260	9200	-	-	-	21.9	78.1	-	3.4	[11],[57]
69	CuO/ZnO/ZrO₂ (40 Cu/30 Zn/30 Zr mol %)	0.25	Reverse co- precipitation	Fixed-bed	3 [-]	2.0	240	220- 280	-	H ₂	300	4.0	32.3	-	13.2	4.3	[58]
70	CuO/ZnO/ZrO2 (47/47/11 wt%)	1.8 (cm ³)	Co-precipitation	Fixed-bed	3 [-]	1.3	220	160 - 280	3600*	H ₂	300	6.0	59.9	38.4	29.1	17.4	[1]
71	CuO/ZnO/ZrO2 (50/20/30 wt%)	0.5	Glycine-nitrate combustion	Fixed-bed	3 [-]	3.0	220	180 - 280	3600*	10% H ₂ /N ₂	300	3.0	71.1	-	12	8.5	[7],[59]
72	CuO/ZnO/ZrO ₂ (50/20/30 wt%)	0.5	Urea-nitrate combustion	Fixed-bed	3 [-]	3.0	240	180 - 280	3600*	10% H ₂ /N ₂	300	3.0	56.2	-	17	9.6	[7],[60]
73	CuO/ZnO/ZrO ₂ (20/70/10 wt%)	1.0	Citrate decomposition	Fixed-bed	3 [-]	2.6	240	240	3600*	10% H ₂ /N ₂	250	2.0	45.8	54.2	32.9	15.1	[61]
74	CuO/ZnO/ZrO₂ (50 Cu/20 Zn/30 Zr mol%)	0.5	Surfactant- assisted co- precipitation	Fixed-bed	3 [12% N ₂]	3.0	240	-	3600*	10% H ₂ /N ₂	300	3.0	54.1	-	12.1	6.5	[62]
75	$CuO/ZnO/ZrO_2$ (43.2/14.5/ZrO ₂ wt%)	0.5	Reverse coprecipitation	Fixed-bed	3 [8% N₂]	5.0	240	180 - 240	8800	H ₂	300	1.0	64	-	22.4	14.3	[63]
76	CuO/ZnO/ZrO ₂ (62.4/25/12.6 wt %)	2.0	Citrate decomposition method	Fixed-bed	3 [12% N ₂]	8.0	220	160 - 240	-	7% H ₂ /N ₂	-	-	61	-	8	4.9	[64]
77	CuO/ZnO/ZrO ₂ (60 Cu/30 Zn/10 Zr mol%)	1.0 (cm ³)	precipitation- reduction method	Fixed-bed	3 [-]	5.0	270	230 - 270	4600*	H ₂	230	4.0	56.8	43.2	23	13.1	[9],[65]
78	CuO/ZrO₂/ZnO (36/54/10 wt%)	0.7	Deposition-Co- precipitation	Fixed-bed	4 [-]	5.0	240	220 - 280	17100	CO ₂ + H ₂	240	3.0	58	-	13.3	7.7	[2],[3],[5]
79	CuO/ZnO/ZrO ₂ (37.5/41/21.5 wt%)	0.125	Co-precipitation	Fixed-bed	3 [-]	5.0	260	240 - 320	10000*	H ₂	300	12	50	50	19.6	9.8	[66]
80	CuO/ZnO/ZrO₂/MnO (65/23/9/3 wt%)	2.0	Complexing with citric acid	Fixed-bed	3 [-]	8.0	220	180 - 250	3300*	10% H ₂ /N ₂ , CO ₂ +H ₂	200, 350	15, 2	-	-	-	31	[7],[75]

81	CuO/ZnO/ZrO ₂ (23.8 Cu/34.6 Zn/8.0 Zr/33.7 O atom %)	2.0	Co-precipitation	Fixed-bed	3 [-]	8.0	220	180 - 250	3300*	10% H ₂ /N ₂	200, 350	15, 2	68	-	21	14.3	[7],[67]
82	CuO/ZnO/ZrO2 (15.1/41.8/43.1 wt%)	0.5	Reverse co- precipitation	Microreactor	3 [10% N ₂]	3.0	240	180 - 250	4400	H ₂	300	1.0	48.4	-	17.5	8.5	[7],[68]
83	Cu/ZnO/ZrO ₂ (50/40/10 wt %)	1.0	Co-precipitation	Fixed-bed	3 [-]	5.0	250	250	18000	10% H ₂ /He	250	-	-	-	-	10.4	[11],[12]
84	CuO/ZnO/ZrO ₂ (31.6/24.0/44.4 wt%)	0.5	Reverse co- precipitation	Microreactor	3 [10% №2]	1.0	200	160 - 200	8800	H ₂	300	1.0	-	-	3.2	2.1	[7],[69]
85	CuO/ZnO/ZrO₂ (50 Cu/20 Zn/30 Zr mol%)	-	Solid-state reaction	Fixed-bed	3 [-]	3.0	240	-	3600*	10% H ₂ /N ₂	300	3.0	58	-	15.7	9.1	[24],[70]
86	CuO/ZnO/ZrO ₂ (45Cu/45 Zn/10 Zr mol%)	0.5 (cm³)	Oxalate co- precipitation	Fixed-bed	3 [-]	2.0	240	240	3600*	5% H₂/Ar	240	10.0	38.4	-	18.5	7.1	[71]
87	ZrO ₂ /CuO/ZnO (33.1 Cu/32.3 Zn/13.5 Zr wt%)	1 .0 (cm³)	Successive- precipitation	Fixed-bed	3 [-]	5.0	250	210 - 270	4000*	5% H ₂ /N ₂	260	6.0	60.45	39.55	26.41	16	[13],[14],[15]
88	CuO/ZnO/ZrO2 (Cu/Zn/Zr : 34.1/31.6/6.9 wt%)	1.0	Co-precipitation	Fixed-bed	3 [-]	2.0	250	230 - 270	-	H ₂	300	4.0	29.3	-	19.4	5.7	[20],[21],[72]
89	CuO/ZnO/ZrO2 (56.8/27.7/15.5 wt%)	0.125	Gel-oxalate coprecipitation	Fixed-bed	3 [10% N ₂]	3.0	240	180 - 240	10000*	H ₂	300	1.0	51.2	48.6	18	9.2	[73]
90	CuO/ZrO₂/ZnO (35 Cu/35 ZrO/30 ZnO wt%)	0.5	Co-precipitation	Fixed-bed	3 [-]	0.9	200	140 - 260	-	H ₂	250	1.0	47.5	-	5.86	2.8	[74]
91	CuO/ZnO/ZrO ₂ /MnO (65/23/9/3 wt%)	2.0	Co-precipitation as carbonates	Fixed-bed	3 [-]	8.0	220	180 - 250	3300*	10% H ₂ /N ₂ , CO ₂ +H ₂	200, 350	15, 2	-	-	-	30	[7],[75]
92	CuO/ZnO/ZrO ₂ /B ₂ O ₃ (65/23/9/3 wt%)	2.0	Co-precipitation	Fixed-bed	3 [-]	8.0	220	180 - 250	3300*	10% H ₂ /N ₂ , CO ₂ +H ₂	200, 350	15, 2	-	-	-	35	[7],[75]
93	CuO/ZnO/ZrO ₂ /In ₂ O ₃ (65/23/9/3 wt%)	2.0	Co-precipitation	Fixed-bed	3 [-]	8.0	220	180 - 250	3300*	10% H ₂ /N ₂ , CO ₂ +H ₂	200, 350	15, 2	-	-	-	9.0	[7],[75]
94	CuO/ZnO/ZrO ₂ /Gd ₂ O ₃ (65/23/9/3 wt%)	2.0	Co-precipitation	Fixed-bed	3 [-]	8.0	220	180 - 250	3300*	10% H ₂ /N ₂ , CO ₂ +H ₂	200, 350	15, 2	-	-	-	31	[7],[75]
95	CuO/ZnO/ZrO ₂ /Y ₂ O ₃ (65/23/9/3 wt%)	2.0	Co-precipitation	Fixed-bed	3 [-]	8.0	220	180 - 250	3300*	10% H ₂ /N ₂ , CO ₂ +H ₂	200, 350	15, 2	-	-	-	38	[7],[75]
96	CuO/ZnO/TiO ₂ /ZrO ₂ (40/40/10/10 mol%)	0.5	Oxalate co- precipitation	Fixed-bed	3 [12% N ₂]	3.0	240	200 - 280	2400	10 % H₂/Ar	300	3.0	43.8	-	17.4	7.6	[9],[76]

