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Abstract: Wastewater from the textile industry has a substantial impact on water quality.
Synthetic dyes used in the textile production process are often discharged into water bodies as
residues. Highly colored wastewater causes various of problems for the aquatic environment such
as: reducing light penetration, inhibiting photosynthesis and being toxic to certain organisms.
Since most dyes are resistant to biodegradation and are not completely removed by conventional
methods (adsorption, coagulation-flocculation, activated sludge, membrane filtration) they persist
in the environment. Advanced oxidation processes (AOPs) based on hydrogen peroxide (H2O2)
have been proven to decolorize only some of the dyes from wastewater by photocatalysis. In this
article, we compared two very different photocatalytic systems (UV/peroxydisulfate and UV/H2O2).
Photocatalyzed activation of peroxydisulfate (PDS) generated sulfate radicals (SO4

•−), which reacted
with the selected anthraquinone dye of concern, Acid Blue 129 (AB129). Various conditions, such as
pH and concentration of PDS were applied, in order to obtain an effective decolorization effect,
which was significantly better than in the case of hydroxyl radicals. The kinetics of the reaction
followed a pseudo-first order model. The main reaction pathway was also proposed based on
quantum chemical analysis. Moreover, the toxicity of the solution after treatment was evaluated
using Daphnia magna and Lemna minor, and was found to be significantly lower compared to the
toxicity of the initial dye.

Keywords: photocatalysis; dye; UV; peroxydisulfate; advanced oxidation process

1. Introduction

A source of clean water is important for various industrial, social and economic development
sectors; therefore, it has to be constantly monitored for impurities. Increased human activity has
introduced a wide range of toxic chemicals including inorganic (e.g., chromium, mercury, lead) and
organic (e.g., pesticides, surfactants, pharmaceuticals) pollutants into the aqueous environment [1,2].
A significant source of such polluting compounds is wastewater from the textile industry, which is
classified as the most polluting of all industrial sectors in terms of effluent volume and its chemical
content [3]. The chemical loads of textile effluents originate from the residues of textile production
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processes, such as printing, scouring, bleaching and dyeing [4]. During the batch dyeing process,
which is a common method for dying textiles, approximately 10% to 15% of the synthetic dyes used
are lost, due to the inefficiency of the operation [5]. The residues are discharged into the effluent,
from which they cannot be effectively removed by conventional wastewater treatment processes [6].

Dyes may be classified by their application or chemical structure into direct dyes (polyazo
compounds, stilbenes, oxazines), basic dyes (diazahemicyanine, hemicyanine, cyanine, thiazine,
acridine) or solvent dyes (azo, anthraquinone) [7]. Polyazo dyes have three or more N=N bonds in
the molecule, and the number of azo groups attached to its center determines the color index of the
dye (CI, systematic classification of colors by their saturation, brightness and hue) [8]. Designed to be
highly stable towards light, temperature, water and detergents, dyes persist in the environment [9].
The presence of one or more benzene rings in their structure makes them more recalcitrant to
biodegradation [10]. Moreover, dyes discharged into water even at a low concentration (even below
1 mg/L) are not only highly visible, which affects the aesthetic quality and transparency of water bodies
(lakes, rivers) [11], but they also disturb the aquatic life by reducing light penetration and inhibiting
photosynthesis, which causes oxygen deficiency [12]. Azo and anthraquinone dyes represent around
90% of all organic colorants [13]. They pose a threat to aquatic organisms (bacteria, algae, fish) by being
toxic (lethal effect, genotoxic, mutagenic, carcinogenic) [14,15]. In particular, Acid Blue 129 (AB129),
which is an acidic dye with an anthraquinone structure, being extensively used in the dyeing of silk,
wool, cotton, paper, leather and nylon [16], was found to be associated with an ecotoxic hazard and
danger of bioaccumulation [17]. The properties and structure of Acid blue 129 (AB129) are described
in Table 1.

Table 1. Acid blue 129 (AB129) properties and structure

Chemical Formula: C23H19N2NaO5S
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Acid blue 129 structure

Name: Sodium-1-amino-4-(2, 4, 6-trimethylanilino)
anthraquinone-2-sulfonate

Molecular weight: 458.46

{Melting point: >300 ◦C

The conventional treatments of textile effluents involve, among others things: adsorption,
coagulation-flocculation, membrane filtration and activated sludge [18,19]. However, these methods
are not completely efficient and have several shortcomings. The adsorption process usually involves
the use of activated carbon, which is expensive and incurs additional to regeneration and disposal
costs [20]. Several dyes can inhibit bacteria development in activated sludge or cause membrane
fouling using the filtration method [21,22]. Coagulation–flocculation is a pH-dependent process,
which generates an extensive amount of concentrated sludge and is not suitable for all dyes [23].

