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Abstract: A novel sodium-promoted Fe-Co/NC catalyst prepared by incipient-wet-impregnation
method using ZIF-67 as a support was employed to convert CO2 to light olefins through hydrogenation
reaction. Properties of the synthesized catalysts calcinated at various temperatures (from 400 to
700 ◦C) were investigated by XRD, SEM, TEM and Mössbauer spectroscopy. Characterization results
showed that the support could be fully converted into carbon support above 500 ◦C, which could
anchor metal particles, thus resulting in a uniform dispersion of active components. Furthermore, the
Fe-Co alloy was formed during N2 calcination, and was converted into active components, such as
Fe3O4, Fe5C2, and Co2C during the reaction. The reaction result indicated that FeCo/NC-600 catalyst
exhibited the highest selectivity of light olefins (C2= − C4=, 27%) and CO2 conversion could reach
around 37% when this catalyst pyrolyzed at 600 ◦C in N2. The highest selectivity for light olefins may
be related to the combination of suitable particle size and sufficient active sites of iron carbide.

Keywords: CO2 hydrogenation; Co−Fe bimetallic catalyst; N-doped; Mössbauer spectroscopy;
ZIF-67; pyrolysis of MOFs

1. Introduction

Due to the global warming concerns and the increasing of ocean acidity, highly efficient capture,
and utilization of CO2 has attracted much attention [1–3]. CO2 can be used in food additives, oil and
gas extraction, and synthesis of chemical material [4], while several high value-added products, such
as methane, olefins, liquid fuels, and alcohols can be obtained by CO2 hydrogenation reaction. Among
them, light olefins (C2= − C4=) are kinds of indispensable chemicals, and a series of studies have been
carried out to research the hydrogenation of CO2 to light olefins [5–7]. However, adjusting the ratio of
different active sites to obtain the best adsorption competition between CO2 and CO, and obtaining
high CO2 conversion while inhibiting high selectivity of methane and light saturated hydrocarbons are
still huge challenges [8].

To our knowledge, Fe-based catalysts have been extensively applied in the CO2 hydrogenation
reaction due to similar characteristics to the traditional Fischer–Tropsch (FT) synthesis process [9–12].
In general, the mechanism of the CO2 hydrogenation reaction over Fe-based catalysts is based on
a revised Fischer–Tropsch path, in which CO is firstly generated by the reverse water gas reaction
(RWGS), and then hydrocarbon compounds were generated by the FT reaction [13,14]. Fe3O4 and
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Fe5C2 are generally deemed as the main active sites for each of these two steps [15,16]. However, the
single iron-based catalyst has low catalytic activity and is easy to sinter and deposit carbon. To further
enhance the CO2 conversion and improve the selectivity of light olefins, different metal additives and
supports were introduced to improve the performance [17,18]. Dossary [19] found that Mn additives
can improve the reduction, dispersion, and carbonization of the catalyst by changing the electron
density of metal, and enhance the formation of light olefins. Wang [20] found that Cu additives can
effectively reduce the reduction temperature of the active phase and promote the production of the
active phase, which improved the CO2 conversion, enhanced the selectivity of CO, and inhibited the
generation of methane. While Co additives can effectively reduce the production of carbon deposits and
enhance the stability of the catalyst. Besides, alkali metal promoters, such as potassium and sodium,
can be used as electron promoters to provide electrons to the d empty orbitals of iron or other metals,
which can effectively promote the adsorption of CO2 and suppress the adsorption of hydrogen, thereby
reducing the production of methane and benefiting the production of light olefins [21–23]. Except for
choosing active metals, many studies have shown that the through modulating metal dispersion and
interaction, regulating the surface PH values and pore structure, support may affect the transition of
the metal active phase, and then the catalyst reactivity and product selectivity [24–27]. The interaction
between the metal and the traditional metal oxide is too strong, which would inhibit the reduction and
carbonization of the metal [28,29]. Compared with oxides, carbon support with tunable structures,
such as carbon nanotubes (CNTS), carbon spheres (CS), and graphene, have attracted attention [30–32].
Carbon materials have good hydrothermal stability and hydrophobicity, and their interaction with
metals is weak, which is helpful for metal dispersion and carburization. Recently, carbon materials
doped with electron-rich N components were used in CO2 hydrogenation reactions [33], the addition
of which will change the catalyst structure and electron density to affect the adsorption of CO2 on the
surface [34–36].