97	CuO/ZnO/ZrO ₂ /Ce ₂ O ₃ (65.3 Cu/26.3 ZnO/4.5 ZrO ₂ /3.9 Ce ₂ O ₃ wt%)	2.0	Decomposition	Fixed-bed	3 [12% N ₂]	8.0	220	160 - 240	-	7% H ₂ /N ₂	-	-	69	-	15	10.3	[64]
98	CuO/ZnO/ZrO2/La2O3 (65.3 Cu/26.3 ZnO/4.5 ZrO2/3.9 La2O3 wt%)	2.0	Decomposition	Fixed-bed	3 [12% N ₂]	8.0	220	160 - 240	-	7% H ₂ /N ₂	-	-	70	-	17	11.9	[64]
99	CuO/ZnO/ZrO2/Cr2O3 (65.2 Cu/26.3 ZnO/7.7 ZrO2/0.7 Cr2O3 wt%)	2.0	Decomposition	Fixed-bed	3 [12% N ₂]	8.0	220	160 - 240	-	7% H2/N2	-	-	68	-	18	12.2	[64]
100	CuO/ZnO/SiO₂ (5 Cu/5 Zn/90 Si wt%)	1.0	Impregnation	Fixed-bed	2 [10% Ar]	3.0	220	220	6000	H ₂	700	4.0	70	30		0.9	[11],[77]
101	Cu/ZnO/SiO₂ (5 Cu/5 Zn/90 Si wt%)	1.0	Alkoxide	Fixed-bed	2 [10% Ar]	3.0	220	220	6000	H ₂	700	4.0	90.6	9.1		0.3	[11],[77]
102	CuO/ZnO/SiO ₂ (11.75 Cu/5.45 Zn/82.8 Si wt%)	0.7	-	Fixed bed	3 [3% N ₂]	5.0	270	250 - 270	6000	H ₂	280	6.0	61.8	-	11.9	7.4	[78]
103	Cu/ZnO/Cr ₂ O ₃ (50/45/5 wt %)	1.0	Co-precipitation	Fixed-bed	3 [-]	5.0	250	250	18000	10% H₂/He	250	-	-	-	-	9.4	[11],[12]
104	Cu/ZnO/Cr₂O₃ (34.7/44.5/20.8 wt%)	0.2- 0.6 (cm ³)	Precipitation	Fixed-bed	2.7 [-]	2.0	265	220 – [100	6000*	diluted syngas	350	-	8.9	91	18.1	1.6	[2],[79]
105	CuO/ZnO/TiO₂ (45Cu/45Zn/10Ti mol %)	0.5	Co-precipitation	Fixed-bed	3 [12% N ₂]	3.0	233	200 - 280	2400*	10% H ₂ /N ₂	300	3.0	48		17	8.1	[80]
106	CuO/ZnO/TiO ₂ (30/35/35 wt%)	3.0	Conventional co- precipitation	Fixed-bed	3 [-]	7.0	220	190 - 220	2000*	H ₂	350	0.5	77.8	22.1	25.8	20.1	[81]
107	CuO/ZnO/rGO (CuZn= 10 wt%)	0.25	Modified Hummers	Fixed-bed	3 [-]	1.5	250	200 - 300	2400*	H ₂	350	2.0	5.1	33.9	26	1.3	[9],[82]
108	CuO/ZnO/SiO ₂ (5 Cu/5 ZnO wt%)	0.5	Impregnation	Fixed-bed	3 [-]	2.0	270	250 - 270	18000	10% H ₂ /He	300	2.0	47.2	51.8	2.0	0.9	[7],[83]
109	CuO/ZnO/Cr ₂ O ₃ (molar ratio: 6/14/5)	1.0	Co-precipitation	Fixed-bed	3 [-]	5.0	250	170 - 320	3000	1% H ₂ in N ₂	250	12	63.3	36.7	25.6	16.2	[11],[84]
111	CuO/Al ₂ O ₃ (40/60 wt%)	0.7	Deposition— precipitation	Fixed-bed	4 [-]	5.0	240	220 - 280	17100	CO ₂ + H ₂	240	1.0	47	-	3.6	1.7	[2],[3],[5]
110	CuO/Cr ₂ O ₃ -Al ₂ O ₃ (40/60 wt%)	0.7	Deposition— precipitation	Fixed-bed	4 [-]	5.0	240	220 - 280	17100	CO ₂ + H ₂	240	1.0	49	-	9.6	4.7	[2],[3],[5]
112	CuO/ZrO ₂ /Al ₂ O ₃ (36/54/10 wt%)	0.7	Deposition-Co- precipitation	Fixed-bed	4 [-]	5.0	240	220 - 280	17100	CO ₂ + H ₂	240	1.0	62	-	13	8.0	[2],[3],[5]
113	CuO/ZrO ₂ /SiO ₂ -Al ₂ O ₃ (36/54/10 wt%)	0.7	Deposition-Co- precipitation	Fixed-bed	4 [-]	5.0	240	220 - 280	17100	CO ₂ + H ₂	240	1.0	61	-	12	7.3	[2],[3],[5]
114	CuO/ZrO ₂ /Cr ₂ O ₃ -Al ₂ O ₃ (36/54/10 wt%)	0.7	Deposition-Co- precipitation	Fixed-bed	4 [-]	5.0	240	220 - 280	17100	CO ₂ + H ₂	240	1.0	63	-	11.7	7.3	[2],[3],[5]

115	CuO/ZrO ₂ /WO ₃ -Al ₂ O ₃ (36/54/10 wt%)	0.7	Deposition-Co- precipitation	Fixed-bed	4 [-]	5.0	240	220 - 280	17100	CO ₂ + H ₂	240	1.0	65	-	10.2	6.6	[2],[3],[5]
116	CuO/ZrO ₂ /SiO ₂ -MgO (36/54/10 wt%)	0.7	Deposition-Co- precipitation	Fixed-bed	4 [-]	5.0	240	220 - 280	17100	CO ₂ + H ₂	240	1.0	62	-	11	6.8	[2],[3],[5]
117	La ₂ O ₃ /CuO/ZrO ₂ (La= 5 molar %, La/Cu/Zr= 4.8/47.6/47.6 atom %, molar ratio: Cu/Zr= 0.55)	0.5	Urea-nitrate combustion	Fixed-bed	3 [12% N ₂]	3.0	220	200 - 280	3600*	10% H ₂ /N ₂	300	3.0	66	34	6.2	4.3	[85]
118	CuO/ZrO2 (40/60 wt%)	0.7	Deposition– precipitation	Fixed-bed	4 [-]	5.0	240	220 - 280	17100	CO ₂ + H ₂	240	1.0	68	-	9.7	6.6	[2],[3],[5]
119	CuO/TiO ₂ (40/60 wt%)	0.7	Deposition– precipitation	Fixed-bed	4 [-]	5.0	240	220 - 280	17100	CO ₂ + H ₂	240	1.0	59	-	6.9	4.0	[2],[3],[5]
120	CuO/ZrO ₂ (30/70 wt%)	0.25 (cm³)	Deposition— precipitation	Fixed-bed	3 [-]	2.0	240	220 - 300	5400*	-	-	-	48.8	-	6.3	3.0	[20],[86],[87]
121	CuO-Zr ₂ O ₃ / γ -Al ₂ O ₃ (12 Cu/10 Zr wt%)	2.0 (cm ³)	Impregnation	Microreactor	3 [-]	3.0	260	240 - 260	3600*	H ₂	300	3.0	14.6	79.4	16.5	2.4	[71],[88]
122	CuO–V/ γ-Al₂O₃ (12 Cu/6 V wt%)	2.0 (cm ³)	Impregnation	Microreactor	10 [-]	3.0	240	220 - 280	3600*	H ₂	300	3.0	24	55	20	4.8	[71],[89]
123	$ZnO-CuO/SiO_2$ (weight ratio of Cu/SiO_2 : $ZnO/SiO_2 = 0.25:0.25$ gr)	0.25	Physical mixture	Flow reactor	3 [-]	1.25	250	220 - 280	-	H ₂	250	2.0	-	-	-	1.8	[7],[90]
124	CuO/MgO-TiO ₂ (MgO-TiO ₂ = 1% wt, 11 Cu/28 Mg/86.2 Ti atom %)	0.5	Impregnation	Fixed-bed	3 [10% N ₂]	3.0	220	180 - 260	4800*	10 % H ₂ /Ar	300	3.0	37.9	-	5.2	1.97	[9],[91]
125	Cu/ZrO ₂ (from Cu ₇ Zr ₃)	1.2	In-situ activation	Fixed-bed	3 [-]	1.5	260	180 - 220	0.13**	CO ₂ + H ₂	280	-	41.6	58.4	9.1	3.8	[2],[92]
126	CuO/TiO ₂ (CuO= 30 wt%)	0.5	Co-precipitation	Fixed-bed	4 [-]	1.0	240	150 - 260	9200	-	-	-	42.5	57.5	-	1.4	[11],[56]
127	CuO/ZrO₂ (mass ratio: 27/70)	1.0 (cm³)	Impregnation- precipitation (IP)	Fixed-bed	3 [-]	2.0	250	250	5400*	H ₂	250	3.0	83.48	16.52	13.6	11.3	[93]
128	CuO/ZrO ₂ (III)	1.0 (cm³)	Complexation with citric acid	Fixed-bed	3 [-]	8.0	260	180 - 260	3600*	5% H ₂ /N ₂	200, 350	3, 2	86	14	15	12.9	[94]
129	CuO/ZrO ₂ (Cu= 50 wt%)	0.5	Co-precipitation	Fixed-bed	3 [-]	0.9	220	140 - 300	4800	H ₂	250	1.0	53.1	46.9	-	1.9	[11],[95]
130	CuO/CuCr ₂ O ₄	1.0- 1.5	Impregnation	Fixed-bed	1 [-]	3.0	110	110 - 180	-	H ₂	300	2.0	50.88	-	7.36	3.74	[96]
131	CuO/a-ZrO ₂ (Cu= 10 wt%)	0.5	Incipient wetness impregnation	Fixed-bed	3 [-]	3.0	240	220 - 280	-	H ₂	300	4.0	57.8	-	5.1	2.9	[97]
132	CuO/ZrO ₂ (50 Cu/50 Zr wt%)	1.0	Co-precipitation	Fixed-bed	3 [-]	1.7	220	200 - 260	-	50% H ₂ /N ₂	260	3.0	71	-	6.55	4.6	[98]