Considering the obstacles in conventional textile wastewater treatment, alternative methods
were developed. One of which is the advanced oxidation process (AOP), which utilizes highly
reactive oxidizing intermediates like hydroxyl radicals (•OH) [24]. These radicals are often catalytically
generated from hydrogen peroxide (H2O2) or ozone. For example, the Fenton reaction uses iron as
a catalyst for producing •OH. AOPs can also utilize ozone (O3) to produce •OH, which is used for
decolorization of the azo dyes C.I. Reactive black 5 [25]. Ultraviolet (UV) radiation can catalyze the
generation of •OH by photolysis of H2O2. This process was reported to be effective in the degradation of
some dyes [26,27]. UV is also extensively used in combination with O3 [28]. In one study, besides acting
as a catalyst, UV radiation also contributed to the enhanced removal of total organic carbon (TOC) and
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chemical oxygen demand (COD), in a decolorization experiment of Reactive Blue 19 [29]. While the
oxidation-reduction potential (ORP) of •OH/H2O is 2.8 V (at an acidic pH) and •OH/OH- is 1.89 V
(at an alkaline pH) [30], the use of H2O2 to generate radicals is not cost-effective. For example, Argun
and Karatas [31] reported that 4 g/L of H2O2 and 0.2 g/L of iron salt were used to decolorize 200 mg/L
of synthetic dye. Similarly, Meric et al. [32] used 0.4 g/L of H2O2 and 0.1 g/L of iron salt to decolorize
100 mg/L of dye. Therefore, high consumption of H2O2 provides an economical challenge and increases
the need to find cheaper and more effective substitutes, e.g., permanganate, ozone, persulfate anions
or sulfate radicals [33]. Sulfate radicals (SO4

•−) and •OH- based oxidation processes have comparable
reaction rates for the removal of some pharmaceuticals [34], but sulfate radicals usually have a longer
half-life (30–40 µs) than •OH (10−3 µs) [35,36]. Both radicals differ also in their reaction behavior,
whereby SO4

•− favors electron transfer and •OH reacts more by addition and H-abstraction [37,38].
This is reflected in the different types of dyes treated. For example, Tang and Huren [39] reported that
•OH is ineffective for the oxidation of anthraquinone dyes, while degradation by SO4

•− is effective [40].
SO4

•− may be generated by catalytic activation of peroxydisulfate (PDS) by: heat, UV radiation,
transition metals, electrolysis, transition metals or radiolysis [41,42]. While PDS in the form of sodium
persulfate is cheaper (0.74 USD/kg) [43] and safer to handle than liquid H2O2 (1.5 USD/kg), it is more
expensive if calculated per mol (0.18 USD/mol PDS, 0.05 USD/mol H2O2), and hence the amount of
radicals generated. Despite the many advantages of persulfate treatment, its disadvantages also have
to be taken into consideration, such as post-treatment toxicity. Post-contamination with sulfate salts
may be thought a small problem in comparison to the toxic by-products formed in a SO4

•− system,
including transformation products of target contaminants (e.g., polynitrophenol compounds formed
from nitrophenols [44]) and the by-products generated from effluent organic matter. SO4

•− is known
to be more prone to form such post-contamination; therefore, toxicity studies after persulfate treatment
are recommended [41].

In this study, photocatalyzed decolorization experiments of anthraquinone dye AB129 were
conducted under various conditions. The work was performed to evaluate the role of sulfate and
hydroxyl radicals in the dye oxidation. Pseudo-first order rate kinetics were also evaluated, and a
simple pathway was proposed. Finally, the post-treatment toxicity of by-products was measured.
To the best of our knowledge, this is the first time that the UV application of PDS has been used for
the catalyzed oxidation of anthraquinone dye. Table 2 shows the various methods used to degrade
anthraquinone dyes.

Table 2. Methods used to degrade anthraquinone dyes.

