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Figure S1. XRD patterns of precursors (A) and the corresponding calcined samples (B): (a) ZnO; (b) 

MAZ; (c) In/MAZ; (d) PtIn/MAZ. 

 

According to the Figure S1(A), the single hydrozincite phase (JCPDS file No. 19-1458) is 

confirmed from the characteristic diffraction peaks. After hydrothermal treatment with the 

mixture solution of magnesium nitrate and aluminum nitrate, the strong characteristic 

diffraction peaks of hydrotalcite-like phase (HT, JCPDS file No. 35-0964) can be detected along 

with the appearance of some weak diffraction peaks of aluminum hydroxide hydrate (JCPDS 

file No. 39-0685) except the residual hydrozincite peak at low 2-theta degree. It indicates the 

MgAl(Zn)-HT is the main crystalline phase on the surface of hydrozincite. After two-step 

impregnating the calcined product with indium nitrate aqueous solution and chloroplatinic 

acid aqueous solution, some weak HT diffraction peaks can be indexed for In/MAZ and 

PtIn/MAZ precursor, suggesting the lattice distortion due to the influence of In3+ and Pt4+ ions. 

In addition, a slight shift can be seen for their (003) and (006) peak diffractions, this means that 

the In3+ and Pt4+ ions can be introduced into the reconstruction HT layer[1, 2]. As shown in 
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Figure S1(B), the hydrozincite phase can be successfully transformed into single ZnO phase 

(JCPDS file No. 75-0576), and the other samples present the diffraction peaks of MgO phase 

(JCPDS file No. 87-0651) after calcination. The Al2O3 diffraction peaks cannot be found, which 

is believed to be retained and located in interstitial sites in the MgO framework after 

calcination[3].  

 

 

 

Table S1. Comparison of the catalytic performance of some state-of-the-art catalysts used in 

propane dehydrogenation. 

Catalysts 

Pt 

loading 

(wt.%) 

Reduction 

conditions 
Reaction 

temp  

(°C) 

WHSV 

(h-1) 

Xia  

(%) 

Yib  

(%) 

Stable  

timec  

(h) gas 
temp  

(°C) 

Time  

(h) 

PtIn/Mg(Al)O[4]  0.6 H2 580 2.5 620 3.3 37 - 57 93 - 96 12 

Pt3Ga/CeAl[5] 1.0 H2/N2 500 1.0 600 10.0 41 - 33 99 10 

15Zn0.1Pt/Al[6] 0.1 N2 600 - 600 3.0 35 - 31 94 - 97 4 

PtCu/CeMgAl[2] 0.6 H2/N2 580 2.5 600 3.0 62 - 44 70 - 90 7 

PtSnK/ZSM-5[7] 0.5 H2 500 8.0 590 3.0 34 - 33 92 - 93 8 

PtSnNa/Ce-MAd[8] 0.5 H2 500 8.0 590 3.0 34 - 28 85 - 96 6 

PtIn/MAZe 0.5 H2/N2 600 2.5 600 3.0 32 - 51 97 - 92 25 

a Propane conversion: “initial – highest or stable”. 

b Propylene selectivity: “initial – stable”. 

c The time of propane conversion higher than 40% or stable at a certain level when it is below than 40%. 

d The synthetic mesoporous alumina (MA). 

e The catalyst in this work. 
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