133	CuO/ZrO ₂ -CNFs (15 CuO/15 ZrO ₂ wt%)	0.5	Deposition precipitation	Slurry reactor	3 [-]	3.0	180	180	-	H ₂	380	6.0	67	-	10	6.7	[99]
134	CuO/ZrO ₂ /CNTs-N [(CNTs= 2.98 wt%), mass ratio: 10/40/50]	0.5	Deposition- precipitation	Fixed-bed	3 [8% N ₂]	3.0	260	220 - 260	3600	5% H₂/Ar	240	6.0	-	-	11.5	8.6	[100]
135	$\begin{array}{c} {\sf CuO/ZnO/Cr_2O_3/Al_2O_3/Ga_2O_3}\\ (38.1\ {\sf Cu/29.4\ Zn/1.6}\\ {\sf Cr_2O_3/13.1\ Al_2O_3/17.8\ Ga_2O_3}\\ {\sf wt\%}) \end{array}$	-	Intrinsic uniform gelation	Fixed-bed	3 [(3% CO)]	8.0	270	230 - 310	18800*	1% H ₂ in N ₂	250	4.0	86.6	13.4	-	21.3	[11],[101]
136	CuO/ZnO/ZrO ₂ /Ga ₂ O ₃ (50/15/32/3 wt%)	0.2	Co-precipitation	Fixed-bed	3 [-]	7.0	250	190 - 300	15000	10% H ₂ /N ₂	300	1.0	72	28	22	15.8	[102]
137	CuO/ZnO/ZrO ₂ /Ga2O ₃ (65/23/9/3 wt%)	2.0	Complexing with citric acid	Fixed-bed	3 [-]	8.0	220	180 - 250	3300*	10% H ₂ /N ₂	200	15.0	-	-	-	41	[7],[67]
138	CuO/ZnO/ZrO ₂ -Ga ₂ O ₃ (65/23/9/3 wt%)	2.0	Co-precipitation	Fixed-bed	3 [-]	8.0	220	180 - 250	3300*	10% H ₂ /N ₂	200	15.0	-	-	-	42	[7],[67]
139	CuO/ZnO/ZrO ₂ /Ga ₂ O ₃ (65.3/26.3/4.5/3.9 wt%)	2.0	Decomposition	Fixed-bed	3 [12% N ₂]	8.0	240	160 - 240	-	7% H₂/N₂	-	-	71	-	17	12	[64]
140	CuO/Ga ₂ O ₃ /ZnO (6.8 Cu/2.5 Ga ₂ O ₃ wt%)	0.5	Impregnation	Fixed-bed	3 [-]	2.0	270	250 - 270	18000	10% H ₂ /He	300	2.0	55.5	44.4	2.0	1.1	[7],[84]
141	CuO/Ga ₂ O ₃ /ZnO (5.6 Cu/91.7 ZnO/2.7 Ga ₂ O ₃ wt%)	0.5	Co-impregnation of methoxide	Fixed-bed	3 [-]	2.0	270	250 - 270	18000	H2, 10% H2/He	300	8.0	88	12	6.0	5.3	[7],[8]
142	CuO/Ga ₂ O ₃ /ZnO (5.6 Cu/2.7 Ga ₂ O ₃ wt%)	0.5	Progressive impregnation	Fixed-bed	3 [-]	2.0	250	250 - 270	18000	10 % H₂/He	300	2.0	88.1	11.1	4.6	4.0	[103],[104]
143	CuO/ZnO/Ga2O3 (50 Cu/25 ZnO/25 Ga2O3 wt%)	1.0	Co-precipitation	Fixed-bed	3 [-]	5.0	250	220 - 280	18000	10% H ₂ /He	250	-	53.2	46.8	-	11.5	[11],[12]
144	CuO/ZnO/Ga $_2O_3$ (16.6 Cu/4.9 Ga wt%)	0.15	Microwave- assisted	Fixed-bed	3 [-]	3.0	270	250 - 270	3000*	10 % H₂/Ar	300	3.0	-	-	15.8	29.3	[9],[105]
145	CuO/ZnO/Ga ₂ O ₃ /SiO ₂ (4.7 Cu/ 2.3 ZnO/1.5 Ga ₂ O ₃ wt%)	0.5	Impregnation	Fixed-bed	3 [-]	2.0	270	250 - 270	18000	10% H ₂ /He	300	2.0	99.5	-	5.6	5.6	[84]
146	CuO/ZnO/Ga ₂ O ₃ /SiO ₂ (4.5 Cu/2.0 ZnO/1.6 Ga ₂ O ₃ wt%)	0.5	Co-impregnation of methoxide	Fixed-bed	3 [-]	2.0	270	250 - 270	18000	H2, 10% H2/He	300	8.0	76	24	3.4	2.6	[7],[8]
147	CuO/ZnO/Ga ₂ O ₃ /SiO ₂ (4.7 Cu/2.3 ZnO/1.5 Ga ₂ O ₃ wt%)	0.5	Incipient wetness impregnation	Fixed-bed	3 [-]	2.0	250	250 - 270	18000	10 % H ₂ /He	300	2.0	97.1	-	2.8	2.7	[103],[104]
148	Ga ₂ O ₃ /CuO/ZrO ₂ (Ga ₂ O ₃ = 7.7 wt%, atomic ratio: Ga/Cu= 2/1)	0.1	ion exchange (IE)	Plug-flow microreactor	3.4 [3% He]	3.0	250	250 - 280	12000*	H ₂	280	2.0	70	-	1.85	1.3	[106]

149	CuO/Ga2O3/ZrO2 [37.5 Cu/12.8 Zr/43.8 O/ (5.9 Ga/B) wt%]	3.0	Deposition– coprecipitation	Fixed-bed	3 [-]	2.0	250	250	2500*	H ₂	250	3.0	75.59	24.41	13.71	10.3	[107]
150	PdO-CuO/ZnO/Al ₂ O ₃ (9.2 Pd/40 Cu/21.6 Zn/4 Al wt%)	-	Impregnation	Fixed-bed	3 [-]	4.0	200	160 - 200	23809	10% H ₂ /N ₂	280	2.0	92	-	2.3	2.1	[24], [108]
151	PdO/CuO/ZnO (2/28/70 wt%)	-	Sequential precipitation	Fixed-bed	3 [-]	6.0	240	180 - 240	14800	10% H ₂ /N ₂	240	2.0	66.2	-	9.19	6.0	[24],[109],[110]
152	PdO/ZnO/Al ₂ O ₃ (Molar ratio: Pd/M ²⁺ /M ³⁺ = 1.0/69.5/29.5)	0.4	Co-precipitation	Fixed-bed	3 [4% Ar]	3.0	250	190 - 275	0.6**	20% H ₂ /He	250	2.0	60	-	0.6	0.4	[104],[111]
153	PdO-CuO/ZnO/Al₂O₃ (3.7 Pd/42.2 Cu/23.3 Zn/4.8 Al wt%)	-	Impregnation	Fixed-bed	3 [-]	4.0	200	160 - 200	23809	10% H ₂ /N ₂	280	2.0	91	-	3.1	2.8	[108]
154	CuO/B ₂ O ₃ /ZrO ₂ (24.1 Cu/11 Zr/64.9 O wt%)	3.0	Deposition– coprecipitation	Fixed-bed	3 [-]	2.0	250	250	2500*	H ₂	250	3.0	67.26	32.74	15.83	10.6	[107]
155	Na2O/ PdO-CuO/ZnO/Cr2O3 (Na= 0.1, Pd= 2.8 wt%)	0.2- 0.6 (cm ³)	Impregnation	Fixed-bed	2.7 [-]	2.0	265	220 - 320	6000*	diluted syngas	350	-	12.2	87.3	18.4	2.2	[2],[79]
156	CuO/ZnO/ZrO ₂ /PdO (65.2 Cu/26.3 ZnO/4.5 ZrO ₂ /3.9 PdO wt%)	2.0	Decomposition	Fixed-bed	3 [12% N ₂]	8.0	240	160 - 240	-	7% H ₂ /N ₂	-	-	73	-	17	12.4	[64]
157	PdO(0.34)-CuO/SiO ₂ (0.92 Cu/0.44 Pd/31.22 Si/3.27 C/64.15 O atom %)	0.2	Co-impregnation	Fixed-bed	3 [4% Ar]	4.1	250	180 - 280	3600	H ₂	300	2.0	31	69	6.7	2.1	[104],[112]
158	PdO/ZnO (Pd= 5 wt%)	1.0	Deposition– precipitation	Fixed-bed	3 [-]	3.9	300	250 - 400	-	50% H₂/He	300	2.0	-	-	13.7	7.8	[113],[114]
159	PdO/ZnO (Pd= 5 wt%)	0.5	Sol- immobilisation	Fixed-bed	3 [-]	2.0	250	150 - 350	-	5% H₂/Ar	400	1.0	59	40	11.1	6.5	[113]
160	PdO/ZnO (Pd= 10 wt%)	1.0	Co-precipitation	Fixed-bed	3 [-]	5.0	250	250	18000	10 % H₂/He	250	-	37.5	62.3	13.8	5.2	[103],[115]
161	PdO/ZnO (Pd= 19 wt%)	-	Inverse co- precipitation	Fixed-bed	9 [-]	0.1	190	190	3000	H ₂	210 to 250	-	13.5	86.5	-	0.14	[11],[116]
162	PdO/ZnO-CNTs (Pd= 16 mass %, molar ratio: Pd/Zn= 0.1/1)	0.5	Incipient wetness	Fixed-bed	3 [8% N ₂]	3.0	250	230 - 270	1800	5% H ₂ /N ₂	500	6.0	99.6	-	6.3	6.3	[20],[21],[117]
163	PdO/γ-alumina (Pd= 1 wt%)	-	Incipient impregnation	Fixed-bed	3 [(3% CO)]	8.0	250	250 - 290	18800*	1% H ₂ in N ₂	250	4.0	84.3	14.9	-	22	[11],[101]
164	LaMn _{0.4} Cu _{0.5} Zn _{0.3} O	1.5	Sol-gel	Fixed-bed	3 [-]	5.0	270	270	3800*	H ₂	350	8.0	50.43	47.93	9.09	4.6	[118]