Method Used Dye Decolorization [%]/Time [h] Reference

AOP (wet air, wet peroxide,
Fenton, photocatalytic,) Reactive Blue 4 100%, 100%, 99%/1

and 100%/0.75 [45]

AOP (TiO2 and ZnO
nanoparticles + photodegradation) Reactive Blue 19 >95%/0.5 [46]

AOP (ozonation) Reactive Blue 19 ~100%/0.3 [47]

AOP (TiO2 + photodegradation) Reactive Blue 19 ~75%/3 [48]

AOP (Fenton reaction with pyrite ash) Reactive Blue 4 100%/0.5 [49]

UV radiation and ozonation Reactive Blue 19 100%/0.1 [50]

AOP (Fenton, photo-Fenton), UV radiation Reactive Blue 19 81%, 98%, 42%/0.3 [51]

AOP (Sulfate radical + UV) Acid Blue 129 87%/1 This work

2. Results and Discussion

Several experiments were performed, including the influence of •OH and SO4
•− on the

decolorization efficiency, effect of PDS concentration, pH, possible reaction pathways, and the
ecotoxicity of by-products.
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2.1. Influence of •OH and SO4
•− on AB129 Decolorization

To determine the decolorization efficiency of both radical species on AB129, we performed
experiments with PDS (source of SO4

•−) and H2O2 (•OH) catalyzed by UV. It is known that from 1 mole
of oxidant, 2 moles of radicals may be generated, according to Equations (1) and (2):

S2O8
2− hv
→ 2SO4

•− (1)

H2O2
hv
→ 2HO• (2)

Figure 1 shows that UV irradiation alone [similarly to PDS (Figure 2) and H2O2 (data not shown)
w/o UV activation] was not able to degrade the dye. The dye seems to be resistant to direct UV
photolysis, as the energy of the photons with a wavelength ranging from 313 to 578 nm is too low to
degrade the molecule of the dye. Also, decolorization by •OH is relatively slow and reached only
12% after one hour of the experiment. Only the UV-catalyzed SO4

•− oxidation process was found
to be effective in the decolorization of AB129, whereby the effect was about 90% of the initial dye
concentration (25 mg/L). Homolysis of the peroxide bond of PDS occurs when catalyzed by UV, which
results in the generation of SO4

•− [52]. In proposed UV/PDS system (in near neutral or acidic pH) the
only type of free radicals formed could be SO4

•−. Water molecules could be oxidized to produce •OH
but this process is very slow (k = 6.6 × 102 s−1) [53] and therefore, not significant in the timeframe of
the experiment.
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Despite the H2O2 concentrations being four times higher than in the case of PDS (10 mM vs. 2.5 mM),
the generated •OH radicals did not react with the AB129 as effectively due to the following possible
reasons. Although H2O2 and PDS molecules have a similar bond length of 1.453 Å and 1.497 Å [54],
H2O2 peroxide bond energy (51.0 kcal/mol) is significantly higher than PDS (33.5 kcal/mol) and,
therefore, it is more difficult to be cleaved by UV irradiation [55]. Furthermore, •OH has an almost
ten times faster recombination rate (k = 5.2 × 109 M−1 s−1) [56] than SO4

•− (k = 5.0 × 108 M−1 s−1) [57]
and, therefore, a smaller amount of generated radicals is available to react with the contaminant,
compared to SO4

•−. Further differences in the decolorization of AB129 may be due to intrinsic
differences in the reaction mechanisms. While SO4

•− works more by electron abstraction because of a
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higher electron affinity (2.43 eV) than •OH (1.83 eV), •OH acts more through hydrogen abstraction or
addition [58]. This makes SO4

•− more selective and highly reactive towards organic contaminants
containing non-bonding electron pairs of atoms such as O, N and S [59]. The first steps of the reaction
between AB129 and sulfate radicals are described in more detail in the subsection “Formation of
by-products”.

The apparent first order (kapp) rate constants, shown in the inset of Figure 1 and calculated based
on Equation (9), are one order of magnitude different higher for SO4

•− than for •OH (0.029 min−1

and 0.0032 min−1 for SO4
•− and •OH, respectively). Both radicals are susceptible to electron transfer;

however, SO4
•− shows a much lower energy barrier for this reaction, which results in markedly

higher kapp. Therefore, it was decided to focus solely on PDS for a better understanding of its reaction
mechanism with the AB129 dye.

