
Supporting Information

Effect of Reduction Atmosphere on Structure and Catalytic Performance of PtIn/Mg(Al)O/ZnO for Propane Dehydrogenation

Ming Zhang¹, Zhen Song¹, Mengquan Guo¹, Xiangxiang Li¹, Yanjun Lin^{2*} and Lihong Zhang^{1*}

Figure S1. XRD patterns of precursors (A) and the corresponding calcined samples (B): (a) ZnO; (b) MAZ; (c) In/MAZ; (d) PtIn/MAZ.

According to the Figure S1(A), the single hydrozincite phase (JCPDS file No. 19-1458) is confirmed from the characteristic diffraction peaks. After hydrothermal treatment with the mixture solution of magnesium nitrate and aluminum nitrate, the strong characteristic diffraction peaks of hydrotalcite-like phase (HT, JCPDS file No. 35-0964) can be detected along with the appearance of some weak diffraction peaks of aluminum hydroxide hydrate (JCPDS file No. 39-0685) except the residual hydrozincite peak at low 2-theta degree. It indicates the MgAl(Zn)-HT is the main crystalline phase on the surface of hydrozincite. After two-step impregnating the calcined product with indium nitrate aqueous solution and chloroplatinic acid aqueous solution, some weak HT diffraction peaks can be indexed for In/MAZ and PtIn/MAZ precursor, suggesting the lattice distortion due to the influence of In³⁺ and Pt⁴⁺ ions. In addition, a slight shift can be seen for their (003) and (006) peak diffractions, this means that the In³⁺ and Pt⁴⁺ ions can be introduced into the reconstruction HT layer[1, 2]. As shown in Figure S1(B), the hydrozincite phase can be successfully transformed into single ZnO phase (JCPDS file No. 75-0576), and the other samples present the diffraction peaks of MgO phase (JCPDS file No. 87-0651) after calcination. The Al₂O₃ diffraction peaks cannot be found, which is believed to be retained and located in interstitial sites in the MgO framework after calcination[3].

Catalysts	Pt loading (wt.%)	Reduction			Reaction	WHSV	Xi ^a	Yib	Stable
		gas	temp (°C)	Time (h)	temp (°C)	(h-1)	(%)	(%)	time ^c (h)
PtIn/Mg(Al)O ^[4]	0.6	H2	580	2.5	620	3.3	37 - 57	93 - 96	12
Pt3Ga/CeAl ^[5]	1.0	H2/N2	500	1.0	600	10.0	41 - 33	99	10
15Zn0.1Pt/Al ^[6]	0.1	N 2	600	-	600	3.0	35 - 31	94 - 97	4
PtCu/CeMgAl ^[2]	0.6	H2/N2	580	2.5	600	3.0	62 - 44	70 - 90	7
PtSnK/ZSM-5 ^[7]	0.5	H2	500	8.0	590	3.0	34 - 33	92 - 93	8
PtSnNa/Ce-MAd[8]	0.5	H2	500	8.0	590	3.0	34 - 28	85 - 96	6
PtIn/MAZ ^e	0.5	H2/N2	600	2.5	600	3.0	32 - 51	97 - 92	25

Table S1. Comparison of the catalytic performance of some state-of-the-art catalysts used in propane dehydrogenation.

^a Propane conversion: "initial – highest or stable".

^b Propylene selectivity: "initial – stable".

^c The time of propane conversion higher than 40% or stable at a certain level when it is below than 40%.

^d The synthetic mesoporous alumina (MA).

^e The catalyst in this work.

References

- Li, J., Zhang, M., Song, Z., Liu, S., Wang, J., Zhang, L. Hierarchical PtIn/Mg(Al)O Derived from Reconstructed PtIn-hydrotalcite-like Compounds for Highly Efficient Propane Dehydrogenation. Catalysts 2019(9), 767. Doi: 10.3390/catal9090767
- 2 Li, Y., Li, J., Yang, X., Wang, X., Xu, Y., Zhang, L. Preparation of CeO₂-Modified Mg(Al)O-Supported Pt-Cu Alloy Catalysts Derived from Hydrotalcite-Like Precursors and Their Catalytic Behavior for Direct Dehydrogenation of Propane. Transactions of Tianjin University 2019, 25, 169–184. Doi: 10.1007/s12209-018-0156-4
- 3 Galvita, V., Siddiqi, G., Sun, P., Bell, A.T. Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts. J Catal 2010, 271(2), 209-219. Doi: https://doi.org/10.1016/j.jcat.2010.01.016
- 4 Shen, L., Xia, K., Lang, W., Chu, L., Yan, X., Guo, Y. The effects of calcination temperature of support on PtIn/Mg(Al)O catalysts for propane dehydrogenation reaction. Chem Eng J 2017, 324, 336-346. Doi: 10.1016/j.cej.2017.05.058
- 5 Wang, T., Jiang, F., Liu, G., Zeng, L., Zhao, Z.J., Gong, J. Effects of Ga doping on Pt/CeO₂-Al₂O₃ catalysts for propane dehydrogenation. Aiche J 2016, 62(12), 4365-4376. Doi: 10.1002/aic.15339
- 6 Liu, G., Zeng, L., Zhao, Z., Tian, H., Wu, T., Gong, J. Platinum-Modified ZnO/Al₂O₃ for Propane Dehydrogenation: Minimized Platinum Usage and Improved Catalytic Stability. Acs Catal 2016, 6(4), 2158-2162. Doi: 10.1021/acscatal.5b02878
- 7 Zhang, Y., Zhou, Y., Zhang, S., Zhou, S., Sheng, X., Wang, Q., Zhang, C. Catalytic structure and reaction performance of PtSnK/ZSM-5 catalyst for propane dehydrogenation: influence of impregnation strategy. J Mater Sci 2015, 50(19), 6457-6468. Doi: 10.1007/s10853-015-9201-z
- 8 Zhou, S., Zhou, Y., Shi, J., Zhang, Y., Sheng, X., Zhang, Z. Synthesis of Ce-doped mesoporous γ-alumina with enhanced catalytic performance for propane dehydrogenation. J Mater Sci 2015, 11(50), 3984-3993. Doi: 10.1007/s10853-015-8954-8