165	$LaMn_{0.3}Zn_{0.1}Cu_{0.6}O_{y}$	1.5	Sol-gel	Fixed-bed	3 [-]	5.0	270	270	3800*	H ₂	330	8.0	54.5	44.5	13.1	7.1	[119]
166	LaCu _{0.7} Zn _{0.3} O _x	2.0	Sol-gel	Fixed-bed	3 [-]	5.0	250	250	3600*	H ₂	350	8.0	57.9	39.5	6.4	3.7	[120]
167	La _{0.8} Ce _{0.2} Cu _{0.7} Zn _{0.3} O _x	2.0	Sol-gel	Fixed-bed	3 [-]	5.0	250	250	3600*	H ₂	350	8.0	63.3	34.9	8.1	5.1	[120]
168	$La_{0.8}Mg_{0.2}Cu_{0.7}Zn_{0.3}O_x$	2.0	Sol-gel	Fixed-bed	3 [-]	5.0	250	250	3600*	H ₂	350	8.0	65.2	33	9.1	5.9	[120]
169	$La_{0.8}Zr_{0.2}Cu_{0.7}Zn_{0.3}O_x$	2.0	Sol-gel	Fixed-bed	3 [-]	5.0	250	250	3600*	H ₂	350	8.0	52.5	46	12.6	6.6	[120]
170	$La_{0.8}Y_{0.2}Cu_{0.7}Zn_{0.3}O_x$	2.0	Sol-gel	Fixed-bed	3 [-]	5.0	250	250	3600*	H ₂	350	8.0	59.6	37	5.0	3.0	[120]
171	La ₂ O ₃ /CuO/ZnO (La/Cu/Zn: atomic ratio= 1/1/0.5)	1.5	Co-precipitation	Fixed-bed	3 [-]	5.0	270	270	4000*	H ₂	350	8.0	39.5	59.5	15.6	6.1	[121]
172	$LaCr_{0.5}Cu_{0.5}O_3$	0.5	Sol-gel	Fixed-bed	3 [-]	2.0	250	250 - 300	9000	H ₂	350	2.0	90.8	5.5	10.4	9.4	[122]
173	Ag ₂ O/ZnO/Al ₂ O ₃ (Ag = 10 wt%, atomic ratio: Ag/ZnO= 1)	1.0	Impregnation	Fixed-bed	3 [-]	5.0	250	250	6000	H ₂	350	-	75	25	-	3.8	[11],[123]
174	Ag ₂ O/ZnO/Ga ₂ O ₃ /Al ₂ O ₃ (10 Ag/2 Ga wt%)	1.0	Impregnation	Fixed-bed	3 [-]	5.0	250	250	6000	H ₂	350	-	82.6	17.4	-	5.9	[11],[123]
175	Ag ₂ O /ZnO/ZrO ₂ (5.4 Ag/24.5 Zn/9.9 Zr/60.2 O ₂ atom %)	2.0	Co-precipitation	Fixed-bed	3 [-]	8.0	220	180 - 250	3300*	10% H ₂ /N ₂	200 to 350	15	97	-	2.0	1.9	[7],[68]
176	Au ₂ O ₃ /ZnO (Au= 5 atom %)	-	Co-precipitation	Fixed-bed	3 [10% Ar]	5.0	250	150 - 400	3000	-	-	-	48.8	-	8.2	4.0	[124]
177	Au ₂ O ₃ /CuO/ZnO/Al ₂ O ₃ (Au= 1 wt%, mole ratio: Cu/Zn/Al = 4/1/1)	0.2	Rapid precipitation	Fixed-bed	6 [-]	6.0	260	200 - 260	7000*	H ₂	300	2.0	-	-	28	16.6	[125]
178	Au ₂ O ₃ /Fe ₂ O ₃ (Au= 5 atom %)	1.0	Co-precipitation	Fixed-bed	3 [10% Ar]	5.0	250	150 - 400	3000	1 vol% H2/N2	250	8.0 to 12	29.3	69.6	18.4	5.4	[126]
179	Au ₂ O ₃ /TiO ₂ (Au= 2 atom %)	1.0	Deposition- precipitation	Fixed-bed	3 [10% Ar]	5.0	250	150 - 400	3000	1 vol% H2/N2	250	8.0 to 12	6.5	75.3	18.6	1.2	[126]
180	Au ₂ O ₃ /ZnFe ₂ O ₄ (Au= 5 atom %)	1.0	Co-precipitation	Fixed-bed	3 [10% Ar]	5.0	300	150 - 400	3000	1 vol% H ₂ /N ₂	250	8.0 to 12	24.4	74.6	20.1	4.9	[126]
181	PtO ₂ /MgO (Pt= 2 wt%)	-	Impregnation	Fixed-bed	1 [-]	1.0	260	260 - 300	-	H ₂	400	2.0	78.5	-	-	-	[103],[127]
182	[PtO2–W]/SiO ₂ (2.0 Pt/1.9 W wt%)	0.2	Impregnation	Fixed-bed	3 [-]	3.0	240	200- 300	2240	H ₂	400	2.0	86.6	13.4	4.0	3.4	[24],[128]
183	[PtO ₂ -Cr ₂ O ₃]/SiO ₂ (2.4 Pt/0.6 Cr wt%)	0.2	Impregnation	Fixed-bed	3 [-]	3.0	200	200- 300	2240	H ₂	400	2.0	51.1	48.9	2.2	1.1	[24],[128]

184	PdO/Ga ₂ O ₃ (10/90 wt%)	1.0	Co-precipitation	Fixed-bed	3 [-]	5.0	250	250	18000	10 % H₂/He	250	-	51.5	47.9	19.6	10.1	[104],[115]
185	Ga ₂ O ₃ -PdO/SiO ₂ (2.6 Ga/2 Pd wt%, atomic ratio: Ga/Pd= 2)	0.5	Incipient wetness impregnation	Fixed-bed	3 [-]	3.0	250	250	7800*	5 % H ₂ /Ar	450	2.0	70	28.2	-	-	[129]
186	PdO/β-Ga ₂ O ₃ (Pd= 1 wt%)	-	Impregnation	Glass-lined-S microreactor	3 [-]	3.0	250	250	8200*	5% H₂/Ar	450	2.0	52	48	0.86	0.4	[130]
187	PdO/CeO ₂ (Pd= 3 wt%)	-	Conventional impregnation	Fixed-bed	3 [-]	2.0	250	250 - 300	3600*	10% H ₂ /N ₂	300	1.0	27.7	67	4.03	1.1	[131]
188	PdO/CeO ₂ (Pd= 4 wt%)	0.5	Impregnation	Fixed-bed	9 [-]	3.0	230	200 - 260	0.1**	H ₂	500	1.0	92.1	7.0	7.9	7.3	[132]
189	PdO/TiO ₂ (Pd= 4 wt%)	0.5	Impregnation	Fixed-bed	3 [-]	3.0	230	200 - 260	0.1**	H_2	500	1.0	84.9	7.7	4.7	4.0	[133]
190	Pd- peptide/In ₂ O ₃ (Pd= 45 wt %)	0.1	Incipient wetness impregnation	Fixed-bed	4 [-]	5.0	300	200 - 300	21000	10% H ₂ /N ₂	200	1.0	70	-	20	14	[134]
191	PdO/In ₂ O ₃ (molar ratio: 1/1)	1.0	Thermal decomposition	CSTR	3 [4% Ar]	5.0	190	190 - 270	18900***	5% H ₂ /N ₂	210	2.0	96	-	36.9	35.4	[135]
192	PdO/CaO/SBA-15 (4 Pd/0.5 Ca wt%)	-	Incipient wetness impregnation	Fixed-bed	3 [4% Ar]	4.1	250	-	0.16**	H ₂	300	2.0	39	61	6.0	2.3	[113],[33]
193	CuO/Mo ₂ C	0.2	Co-precipitation	Fixed-bed	5 [10% Ar]	2.0	300	200 - 300	-	10% CH4/H ₂	700	-	17	38	19	3.2	[136],[137]
194	NiO/Mo ₂ C	0.2	Co-precipitation	Fixed-bed	5 [10% Ar]	2.0	250	200 - 300	-	10% CH4/H ₂	850	-	6.0	29	21	1.2	[136],[137]
195	Co/Mo ₂ C	0.2	Co-precipitation	Fixed-bed	5 [10% Ar]	2.0	250	200 - 300	-	10% CH4/H ₂	850	-	5.0	24	23	1.1	[136],[137]
196	N,P,S-dC@Mo ₂ C-1073K	0.25	Temperature- programmed carbonization	Fixed-bed	3 [5% Ar]	3.0	200	220 - 240	3600	H ₂	400	3.0	91	-	19	17.3	[138]
197	In ₂ O ₃	0.2	Co-precipitation	Microreactor	3 [10% N ₂]	4.0	330	250 - 350	15000	-	-	-	39.7	-	7.1	2.8	[104]
198	YBa ₂ Cu ₃ O ₇	0.2 (cm ³)	-	Microreactor	3 [-]	3.0	240	200 - 280	3600*	25% H₂/He	250	8.0	50.7	45.9	3.4	1.7	[139]
199	ReO ₂ /ZrO ₂ (7 Re/93 ZrO ₂ wt%)	-	Conventional impregnation	Flow reactor	4 [-]	1.0	160	160 - 220	-	-	-	-	73.2	-	-	-	[140]
200	ReO ₂ /Nb ₂ O ₅ (7 Re/93 Nb ₂ O ₅ wt%)	-	Conventional impregnation	Flow reactor	1 [-]	1.0	220	220 - 260	-	-	-	-	52	-	-	-	[140]
201	Rh ₂ O ₃ /Nb ₂ O ₅ (Rh = 3 wt%)	1.0	Co-Impregnation	Flow reactor	1 [-]	1.0	145	145 - 220	2400	H ₂	400	2.0	42.2	-	-	-	[141]
202	Rh ₂ O ₃ /TiO2 (Rh= 3 wt%)	1.0	Impregnation	Flow reactor	3 [-]	1.0	240	240 - 300	2400	H ₂	400	2.0	60.7	-	-	-	[141]