2.2. Effect of PDS Concentration

To determine the optimal decolorization conditions, the concentration of PDS was changed from
0.625 to 2.5 mM, as depicted in Figure 2, where the inset shows the decolorization kinetics of AB129 by
different PDS concentrations.
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The concentrations of 0.625 mM and 1.25 mM achieved only 18% and 26% decolorization,
respectively, and are almost comparable with the blank experiment w/o UV light. A further increase
to 2.5 mM caused a significant improvement. The kinetic of the dye removal is significantly faster,
the decrease is linear, and after 60 min the dye decolorization reached 87%. The apparent first-order
rate constants calculated were 0.0037 min−1, 0.0056 min−1 and 0.029 min−1 for 0.625 mM, 1.25 mM
and 2.5 mM PDS, respectively. Therefore, for the four-fold increase in the PDS concentration, the rate
constant increased roughly eight times. This may be because the low concentrations of oxidant did not
produce enough SO4

•- to degrade the dye effectively [60]. Finally, 2.5 mM was chosen as the optimal
concentration in the experiment in terms of efficiency and economy, because higher PDS concentrations
are not economically feasible.
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2.3. Effect of the Initial pH

The other parameter that significantly influences the decolorization efficiency is the initial pH of
the solution. The initial solution pH was varied in the interval between 3 and 11, as shown in Figure 3.Catalysts 2020, 10, x FOR PEER REVIEW 6 of 15 
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Figure 3. Effect of the initial pH on AB129 decolorization rate constant (conditions: 25 mg/L AB129,
absorbance measured at 595 nm, UV 150 W). The fuchsia error bars represent the slope error.

It can be inferred that the pH conditions had a significant influence on the UV catalyzed PDS
oxidation system. The apparent first-order rate constant increased noticeably from the pH range of
3 to 5 (0.0141 min−1 and 0.0145 min−1) to pH 7 (0.029 min−1) and decreased back to half-values for
a higher pH (0.0114 min−1 and 0.0107 min−1 for pH 9 and 11, respectively). The results show that
the neutral conditions are the most optimal for the decolorization reaction. Under an alkaline pH,
the hydroxides (OH−) in the solution undergo reactions with SO4

•− to generate •OH (Equation (3)),
which is a significantly less effective radical species in this respect.

SO4
•− + OH− → •OH + SO4

2− (3)

Furthermore, the generated •OH further reacts with SO4
•− (Equation (4)), decreasing the number

of available radicals.
SO4

•− + •OH → HSO−5 (4)

Under an acidic pH, the further breakdown of PDS to SO4
•− may be catalyzed by acid activation

(Equation (5) and (6)).
S2O8

2− + H+
→ HS2O8

− (5)

HS2O8
−
→ SO4

•− + SO4
2− + H+ (6)

However, the generation of SO4
•- catalyzed by acid conditions and UV together would yield high

concentrations of those radicals. In excess, SO4
•−may favor reactions like scavenging (Equation (7)) [61]

or recombination (Equation (8)) over reactions with the dye.

S2O8
2− + SO4

•−
→ S2O8

•− + SO4
2− (7)

SO4
•− + SO4

•−
→ S2O8

2− (8)

This may explain kapp being lower in an acidic pH compared to a neutral pH, which was also
observed by Liang et al. [62] in a PDS oxidation system. Overall, the most favorable condition for
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oxidation of AB129 is at pH of 7. Alkaline and acidic pH conditions caused inhibition of the reaction
by the possible reasons explained. After evaluating the effect of pH on the decolorization process,
the study focused on the identification of post-treatment intermediates.

2.4. Formation of by-Products

To determine the possible formation of by-products, the absorbance spectra during the
decolorization of AB129 were recorded, as depicted in Figure 4.

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 15 

 

2.4. Formation of by-Products 

To determine the possible formation of by-products, the absorbance spectra during the 
decolorization of AB129 were recorded, as depicted in Figure 4. 

450 500 550 600 650 700 750
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ab
s

Wavelenght [nm]

 0 min
 5 min
 10 min
 20 min
 30 min
 60 min

 
Figure 4. Absorbance spectra of AB129 during decolorization tests (conditions: 25 mg/L AB129, 2.5 
mM PDS). 