In addition to common carbon materials, metal–organic framework materials (MOFS) consisting
of inorganic metal ions and organic ligands, have attracted much attention. Recently, several
studies reported MOFS as sacrificial templates or precursors to form porous carbon supports by
pyrolysis [37–39]. This pyrolysis usually produces metals or metal oxides embedded in the carbon
matrix depending on the specific atmosphere [40], which makes the metal difficult to sinter and
thus enhances its thermodynamic stability [41]. Among various MOFS materials, ZIF-67 is a kind
of zeolite-like imidazole metal–organic framework materials with Co icons as the connection point.
Loading iron on ZIF-67 can form a good bimetallic synergy effect with cobalt, while ZIF-67 shows
the superior performance as a carbon support precursor. Among them, the role of Co in the CO2

hydrogenation reaction has not been fully clarified. It is generally believed that Co has a higher
FTS reactivity.Zhong [42] fo und that cobalt carbide formed during the CO carburization process
can produce light olefins with high selectivity (around 60%). Davis [43] found that Co2C has RWGS
activity, and alkali metals can effectively stabilize the Co2C phase, while it also significantly reduce
the selectivity of methane. Therefore, it is a good strategy for designing Fe–Co bimetallic catalysts.
Satthawong [44] found that adding a small amount of Co to Fe can effectively increase the selectivity
of C2

+ hydrocarbons and inhibit methane production, and in later work they found [45] that the
Fe–Co/Al2O3 catalyst modified by K can effectively improve the formation of light olefins. Li [46]
used electrospinning to synthesize Fe–Co–Zr polymetallic fibers, and found that the addition of cobalt
metal can not only greatly improve the reactivity, but is also conducive to resistance to sintering by
the bimetallic synergistic effect and promote the production of light olefins. Guo [47] found that a
Fe–Co bimetallic catalyst supported on Y-type zeolite can effectively convert CO2 to linear olefins.
However, most of the current researches on iron-cobalt bimetallic catalysts for CO2 hydrogenation
were concentrated on oxide supports or pure metals, and few studies on carbon support for CO2

hydrogenation, lacking understanding of the composition of metal phases and changes during the
CO2 hydrogenation process on carbon support. Therefore, how to construct a suitable active phase
interface to obtain the best activity and light olefin selectivity is a huge challenge.
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Here, we report a ZIF-67-derived sodium-promoted iron-cobalt bimetallic catalyst and explore
the properties, such as the size, phase change, and CO2 hydrogenation performance of the metal
nanoparticles at different pyrolysis temperatures. This work better understands the interaction of iron
and cobalt on the ZIF-67 derived carbon support, and presents a new thought for further regulating
the structure of catalyst and the product composition during the CO2 hydrogenation reaction.

2. Results

2.1. Physical and Chemical Properties of Catalyst

Table 1 displayed the elemental composition and physical properties of the synthesis samples.
The catalyst element composition was shown in Table 1 under different pretreatment temperatures, of
which the relative proportion of cobalt and iron remain at 2, and the metal content increased ascribing to
the H/N loss in MOFs during the pyrolysis process. Figure S1 shows the TG and DTG curves of ZIF-67
impregnated with iron. The catalyst had four-step thermal decomposition behavior: The first weight
loss around 120 ◦C was considered to be related to the loss of physically adsorbed water. The weight
loss with increasing temperature to around 150–200 ◦C may be due to the release of residual molecules
(dimethylimidazole or methanol) and gas from the activation site [48]. The slight decomposition at
about 300 ◦C may be attributed to the loss of iron acetylacetonate. On the other hand, due to the
decomposition of the skeleton, ZIF-67 had a significant mass loss at 400–500 ◦C [49].

Table 1. The physical properties of the synthesis samples.

Catalyst T a(◦C)
Metal content (wt %) b SBET

(m2g−1)
Smicro

(m2g−1)
Smeso

(m2g−1)
Vmicro

(cm−3g−1)
Vmeso

(cm−3g−1)Fe Co Fe/Co

FeCo/NC

400 12.67 24.02 0.53 507 454 52.8 0.207 0.068
500 18.13 34.89 0.52 61.0 0 61.6 0 0.137
600 19.21 36.24 0.53 36.4 0 40.8 0 0.086
700 20.60 40.0 0.52 72.9 0 74.9 0 0.124

ZIF-67 - - - - 1318 1265 53.6 0.578 0.043

(a: Pyrolysis temperature; b: Measured by inductively coupled plasma (ICP)-OES).

The nitrogen adsorption–desorption isotherms of FeCo/NC-T are shown in Figure 1 and Table 1 to
detect the structural properties. According to IUPAC classification, ZIF-67 shows a sharp N2 uptake at a
lower relative pressure (<0.05), suggesting that ZIF-67 has a good microporous structure [50]. However,
FeCo/NC-T displays a type IV isotherm with the H3 hysteresis loop. The hysteresis loops caused
by the capillary condensation closed at P/P0

≈ 0.4, demonstrating the generation of mesopores [51].
The pore structure of ZIF-67 was gradually destroyed due to the raise of pyrolysis temperature, and
part of the specific surface area sacrificed. Due to incomplete pyrolysis at 400 ◦C, part of the skeletal
structure was retained, and the specific surface area of micropores decreased from 1265 to 454 m2g−1.
As the temperature further increased, the micropores of support gradually disappeared, and part of
the micropores were transformed into mesopores [52].