(*) SV= (1/h), (**) F/W=(mol/g-cat.h), (***)F/W= (mL/mmol-cat.h)

References:

[1] Z. Xu, Z. Qian, L. Mao, K. Tanabe and H. Hattori, Methanol Synthesis from CO₂ and H₂ over CuO/ZnO Catalysts Combined with Metal Oxides under 13 atm Pressure. Bull. Chem. Soc. Jpn., 64 (1991) 1658-1663.

[2] K. Jalama, Carbon dioxide hydrogenation over nickel-, ruthenium-, and copper-based catalysts: Review of kinetics and mechanism. Cat. Rev. - Sci. Eng., 59 (2017) 95-164.

[3] H. Arakawa, K. Sayama, Methanol Synthesis from CO₂ and H₂ Over Supported Copper-Zinc Oxide Catalyst. Significant Influence of Support on Methanol Formation. Stud. Surf. Sci. Catal., 75 (1993) 2777-2780.

[4] Y. Amenomiya, Methanol Synthesis from CO₂ + H₂: II. Copper-based binary and ternary catalysts. Appl. Catal., 30 (1987) 57-68.

[5] E. Ramaroson, R. Kieffer, A. Kiennemenn, Reaction of CO-H₂ and CO₂–H₂ on Copper-zinc catalysts promoted by metal oxides of group III and IV. Appl. Catal., 4 (1982) 281-286.

[6] T. Fujitani, J. Nakamura, The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Appl. Catal. A: Gen., 191 (2000) 111-129.

[7] N.A.M. Razali, KT. Lee, S. Bhatia, AR. Mohamed, Heterogeneous catalysts for production of chemicals using carbon dioxide as raw material: A review. Renewable Sustainable Energy Rev., 16 (2012) 4951-4964.

[8] J. Toyir, P. R. de la Piscina, J. L. G. Fierro, N. s. Homs, Catalytic performance for CO₂ conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors. Appl. Catal. B: Environ., 34 (2001) 255-266.

[9] O. Tursunov, L. Kustov, A. Kustov, A. Travyanov, A brief review of Co₂ hydrogenation to methanol over Cu- and Fe-based catalysts. Proceedings of 48th IASTEM International Conference, New York, USA, 15th -16th March 2017, ISBN: 978-93-86291-88-2.

[10] A. Karelovic and P. Ruiza, The role of copper particle size in low pressure methanol synthesis via CO₂ hydrogenation over Cu/ZnO catalysts. Catal. Sci. Technol., 5 (2015) 869-881.

[11] M. Saito, R&D activities in Japan on methanol synthesis from CO₂ and H₂. Catal. Surv. Jpn., 2 (1998) 175-184.

[12] T. Fujitani, M. Saito, Y. Kanai, T. Kakumoto, T. Watanabe, J. Nakamura and T. Uchijima, The role of metal oxides in promoting a copper catalyst for methanol synthesis. Catal. Lett., 25 (1994) 271-276.

[13] J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, Y. Sun, A short review of catalysis for CO₂ conversion. Catal. Today, 148 (2009) 221-231.

[14] I. Ganesh, Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review). Renewable Sustainable Energy Rev., 31 (2014) 221-257.

[15] C. Yang, Z. Ma, N. Zhao, W. Wei, T. Hu, Y. Sun, Methanol synthesis from CO₂-rich syngas over a ZrO₂ doped CuZnO catalyst. Catal. Today, 115 (2006) 222-227.

[16] H. Lei, R. Nie, G. Wu, Z. Hou, Hydrogenation of CO₂ to CH₃OH over Cu/ZnO catalysts with different ZnO morphology. J. Fuel., 154 (2015), 161-166.

[17] R.P.W.J. Struis, S. Stucki, M. Wiedorn, A membrane reactor for methanol synthesis. J. Membr. Sci., 113 (1996) 93-100.

[18] K. Fujimoto, T. Shikada, Selective Synthesis of C₂-C₅ Hydrocarbons from carbon dioxide utilizing a hybrid catalyst composed of a methanol synthesis catalyst and zeolite. Appl. Catal., 31 (1987) 13-23.

[19] M. Hirano, T. Akano, T. Imai and K. Kuroda. Methanol synthesis from carbon dioxide on CuO-ZnO-Al₂O₃ catalysts. Energy Convers. Manage., 36 (1995) 585-588.

[20] S. Saeidi, NAS. Amin, MR. Rahimpour, Hydrogenation of CO₂ to value-added products—A review and potential future developments. J. CO₂ Util., 5 (2014) 66-81.

[21] W. Wang, S. Wang, X. Ma and J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev., 40 (2011) 3703-3727.

[22] Y. Liu, Y. Zhang, T. Wang, N. Tsubaki, Efficient Conversion of Carbon Dioxide to Methanol Using Copper Catalyst by a New Low-temperature Hydrogenation Process. Chem. Lett., 36 (2007) 1182-1183.

[23] H. Lei, Z. Hou and J. Xie., Hydrogenation of CO₂ to CH₃OH over CuO/ZnO/Al₂O₃ catalysts prepared via a solvent-free routine. J. Fuel., 164 (2016) 191-198.

[24] S. G. Jadhav, P. D. Vaidya, B. M. Bhanage, J. B. Joshi, Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies. Chem. Eng. Res. Des., 92 (2014) 2557-2567.

[25] Z. Hong, Y. Cao, J. Deng, K. Fan, CO₂ hydrogenation to methanol over Cu/ZnO/Al₂O₃ catalysts prepared by a novel gel-network-coprecipitation method. Catal. Lett., 82 (2002) 37-44.

[26] F. Gallucci, L. Paturzo, A. Basile, An experimental study of CO₂ hydrogenation into methanol involving a zeolite membrane reactor. Chem. Eng. Process., 43 (2004) 1029-1036.

[27] O. Tursunov, L. Kustov, Z. Tilyabaev, Methanol synthesis from the catalytic hydrogenation of CO₂ over CuO–ZnO supported on aluminum and silicon oxides. J. Taiwan Inst. Chem. Eng., 78 (2017) 416-422.

[28] H. Arakawa, J.-L. Dubois and K. Sayama, Selective conversion of CO2 to methanol by catalytic hydrogenation over promoted copper catalyst. Energy Convers. Manage., 33 (1992) 521-528.

[29] T. Tagawa, G. Pleizier and Y. Amenomiya, Methanol synthesis from CO₂+H₂. Appl. Catal., 18 (1985) 285-293.

[30] P. Gao, F. Li, N. Zhao, F. Xiao, W. Wei, L. Zhong, Y. Sun, Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO₂ hydrogenation to methanol. Appl. Catal. A: Gen., 468 (2013) 442-452.

[31] F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro, F. Frusteri, Synthesis, characterization and activity pattern of Cu–ZnO/ZrO₂ catalysts in the hydrogenation of carbon dioxide to methanol. J. Catal., 249 (2007) 185-194. [32] D. Jingfa, S. Qi, Z. Yulong, C. Songying, W. Dong, A novel process for preparation of Cu/ZnO/Al₂O₃ ultrafine catalyst for methanol synthesis from $CO_2 + H_2$: comparison of various preparation methods. Appl. Catal. A: Gen., 139 (1996) 75-85.

[33] N. Koizumi, X. Jiang, J. Kugai, C. Song, Effects of mesoporous silica supports and alkaline promoters on activity of Pd catalysts in CO2 hydrogenation for methanol synthesis. Catal. Today., 194 (2012) 16-24.

[34] K. Kobl, S. Thomas, Y. Zimmermann, K. Parkhomenko, A-C. Roger, Power-law kinetics of methanol synthesis from carbon dioxide and hydrogen on copper–zinc oxide catalysts with alumina or zirconia supports. Catal. Today., 270 (2016) 31-42.

[35] D. Wang, JunZhao, H. Song, L. Chou, Characterization and performance of Cu/ZnO/Al₂O₃ catalysts prepared via decomposition of M(Cu,Zn)-ammonia complexes under sub atmospheric pressure for methanol synthesis from H₂ and CO₂. J. Nat. Gas. Chem., 20 (2011) 629-634.