At the beginning, a double peak at 595 and 630 nm was recorded. During the experiment, the 
peak at 630 nm slowly disappeared, followed by the peak at 595 nm. At 20 min, a new peak at 535 
nm was formed, which dominated at the end of the experiment (60 min). This peak may represent 
the formed by-products. 

Quantum chemical calculations were performed to determine the most probable pathway of the 
reaction between the sulfate radical and AB129. Firstly, the geometry of AB129 was optimized, as 
shown in Figure 5. 

 
Figure 5. Optimized AB129 molecule obtained using B3LYP/6-31G**. 

Figure 4. Absorbance spectra of AB129 during decolorization tests (conditions: 25 mg/L AB129, 2.5 mM PDS).

At the beginning, a double peak at 595 and 630 nm was recorded. During the experiment, the peak
at 630 nm slowly disappeared, followed by the peak at 595 nm. At 20 min, a new peak at 535 nm
was formed, which dominated at the end of the experiment (60 min). This peak may represent the
formed by-products.

Quantum chemical calculations were performed to determine the most probable pathway of
the reaction between the sulfate radical and AB129. Firstly, the geometry of AB129 was optimized,
as shown in Figure 5.
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Then the CPCM approach was applied in order to model the solvent (water) effect on the calculated
transition energies of the species with the def2-TZVP basis set. The λmax of the visible spectrum
was computed to be 594 nm, almost the same as the wavelength, which was used for determination
of AB129 (595 nm), and corresponded to the HOMO → LUMO and HOMO-1 → LUMO (overall
E = 2.087 eV) transitions of AB129. Moreover, the values of HOMO and LUMO were found to be
−5.413 and −2.863 eV, respectively, whereas the difference in the energy (HOMO-LUMO energy gap)
was 2.55 eV. Similar values were recently computed and reported for Acid Blue 113 by Asghar et al. [63].
Figure 6 shows the HOMO and LUMO of AB129 obtained at B3LYP/6-31G** and a map of the electron
density of the AB129 molecule.
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According to the frontier orbital theory, chemical reactions preferentially occur at the position of
the molecule wherein their frontier orbital intensely overlap [64]. Moreover, the most probable reaction
pathway for sulfate radicals that have a very strong electrophilic character is a direct attack on one of
the atoms of the contaminant molecule, usually the one with the highest electron density in the HOMO
of the aromatic molecule [65]. Figure 6b shows that one of the positions with the highest electron
densities (in the HOMO of AB129) is the region near to nitrogen atom from the secondary amine.
From this, it is possible to conclude that there is a higher preference for the –NH- group, and that the
main product forming in this system is a derivative of hydroxylated anthraquinone.

Furthermore, according to Liu et al. [66], a Hirshfeld charge may be successfully employed to
determine the reactive sites of the electrophilic reactions. Apart from the oxygen atoms, which are
probably not involved in the reactions reported in this study, and a high O/C ratio is often correlated
with a slow reaction between the molecules and the oxidants [67], the N atom of AB129 may be
characterized by the smallest Hirshfeld charge (−0.424), which is even smaller than the second nitrogen
(N1: −0.398) from the primary amine located on the anthraquinone. This may provide further
confirmation that the first and crucial reaction of the sulfate radical with AB129 is an electron transfer
from the –NH- moiety, which splits the AB129 molecule and creates the anthraquinone derivative.

This conclusion may be supported in several other ways. Primarily, the intermediate that was
formed absorbs photons of higher energy (Vis peak shifted to the left side of the spectrum i.e., 535 nm),
which is typical for the anthraquinone derivatives with a much lower molecular weight [39]. A similar
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observation was made by Tang and An, who observed radical driven splitting of Acid Blue 40 with the
formation of a yellow intermediate absorbing light in a similar region to that reported in this study [39].

Considering the possible formation of by-products, their toxicity on model plant fronds and
freshwater crustaceans was evaluated and is discussed below.

2.5. Ecotoxicity

In addition to a determination of decolorization efficiency, it is important to consider the toxicity
of the system for living organisms, since post-treatment by-products may sometimes be more toxic than
the initial contaminant [41]. Tests using plant fronds Daphnia magna and freshwater crustaceans Lemna
minor are often performed in toxicological studies, because they are simple, fast and cost-effective.
Moreover, they represent both plants and animals, which may tell us more about the impact on the
ecosystem, and selected microorganisms are very informative in terms of the potential toxicity of
wastewater [68–70]. For example, Sackey et al. found that Daphnia magna and Lemna minor are effective
for testing the toxicity of leachates [71]. Moreover, Castro et al. [72] investigated the potential toxicity
of effluents from the textile industry before and after treatment, and concluded that the raw textile
effluent was very toxic. Therefore, toxicity tests were performed using the same conditions mentioned
in the methodology of the decolorization test, except different concentrations of PDS and AB129 were
used, as shown in Tables 3 and 4.