The morphology and structure of prepared ZIF-67 and its derivatives by SEM are shown in
Figure 2. ZIF-67 shows a typical rhombic dodecahedron shape (Figure 2a). As the pyrolysis temperature
increased, the original structure of ZIF-67 was damaged, the particle surface became very rough
and the boundary of the particle interface became blurred. Some self-grown carbon nanotubes were
detected when temperature reached above 500 ◦C as shown in Figure 2b,d–f, which may be related to
the catalytic growth induced by iron [53–55].
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30.08°, 35.43°, 43.06°, 56.94°, and 62.53° were attributed to the CoFe2O4 crystal phase (JCPDS no. 
79-1744). When pyrolysis temperature reached above 500 °C, the support skeleton completely 
collapsed, and only a peak of 44.86° was observed, which was assigned to the FeCo alloy phase 
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Figure 2. SEM images of (a) ZIF-67; (b) FeCo/NC-400; (c) FeCo/NC-500; (d) FeCo/NC-600; and (e)
FeCo/NC-700.

XRD patterns of FeCo/NC-T are displayed in Figure 3. FeCo/NC-400 shows characteristic
diffraction peaks ascribing to the reserved ZIF-67 framework structure at such temperature. Peaks
at 30.08◦, 35.43◦, 43.06◦, 56.94◦, and 62.53◦ were attributed to the CoFe2O4 crystal phase (JCPDS
no. 79-1744). When pyrolysis temperature reached above 500 ◦C, the support skeleton completely
collapsed, and only a peak of 44.86◦ was observed, which was assigned to the FeCo alloy phase (JCPDS
no. 49-1567). With the raise of pyrolysis temperature, the intensity of the Fe–Co alloy diffraction peaks
increased, and the FeCo/NC-700 demonstrated the best crystallinity.
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FeCo/NC-400 to FeCo/NC-700 were 9.9 nm, 12.9 nm, 14.9 nm, and 40.8 nm, respectively (Figure S2a–
d). Metal agglomeration became obvious when the pyrolysis temperature reached 700 °C. Moreover, 
pyrolysis at high temperature exposed more cobalt nanoparticles, which promoted formation of 
iron-cobalt alloys. On the other hand, it can be found from Figure 4 that as the temperature reached 
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Figure 3. XRD images of fresh FeCo/NC-T catalysts.

The TEM result is shown in Figure 4 and Figure S2. On one hand, with the rise of pyrolysis
temperature, the average particle size of the metal increased. The average particle diameters of
FeCo/NC-400 to FeCo/NC-700 were 9.9 nm, 12.9 nm, 14.9 nm, and 40.8 nm, respectively (Figure S2a–d).
Metal agglomeration became obvious when the pyrolysis temperature reached 700 ◦C. Moreover,
pyrolysis at high temperature exposed more cobalt nanoparticles, which promoted formation of
iron-cobalt alloys. On the other hand, it can be found from Figure 4 that as the temperature reached
above 500 ◦C, a small amount of carbon nanotubes with a thickness of ca. 8–12 nm formed on the
support (Figure 4b–d). Except for the metal nanoparticles distributed on the outer surface of the
support, some metals are encapsulated in the mouth of the carbon nanotubes [56].
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The structure of the catalyst was further studied by HRTEM, which is shown in Figure 5.
When pyrolyzed at 400 ◦C (Figure 5a), the measured lattice fringes were 0.201 nm, 0.242 nm, and
0.484 nm, which corresponded to the crystal plane of FeCo (110), CoFe2O4 (006), and CoFe2O4 (003),
respectively. When the temperature reached above 500 ◦C, only the FeCo (110) crystal plane could
be found (Figure 5b), which might be attributed to the gas evolution with oxygen atoms during
the decomposition of the ligand or the unstable decomposition of the oxide. In addition, the metal
nanoparticles produced by MOFs carbonization were wrapped with graphitized carbon, which could
effectively protect metal from sintering. However, when the pyrolysis temperature reaches 700 ◦C, the
metal will obviously agglomerate without being protected by carbon [57].
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To observe the distribution of element species in detail, high angle annular dark field scanning
transmission electron microscopy (HAADF-STEM) and EDS element mapping was used to analyze
FeCo/NC-600. The metal nanoparticles (NPS) were relatively uniformly dispersed on the support
(Figure 6b–d). The results show that in the particles of stem marked with a green line (Figure 6a),
distribution position of Fe element was almost identical with that of Co element, but the Fe-rich
position deviated from the Co-rich position in the NPs (Figure 5c). This result further proved the
existence of FeCo alloy, which was corresponded to the XRD results.
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To study the relationship between the degree of graphitization and the calcination temperature,
FeCo/NC-T was analyzed by Raman spectra as displayed in Figure 7a. The D-band at 1345 cm−1 and
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the G-band at 1580 cm−1 were observed, attributed to disordered carbon and graphitic carbon [58].
The intensity proportion of the D-band to the G-band (ID/IG) shows the degree of graphitization of
the carbon material. With the increasing of pyrolysis temperature, ID/IG decreased from 1.04 to 0.89,
indicating that the graphitization degree became larger. In addition, the peak around 1425 cm−1 at
400 ◦C could be attributed to the N = N stretching vibration during the formation of the C–N = N
bond [37].
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The lower pyrolysis temperature led to a very low degree of graphitization of the support NC 
layer, and no graphitic nitrogen was found in FeCo/NC-400 (Figure 8a). As the temperature reached 
above 500 °C, the graphitization degree of the support increased and a small amount of graphitic 
nitrogen began to form (Figure 8b–d) [61]. The presence of nitrogen can provide anchor sites, which 
promotes high dispersion of the metal [40]. Pyridine-N would regulate the surface electron density 
and match the active metal, and then affect the CO2 activity [62]. 