[36] J.S. Lee, K.H. Lee, S.Y. Lee and Y.G. Kim, A Comparative Study of Methanol Synthesis from CO₂/H₂ and CO/H₂ over a Cu/ZnO/Al₂O₃ Catalyst. J. Catal., 144 (1993) 414-424.

[37] Z. Liang, P. Gao, Z. Tang, M. Lv, Y. Sun, Three dimensional porous Cu-Zn/Al foam monolithic catalyst for CO₂ hydrogenation to methanol in microreactor. J. CO₂ Utilization., 21 (2017) 191-199.

[38] H. Ahouari, A. Soualah, A. Le. Valant, L. Pinard, P. Magnoux, Y. Pouilloux, Methanol synthesis from CO₂ hydrogenation over copper based catalysts. Reac. Kinet. Mech. Cat., 110 (2013) 131-145.

[39] C. Zhang, H. Yang, P. Gao, H. Zhu, L. Zhong, H. Wang, W. Wei, Y. Sun, Preparation and CO₂ hydrogenation catalytic properties of alumina microsphere supported Cu-based catalyst by deposition-precipitation method. J. CO2 Util., 17 (2017) 263-272.

[40] N. Le-Phuc, T. V. Tran, P. N. Thuy, L. H. Nguyen, T. T. Trinh, Correlation between the porosity of γ -Al₂O₃ and the performance of CuO–ZnO–Al₂O₃ catalysts for CO₂ hydrogenation into methanol. React. Kinet. Catal., DOI: 10.1007/s11144-017-1323-7.

[41] M. Saito, T. Fujitani, M. Takeuchi and T. Watanabe, Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. Appl. Catal. A: Gen., 138 (1996) 311-318.

[42] S. Xiao, Y. Zhang, P. Gao, L. Zhong, X. Li, Z. Zhang, H. Wang, W. Wei, Y. Sun, Highly efficient Cu-based catalysts via hydrotalcite-like precursors for CO₂ hydrogenation to methanol. Catal. Today., 281 (2017) 327-336.

[43] H. Jeong, C.H. Cho, T.H. Kim, Effect of Zr and pH in the preparation of Cu/ZnO catalysts for the methanol synthesis by CO₂ hydrogenation. Reac. Kinet. Mech. Cat., 106 (2012) 435-443.

[44] Y. Zhang, L. Zhong, H. Wang, P. Gao, X. Li, S. Xiao, G. Ding, W. Wei, Y. Sun, Catalytic performance of spray-dried Cu/ZnO/Al₂O₃/ZrO₂ catalysts for slurry methanol synthesis from CO₂ hydrogenation. J. CO₂ Util., 15 (2016) 72-82.

[45] X. An, J. Li, Y. Zuo, Q. Zhang, D. Wang, J. Wang, A Cu/Zn/Al/Zr Fibrous Catalyst that is an Improved CO₂ Hydrogenation to Methanol Catalyst. Catal. Lett., 118 (2007) 264-269.

[46] H. Wang, P. Gao, T. Zhao, W. Wei and Y. Sun, Recent advances in the catalytic conversion of CO₂ to value added compounds. Sci. Chin. Chem. 58 (2015) 79-92.

[47] P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong, H. Wang, Y. Sun, Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO₂ hydrogenation to methanol. J. Catal., 298 (2013) 51-60.
[48] X. Dong, F. Li, N. Zhao, Y. Tan, J. Wang, F. Xiao, CO₂ hydrogenation to methanol over Cu/Zn/Al/Zr catalysts prepared by liquid reduction. Chin. J. Catal., 38 (2017) 717-725.

[49] P. Gao, F. Li, F. Xiao, N. Zhao, N. Sun, W. Wei, L. Zhong and Y. Sun, Preparation and activity of Cu/Zn/Al/Zr catalysts via hydrotalcite-containing precursors for methanol synthesis from CO₂ hydrogenation. Catal. Sci. Technol., 2 (2012) 1447-1454.

[50] P. Gao, R. Xie, H. Wang, L. Zhong, L. Xia, Z. Zhang, W. Wei, Y. Sun, Cu/Zn/Al/Zr catalysts via phase-pure hydrotalcite-like compounds for methanol synthesis from carbon dioxide, J. CO₂ Util., 11 (2015) 41-48.

[51] L. Zhang, Y. Zhang, S. Chen, Effect of promoter SiO₂, TiO₂ or SiO₂-TiO₂ on the performance of CuO-ZnO-Al₂O₃ catalyst for methanol synthesis from CO₂ hydrogenation. Appl. Catal. A: Gen., 415–416 (2012) 118-123.

[52] Y.J. Fan, S.F. Wu, A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol. J. CO₂ Util., 16 (2016) 150-156.

[53] C. Li, X. Yuan, K. Fujimoto, Development of highly stable catalyst for methanol synthesis from carbon dioxide. Appl. Catal. A: Gen., 469 (2014) 306-311.

[54] H. Ren, C-H. Xu, H-Y. Zhao, Y-X. Wang, J. Liu, J-Y. Liu, Methanol synthesis from CO₂ hydrogenation over Cu/γ-Al₂O₃ catalysts modified by ZnO, ZrO₂ and MgO. J. Ind. Eng. Chem., 28 (2015) 261-267.

[55] P. Gao, F. Li, L. Zhang, N. Zhao, F. Xiao, W. Wei, L. Zhong, Y. Sun, Influence of fluorine on the performance of fluorine-modified Cu/Zn/Al catalysts for CO₂ hydrogenation to methanol. J. CO₂ Util., 2 (2013) 16-23.

[56] P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong, Y. Sun, Fluorine-modified Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO₂ hydrogenation to methanol. Catal. Commun. 50 (2014) 78-82.

[57] T. Tagawa, N. Nomura, M. Shimakage and S. Goto, Effect of suppots on copper catalysts for methanol synthesis from CO₂ + H₂. Res. Chem. Intermed., 21 (1995) 193-202.

[58] T. Witoon, N. Kachaban, W. Donphai, P. Kidkhunthod, K. Faungnawakij, M. Chareonpanich, J. Limtrakul, Tuning of catalytic CO₂ hydrogenation by changing composition of CuO–ZnO–ZrO₂ catalysts. Energy Convers. Manage., 118 (2016) 21-31.

[59] X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, Glycine-nitrate combustion synthesis of CuO–ZnO–ZrO₂ catalysts for methanol synthesis from CO₂ hydrogenation. J. Catal., 271 (2010) 178-185.

[60] X. Guo, D. Mao, S. Wang, G. Wu, G. Lu, Combustion synthesis of CuO–ZnO– ZrO₂ catalysts for the hydrogenation of carbon dioxide to methanol. Catal. Commun., 10 (2009) 1661-1664.

[61] C. Huang, S. Chen, X. Fei, D. Liu and Y. Zhang, Catalytic Hydrogenation of CO₂ to Methanol: Study of Synergistic Effect on Adsorption Properties of CO₂ and H₂ in CuO/ZnO/ZrO₂ System. Catal., 5 (2015) 1846-1861.

[62] L. Li, D. Mao, J. Yu, X. Guo, Highly selective hydrogenation of CO₂ to methanol over CuO-ZnO-ZrO₂ catalysts prepared by a surfactant-assisted co-precipitation Method. J. Power Sources., 279 (2015) 394-404.

[63] F. Arena, G. Mezzatesta, G. Zafarana, G. Trunfio, F. Frusteri, L. Spadaro, Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO₂ hydrogenation. J. Catal., 300 (2013), 141-151.

[64] M. Madej-Lachowska, A. Kasprzyk-Mrzyk, H. MOROZ, A. I. Lachowski, H. Wyzgol, Methanol Synthesis from Carbon Dioxide and Hydrogen over CuO/ZnO/ZrO₂ promoted catalysts. Chemik., 68 (2014) 61-68.

[65] X. Dong, F. Li, N. Zhao, F. Xiao, J. Wang and Y. Tan, CO₂ hydrogenation to methanol over Cu/ZnO/ZrO₂ catalysts prepared by precipitation-reduction method. Appl. Catal. B: Environ., 191 (2016) 8-17.

[66] L. Angelo, M. Girleanu, O. Ersen, C. Serra, K. Parkhomenko, A-C. Roger, Catalyst synthesis by continuous coprecipitation under micro-fluidicconditions: Application to the preparation of catalysts for methanolsynthesis from CO₂/H₂. Catal. Today., 270 (2016) 59-67.

[67] J. Słoczyński, R. Grabowski, A. Kozłowska, P. Olszewski, J. Stoch, J. Skrzypek, M. Lachowska, Catalytic activity of the M/(3ZnO.ZrO₂) system (M = Cu, Ag, Au) in the hydrogenation of CO₂ to methanol. Appl. Catal. A: Gen., 278 (2004) 11-23.

[68] R. Raudaskoski, E. Turpeinen, R. Lenkkeri, E. Pongrácz, R. L. Keiski, Catalytic activation of CO₂: Use of secondary CO₂ for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts. Catal. Today., 144 (2009) 318-323.

[69] F. Arena, G. Italiano, K. Barbera, G. Bonura, L. Spadaro, F.Frusteri, Basic evidences for methanol-synthesis catalyst design. Catal. Today., 143 (2009) 80-85.

[70] X. Guo, D. Mao, G . Lu, S. Wang, G. Wu, CO₂ hydrogenation to methanol over Cu/ZnO/ZrO₂ catalysts prepared via a route of solid-state reaction. Catal. Commun., 12 (2011) 1095-1098.