Table 3. Toxicity of AB129 by-products on Daphnia magna (* Time 0 min = samples without PDS addition).

Daphnia Magna

PDS/AB129 [mM]

Time [min]

0 * 5 10 20 30 45

Toxicity Effect [%]

0.2/0.2 25 40 35 30 25 20

0.5/0.5 30 40 45 40 30 20

1/1 40 55 65 50 35 25

2/2 50 60 65 55 40 30

Table 4. Toxicity of AB129 by-products on Lemna minor (* Time 0 min = samples without PDS addition).

Lemna Minor

PDS/AB129 [mM]

Time [min]

0 * 5 10 20 30 45

Toxicity Effect [%]

0.2/0.2 8 17 8 0 0 0

0.5/0.5 25 25 25 8 0 0

1/1 33 25 33 17 8 8

2/2 33 33 25 17 17 17

According the guidelines for the interpretation of the obtained toxicity results given by Kudlek [73],
samples characterized by a toxic effect of <25% are nontoxic. Only the lowest concentration of
PDS/AB129 (0.2/0.2 mM) was nontoxic for the Lemna minor test organisms, whereas Daphnia magna
organisms were more sensitive to the action of PDS/AB129, and classified the post-processed samples
subjected to both 0.2/0.2 mM and 0.5/0.5 mM as low toxic (a toxicity effect of between 25% and 50%).
A toxicity effect higher than 50% classified the samples as being toxic. Such results were noted in the
samples between 5 and 20 min of the experiment tested on Daphnia magna, where the concentration of
PDS/AB129 was equal to 1/1 mM and 2/2 mM.
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Nonetheless, both tests indicated that the toxicity of the initial solutions increased along with the
PDS/AB129 concentration. In both tests, up to approximately 10 min of the experiment, the toxicity
increased due to the effect of the addition of PDS. However, in both cases, after this time, a decreasing
trend in toxicity was detected. After 45 min of the experiment, the toxicity for Daphnia roughly halved
for all of the concentrations analyzed and for Lemna it decreased even more. This may indicate that
by-products of AB129 after treatment are less toxic than the original dye. Moreover, PDS toxicity is only
temporary, because it is quickly decomposed and exhibits lower toxicity to the analyzed organisms.

3. Materials and Methods

3.1. Chemicals

Sodium persulfate (Na2S2O8, purity ≥98%), hydrogen peroxide (H2O2, 30% w/w in water),
sodium hydroxide (NaOH, 97% powder), sulfuric acid (H2SO4, 95%–98%), and Acid blue (AB129,
C23H19N2NaO5S, 25% dye content) were purchased from Sigma Aldrich (Prague, Czech Republic).
Hydrochloric acid (HCl, >35%) was purchased from Avantor Performance Materials Poland (Gliwice,
Poland). Deionized water (18.2 MΩ·cm) obtained from ELGA purelab flex system (ELGA, Veolia Water,
Marlow, UK) was used in all of the experiments.

3.2. Analytical

A pH meter TMultiLine® Multi 3430 IDS from WTW (Weilheim, Germany) equipped with SenTix
pH electrodes was used to measure the acidity of the reaction mixture. The visible spectrum of the
samples was measured by a UV-Vis spectrophotometer DR 3900 from Hach (Vancouver, WA, USA)
within the 440–760 nm wavelength range, recorded every 5 nm.

3.3. Decolorization Test

Decolorization experiments of AB129 were performed based on a modified method of Neamtu et al. [74].
Firstly, a solution of AB129 (25 mg/L) and PDS (various concentrations of 0.625 mM, 1.25 mM and
2.5 mM) or H2O2 (10 mM) was prepared in a 100 mL reactor. Then, pH conditions were adjusted by
adding a minimal amount of concentrated NaOH or H2SO4 solution, and the prepared reactor was
exposed to UV radiation under constant magnetic stirring. The UV light source was provided by a
model TQ 150 medium-pressure mercury UV lamp (Heraeus, Hanau, Germany) placed in a quartz
glass (DURAN 50) cooling jacket fed by recirculating tap water. This step maintained a constant
temperature of the mixture of 21 ± 1 ◦C. According to the data provided by the manufacturer, the TQ
150 lamp operated in the cooling jacket emanates radiation with a wavelength λexc of 313, 365, 405,
436, 546, 578 nm, and radiation flux equal to 2.5, 5.8, 2.9, 3.6, 4.6, 4.2 W, respectively. The absorbance
spectra were measured in 1 mL quartz cuvettes by a UV-Vis spectrometer at the wavelength of 595 nm
according to Palencia et al. [75]. The analyses were performed several times and averages and standard
deviations were calculated by Origin 9 software [OriginLab].

3.4. Kinetic Test and AB129 Structure Modelling

A pseudo-first order kinetic model was used to describe the decolorization of AB129 by SO4
•−

and •OH (Equation (9)) [76].

ln
(

Ct

C0

)
= ln

(
At

A0

)
= −kappt (9)

where C0 and Ct are the initial (t = 0) and time-dependent concentrations (at time t), proportional to
the measured absorbance A, respectively, and kapp is an apparent rate constant [77].
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3.5. Quantum Chemical Analysis

The initial coordinates of the AB129 structure were obtained with the Avogadro program [78].
The structure of the AB129 was further optimized using the Orca program package [79], and the
results were validated with Gaussian 16 software [63], both in the gaseous and liquid phase at the
B3LYP/6-31G** level of study, as suggested in a recent work on the Acid blue 113 oxidation [63].
Time-dependent density functional theory TD-DFT was used to predict the excited state properties of
AB129. The outputs were later visualized with the Avogadro program, whereas the electron densities
and Hirshfeld charges were visualized and computed by Multiwfn software [80,81].

3.6. Ecotoxicity Test

Two different bio-tests were used to determine the toxicity of the post-treatment products: the
Lemna sp. growth inhibition test (GIT) and the Daphtoxkit F bioassay. In the GIT, plant fronds of
freshwater vascular plants Lemna minor from our own breeding were used. The test is based on
calculating the number of plant fronds growing for 7 days in a tested and blank sample, prepared
according to the OECD Guideline 221. The test was performed at a temperature of 25 ± 1 ◦C by a
constant exposure to light with an illuminance of 6000 lux.

The Daphtoxkit F bioassay from Tigret (Warszawa, Poland) uses freshwater crustaceans Daphnia
magna to measure their immobility or mortality after 24 h exposure to tested post-process samples,
in comparison to standard freshwater (ISO medium prepared according ISO 6341). The test was
performed on 1-day-old test organisms, according to the OECD Guideline 202. NaOH (0.1 mol/L) and
HCl (0.1 mol/L) solutions were used for pH corrections during the toxicity tests. The toxicity of both
tests was calculated using the following equation 10 [73]:

E =
(NC − NT)

NC
·100% (10)

where E is the toxicity effect (%), NC is the number of living organisms (plant fronds or freshwater
crustaceans) in the control sample, and NT is the number of living organisms (plant fronds or freshwater
crustaceans) in the test sample. Interpretation of the results obtained from both of the toxicity tests
was performed based on the toxicity classification presented in Table 5, and according to guidelines
proposed by Mahugo Santana et al. [82].

Table 5. Interpretation of the toxicity results.

Toxicity Effect E% Toxicity Classification

<25 non-toxic

25–50 low toxic

50.01–75 toxic

>75 highly toxic

4. Conclusions

In this work, we focused on sulfate and hydroxyl radical-based oxidation processes catalyzed by
UV for the treatment of the model dye Acid Blue 129. SO4

•− at a concentration of 2.5 mM successfully
decolorized 25 mg/L of the dye up to 87% within 60 min, whereas •OH at a concentration of 10 mM
was significantly less effective. The pseudo-first-order kinetic rate constant of the optimal reaction
conditions, including neutral pH, was found to be 0.029 min−1. The probable reaction pathway of AB129
with SO4

•− was determined using quantum chemical calculations, indicating electron transfer from the
–NH- moiety, which splits the AB129 molecule creating the anthraquinone derivative. Ecotoxicity tests
of the by-products showed a lower toxicity than the toxicity of the initial dye and only a temporary
effect of PDS.
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