[71] Y. Ma, Q. Sun, D.Wu, W.-H. Fan, Y.-L. Zhang, J.-F. Deng, A practical approach for the preparation of high activity Cu/ZnO/ZrO₂ catalyst for methanol synthesis from CO₂ hydrogenation. Appl. Catal. A: Gen., 171 (1998) 45-55.

[72] R. Raudaskoski, M. V. Niemelä, R. L. Keiski, The effect of ageing time on co-precipitated Cu/ZnO/ZrO₂ catalysts used in methanol synthesis from CO₂ and H₂. Top. Catal., 45 (2007) 57-60.

[73] G. Bonura, M. Cordaro, C. Cannilla, F. Arena, F. Frusteri, The changing nature of the active site of Cu-Zn-Zr catalystsfor the CO₂ hydrogenation reaction to methanol. Appl. Catal. B: Environ., 152–153 (2014) 152-161.

[74] Y. Nitta, O. Suwata, Y. Ikeda, Y. Okamoto, T. Imanaka, Copper-zirconia catalysts for methanol synthesis from carbon dioxide: effect of ZnO addition to Cu-ZrO₂ catalysts. Catal. Lett., 26 (1994) 345-354.

[75] J. Słoczyński, R. Grabowski, P. Olszewski, A. Kozłowska, J. Stoch, M. Lachowska, J. Skrzypek, Effect of metal oxide additives on the activity and stability of Cu/ZnO/ ZrO₂ catalysts in the synthesis of methanol from CO₂ and H₂. Appl. Catal. A: Gen., 310 (2006) 127-137.

[76] J. Xiao, D. Mao, X. Guo and J. Yu, Effect of TiO2, ZrO₂, and TiO₂-ZrO₂ on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol. Appl. Surf. Sci., 338 (2015) 146-153.

[77] K. Okabe, K. Sayama, N. Matsubayashi, K. Shimomura and H. Arakawa, Selective Hydrogenation of Carbon Dioxide to Methanol on Cu-ZnO/SiO₂ Catalysts Prepared by Alkoxide Method. Bull Chem. Soc. Jpn., 65 (1992) 2520-2525.

[78] H. Yang, P. Gao, C. Zhang, L. Zhong, X. Li, S. Wang, H. Wang, W. Wei, Y. Sun, Core–shell structured Cu@m-SiO₂ and Cu/ZnO@m-SiO₂ catalysts for methanol synthesis from CO₂ hydrogenation. Catal. Commun., 84 (2016) 56-60.

[79] T. Inui, K. Kitagawa, T. Takeguchi, T. Hagiwara, Y. Makino, Hydrogenation of carbon dioxide to C1-C7 hydrocarbons via methanol on composite catalysts. Appl. Catal. A: Gen., 94 (1993) 31-44.

[80] J. Xiao, D. Mao, X. Guo, J. Yu, Methanol synthesis from CO₂ hydrogenation over CuO–ZnO–TiO₂ catalysts: the influence of TiO₂ content. Energ. Technol., 3 (2015) 32-39.

[81] H. Arakawa, K. Sayama, K. Okabe and A. Murakami, Promoting effect of TiO₂ addition to CuO-ZnO catalyst on methanol synthesis by catalytic hydrogenation of CO₂. Stud. Surf. Sci. Catal., 77 (1993) 389-392.

[82] V. Deerattrakul, P. Dittanet, M. Sawangphruk and P. Kongkachuichay, CO₂ hydrogenation to methanol using Cu-Zn catalyst supported on reduced grapheme oxide nanosheets. J. CO₂ Util., 16 (2016) 104-113.

[83] J. Toyir, P.R. de la Piscina, J. Luis, G. Fierro, N. Homs, Highly effective conversion of CO₂ to methanol over supported and promoted copper-based catalysts: influence of support and promoter. Appl. Catal. B: Environ., 29 (2001) 207-215.

[84] M. Fujiwara, H. Ando, M. Tanaka and Y. Souma, Hydrogenation of Carbon Dioxide over Cu–Zn–Cr Oxide Catalysts. Bull. Chem. Soc. Jpn., 67 (1994) 546-550.

[85] X. Guo, D. Mao, G. Lu, S. Wang and G. Wu, The influence of La doping on the catalytic behavior of Cu/ZrO₂ for methanol synthesis from CO₂ hydrogenation. J. Mol. Catal. A: Chem., 345 (2011) 60-68.

[86] X.-M. Liu, G. Q. Lu, Z.-F. Yan and J. Beltramini, Recent Advances in Catalysts for Methanol Synthesis via Hydrogenation of CO and CO₂. Ind. Eng. Chem. Res., 42 (2003) 6518-6530.

[87] J. Liu, J. Shi, D. He, Q. Zhang, X. Wu, Y, Surface active structure of ultra-fine Cu/ZrO₂ catalysts used for the CO₂ + H₂ to methanol reaction. Appl. Catal. A: Gen., 218 (2001) 113-119.

[88] Y. Zhang, J. Fei, Y. Yu, X. Zheng, Methanol synthesis from CO₂ hydrogenation over Cu based catalyst supported on zirconia modified γ-Al₂O₃. Energy Convers. Manage., 47 (2006) 3360-3367.

[89] Y. Zhang, J. Fei, Y. Yu, X. Zheng, Study of CO₂ hydrogenation to methanol over Cu–V/γ -Al₂O₃ catalyst. J. Nat. Gas. Chem., 16 (2007) 12-15.

[90] Y. Choi, K. Futagami, T. Fujitani, J. Nakamura, The role of ZnO in Cu/ZnO methanol synthesis catalysts: morphology effect or active site model?. Appl. Catal. A: Gen., 208 (2001) 163-167.

[91] C. Liu, X. Guo, Q. Guo, D. Mao, J. Yu and G. Lu, Methanol synthesis from CO₂ hydrogenation over copper supported on MgO-modified TiO₂. J. Mol. Catal. A: Chem., 425 (2016) 86-93.

[92] D. Gasser, A. Baiker, Hydrogenation of carbon dioxide over copper-zirconia catalysts prepared by in-situ activation of amorphous copper-zirconium alloy. Appl. Catal., 48 (1989) 279-294.

[93] H.-d. Zhuang, S.-f. Bai, X.-m. Liu, Z.-f. Yan, Structure and performance of Cu/ZrO₂ catalyst for the synthesis of methanol from CO₂ hydrogenation. J. Fuel. Chem. Technol., 38 (2010) 462-467.

[94] K. Samson, M. Śliwa, R.P. Socha, K. Góra-Marek, D. Mucha, D. Rutkowska-Zbik, J-F. Paul, M. Ruggiero-Mikolajczyk, R. Grabowski and J. Sloczyński, Influence of ZrO₂ Structure and Copper Electronic State on Activity of Cu/ZrO₂ Catalysts in Methanol Synthesis from CO₂. ACS Catal., 4 (2014) 3730-3741.

[95] Y. Nitta, T. Fujimatsu, Y. Okamoto, T. Imanaka, Effect of starting salt on catalytic behaviour of Cu-ZrO₂ catalysts in methanol synthesis from carbon dioxide. Catal. Lett., 17 (1993) 157-165.

[96] C.-L. Chiang, K.-S. Lin, H-. Chuang, C.-M. Wu, Conversion of hydrogen/carbon dioxide into formic acid and methanol over Cu/CuCr₂O₄ catalyst. Int. J. Hydrogen Energy., DOI: 10.1016/j.ijhydene.2017.04.226.

[97] T. Witoon, J. Chalorngtham, P. Dumrongbunditkul, M. Chareonpanich, J. Limtrakul, CO₂ hydrogenation to methanol over Cu/ZrO₂ catalysts: Effects of zirconia phases. Chem. Eng. J., 293 (2016) 327-336.

[98] R.A. Koeppel and A. Baiker, Copper/zirconia catalysts for the synthesis of methanol from carbon dioxide: Influence of preparation variables on structural and catalytic properties of catalysts. Appl. Catal. A: Gen., 84 (1992) 77-102.

[99] I.U. Din, M.S. Shaharun, A. Naeem, S. Tasleem, M.R. Johan, Carbon nanofiber-based copper/zirconia catalyst for hydrogenation of CO₂ to methanol. J. CO₂ Util., 21(2017) 145-155.

[100] Y. Suna, L. Chen, Y. Bao, G. Wang, Y. Zhang, M. Fu, J. Wu, D. Ye, Roles of nitrogen species on nitrogen-doped CNTs supported Cu-ZrO₂ system for carbon dioxide hydrogenation to methanol. Catal. Today., DOI: 10.1016/j.cattod.2017.04.017.

[101] T. Inui, H. Hara, T. Takeguchi and J.-B. Kim, Structure and function of Cu-based composite catalysts for highly effective synthesis of methanol by hydrogenation of CO₂ and CO. Catal. Today., 36 (1997) 25-32.

[102] R. Ladera, F. J. Pérez-Alonso, J. M. González-Carballo, M. Ojedac, S. Rojas, J. L. G. Fierro, Catalytic valorization of CO₂ via methanol synthesis with Ga-promoted Cu–ZnO–ZrO₂ catalysts. Appl. Catal. B: Environ., 142-143 (2013) 241-248.

[103] K. Sun, Z. Fan, J. Ye, J. Yan, Q. Ge, Y. Li, W. He, W. Yang, C-j. Liu, Hydrogenation of CO₂ to methanol over In₂O₃ catalyst. J. CO₂ Util., 12 (2015) 1-6.

[104] J. Toyir, P.R. de la Piscina, J. Llorca, J-L. G. Fierro and N. Homs, Methanol synthesis from CO₂ and H₂ over gallium promoted copper-based supported catalysts. Effect of hydrocarbon impurities in the CO₂ source. Phys. Chem. Chem. Phys., 3 (2001) 4837-4842.

[105] W. Cai, P.R. Piscina, J. Toyir and N. Homs, CO₂ hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods. Catal. Today., 242 (2015) 193-199.

[106] E.L. Fornero, P. B. Sanguineti, D. L. Chiavassa, A. L. Bonivardi, M. A. Baltanas, Performance of ternary Cu– Ga₂O₃–ZrO₂ catalysts in the synthesis of methanol using CO₂-rich gas mixtures. Catal. Today., 213 (2013) 163-170.

[107] X.-M. Liu, G. Q. Lu, Z.-F. Yan, Nanocrystalline zirconia as catalyst support in methanol synthesis. Appl. Catal. A: Gen., 279 (2005) 241-245.

[108] I. Melián-Cabrera, M.L. Granados, J.L.G. Fierro, Reverse Topotactic Transformation of a Cu–Zn–Al Catalyst during Wet Pd Impregnation: Relevance for the Performance in Methanol Synthesis from CO₂/H₂ Mixtures. J. Catal., 210 (2002) 273-284.

[109] I. Melián-Cabrera, M.L. Granados, J.L.G. Fierro, Pd-Modified Cu–Zn Catalysts for Methanol Synthesis from CO₂/H₂ Mixtures: Catalytic Structures and Performance. J. Catal., 210 (2002) 285-294.

[110] I. Melián-Cabrera, M.L. Granados, J.L.G. Fierro, Effect of Pd on Cu-Zn Catalysts for the Hydrogenation of CO₂ to Methanol: Stabilization of Cu Metal Against CO₂ Oxidation. Catal. Lett., 79 (2002) 165-170.

[111] A. Ota, E. L. Kunkes, I. Kasatkin, E. Groppo, D. Ferri, B. Poceiro, R. M. N. Yerga, M. Behrens, Comparative study of hydrotalcite-derived supported Pd₂Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts. J. Catal., 293 (2012) 27-38.

[112] X. Jiang, N. Koizumi, X. Guo, C. Song, Bimetallic Pd-Cu Catalysts for Selective CO₂ Hydrogenation to Methanol. Appl. Catal. B: Environ., 170-171 (2015) 173-185.

[113] H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E. Gibson, W. Jones, C. Brookes, D. Morgan, G. Lalev, Pd/ZnO catalysts for direct CO₂ hydrogenation to methanol. J. Catal., 343 (2016) 133-146.

[114] C.H. Kim, J.S. Lee, and D.L. Trimm, The preparation and characterisation of Pd–ZnO catalysts for methanol synthesis. Top. In. Catal., 22 (2003) 319-324.

[115] T. Fujitani, M. Saito, Y. Kanai, T. Watanabe, J. Nakamura and T. Uchijima, Development of an active Ga₂O₃ supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen. Appl. Catal. A: Gen., 125 (1995) L199-L202.

[116] S. Fujita, M. Usui, T. Hanada and N. Takezawa, React. Kinet, Methanol synthesis from CO₂-H₂ and from CO-H₂ under atmospheric pressure over Pd and Cu catalysts. React. Kinet. Catal. Lett., 56 (1995) 15-19.

[117] X.-L. Liang, X. Dong, G.-D. Lin, H.-B. Zhang, Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO₂ to methanol. Appl. Catal. B: Environ., 88 (2009) 315-322.

[118] F. Li, H. Zhan, N. Zhao, F. Xiao, CO₂ hydrogenation to methanol over La-Mn-Cu-Zn-O based catalysts derived from perovskite precursors. Int. J. Hydrogen Energy., 42 (2017) 20649-20657.

[119] H. Zhan, F. Li, C. Xin, N. Zhao, F. Xiao, W. Wei, Y. Sun, Performance of the La–Mn–Zn–Cu–O Based Perovskite Precursors for Methanol Synthesis from CO₂ Hydrogenation. Catal. Lett., 145 (2015) 1177-1185.

[120] H. Zhan, F. Li, P. Gao, N. Zhao, F. Xiao, W. Wei, L. Zhong, Y. Sun, Methanol synthesis from CO₂ hydrogenation over La-M-Cu-Zn-O (M = Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors. J. Power Sources., 251 (2014) 113-121.

[121] Z.H.A.N. Haijuan, W.U. Zhiqiang, Z.H.A.O. Ning, L.I.U. Wanyi, W.E.I. Wei, Structural properties and catalytic performance of the La-Cu-Zn mixed oxides for CO₂ hydrogenation to methanol. J. Rare Earths, 36 (2018) 273-280.

[122] L. Jia, J. Gao, W. Fang, Q. Li, Carbon dioxide hydrogenation to methanol over the pre-reduced LaCr_{0.5}Cu_{0.5}O₃ catalyst. Catal. Commun., 10 (2009) 2000-2003.

[123] S. Sugawa, K. Sayama, K. Okabe and H. Arakawa, Methanol synthesis from CO₂ and H₂ over silver catalyst. Energy Convers. Manage., 36 (1995) 665-668.

[124] H. Sakurai and M. Haruta, Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides. Catal. Today., 29 (1996) 361-365.

[125] N. Pasupulety, H. Driss, Y. A. Alhamed, A. A. Alzahrani, M. A. Daous, L. Petrov, Studies on Au/Cu-Zn-Al catalyst for methanol synthesis from CO₂. Appl. Catal. A: Gen., 504 (2015) 308-318.

[126] H. Sakurai, M. Haruta, Carbon dioxide and carbon monoxide hydrogenation over gold supported on titanium, iron, and zinc oxides. Appl. Catal. A: Gen., 127 (1995) 93-105.

[127] T. Inoue and T. Iizuka, Hydrogenation of Carbon Dioxide and Carbon Monoxide over Supported Platinum Catalysts. J. Chem. Soc., Faraday Trans. 1., 82 (1986) 1681-1686.

[128] C. Shao, L. Fan, K. Fujimoto and Y. Iwasawa, Selective methanol synthesis from CO₂/H₂ on new SiO₂-supported PtW and PtCr bimetallic catalysts. Appl. Catal. A: General., 128 (1995) L1-L6.

[129] S.E. Collins, D.L. Chiavassa, A.L. Bonivardi and M.A. Baltanás, Hydrogen spillover in Ga₂O₃–Pd/SiO₂ catalysts for methanol synthesis from CO₂/H₂. Catal. Lett., 103 (2005) 83-88.

[130] S.E. Collins, M.A. Baltanás, A.L. Bonivardi, An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga₂O₃. J. Catal., 226 (2004) 410–421.

[131] W.J. Shen, Y. Ichihashi, H. Ando, Y. Matsumura, M. Okumura, M. Haruta, Effect of reduction temperature on structural properties and CO/CO₂ hydrogenation characteristics of a Pd–CeO₂ catalyst. Appl. Catal. A: Gen., 217 (2001) 231-239.

[132] L. Fan and K. Fujimoto, Development of an active and stable ceria-supported palladium catalyst for hydrogenation of carbon dioxide to methanol. Appl. Catal. A: General., 106 (1993) L1-L7.

[133] L. Fan and K. Fujimoto. Hydrogenation of Carbon Dioxide to Methanol by Titania-Supported Palladium Catalyst: Promotive SMSI Effect. Bull. Chem. Soc. Jpn., 67 (1994) 1773–1776.

[134] N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge, C-J. Liu, CO₂ hydrogenation to methanol over Pd/In₂O₃: effects of Pd and oxygen vacancy. Appl. Catal. B: Environ., 218 (2017) 488-497.

[135] A. García-Trenco, A. Regoutz, E. R. White, D. J. Payne, M. S.P. Shaffer, C. K. Williams, PdIn intermetallic nanoparticles for the Hydrogenation of CO₂ to Methanol. Appl. Catal. B: Environ., 220 (2018) 9-18.

[136] E.T. Kho, T.H. Tan, E. Lovell, R.J. Wong, J. Scott, R. Amal, A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy & Environ., 2 (2017) 204-217.

[137] W. Xu, P.J. Ramírez, D. Stacchiola, J.L. Brito, J.A. Rodriguez, The Carburization of Transition Metal Molybdates (M_XMoO_4 , M = Cu, Ni or Co) and the Generation of Highly Active Metal/ Carbide Catalysts for CO₂ Hydrogenation. Catal. Lett., 145 (2015) 1365-1373.

[138] W. Geng, H. Han, F. Liu, X. Liu, L. Xiao, W. Wu, N,P,S-codoped C@nano-Mo₂C as an efficient catalyst for high selective synthesis of methanol from CO₂ hydrogenation. J. CO₂ Util., 21 (2017) 64-71.

[139] L.Z. Gao, C.T. Au, CO₂ hydrogenation to methanol on a YBa₂Cu₃O₇ catalyst. J. Catal., 189 (2000) 1-15.

[140] T. lizuka, M. Kojima and K. Tanabe, Support Effects in the Formation of Methanol from Carbon Dioxide and Hydrogen over Rhenium Catalysts. J. Chem. Soc. Chem. Commun., (1983) 638-639.

[141] T. Inoue, T. Iizuka and K. Tanabe, Hydrogenation of Carbon Dioxide and Carbon Monoxide over Supported Rhodium Catalysts under 10 bar Pressure. Appl. Catal., 46 (1989) 1-9.