  

Figure 7. (a) Raman spectra of FeCo/NC-T catalysts and (b) CO2-TPD of FeCo/NC-T catalysts.

To explore the basicity of the catalyst surface and the amount of CO2 adsorbed, we used the
CO2-TPD method on the FeCo/NC-T catalyst (Figure 7b). In the test temperature range, three kinds
of desorption peaks of 120 ◦C, 270 ◦C, and 350 ◦C were mainly observed. Among them, peaks
around 120 ◦C comes from the weakly adsorbed alkaline sites, and the peaks at 270 ◦C and 350 ◦C
correspond to the alkaline sites of medium intensity chemisorption [33,59]. It can be seen that with
the raise of pyrolysis temperature, the adsorption of medium intensity became less and the weak
physical adsorption increased. Table S1 shows the amount of adsorbed CO2. With the rise of pyrolysis
temperature, the quantity of CO2 adsorbed on the surface decreased. More adsorption of CO2 would
contribute to higher CO2 conversion.

XPS spectra were taken to study the chemical composition of nitrogen on the catalyst surface
(Figure 8). The high-resolution N 1s spectra could be divided into three subpeaks at 398.5, 400.5, and
401.1, which belonged to the three N species of pyridinic N, pyrrolic N, and graphitic N (Figure 8a–d).
The quantity of three N species was evaluated by fitting the area to the N 1s curve. The results show
that with the rise of pyrolysis temperature, the total N content and pyridine nitrogen content decrease,
and the graphite nitrogen content increased (Figure 8e) [35,60].
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The lower pyrolysis temperature led to a very low degree of graphitization of the support NC
layer, and no graphitic nitrogen was found in FeCo/NC-400 (Figure 8a). As the temperature reached
above 500 ◦C, the graphitization degree of the support increased and a small amount of graphitic
nitrogen began to form (Figure 8b–d) [61]. The presence of nitrogen can provide anchor sites, which
promotes high dispersion of the metal [40]. Pyridine-N would regulate the surface electron density
and match the active metal, and then affect the CO2 activity [62].

2.2. Activity Test

Table 2 summarizes the relationship between CO2 conversion and product selectivity under a
prepared catalyst during 32 h on stream. Additionally, FeCo/Al2O3 was evaluated as a comparison.
The CO2 conversion under FeCo/NC-400 and FeCo/NC-500 were 48.37% and 47.45%, which were
higher than that of FeCo/NC-600 (37.03%) and FeCo/NC-700 (35.89%). FeCo/NC-400 shows the highest
activity, ascribing to enhanced adsorbed CO2 detected from CO2-TPD. The turnover frequency (TOF)
value of the FeCo/NC-T catalyst decreased with the increase of the pyrolysis temperature, which is
the same change trend as the CO2 conversion. It shows that after eliminating the influence of metal
content, pyrolysis under low temperature conditions will facilitate the formation of iron oxides, thereby
providing higher RWGS activity.

In addition, Pyridine-N can benefit the electron transfer of the catalyst and provide more anchor
points for the metal active phase. XPS analysis of FeCo/NC-400 demonstrated the highest content of
pyridine-N. Moreover, the smaller particle size of FeCo/NC-400 was helpful to more exposed active
sites. The connection of Fe and O facilitated the Fe3O4 formation, which acts as the RWGS active phase.
The result is shown in Mössbauer spectra as follows.
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Table 2. CO2 hydrocarbon conversion and product selectivity over the FeCo/NC-T catalysts.

Catalyst CO2 conv.
(%)

TOF
(h−1)

Product Sel (C-mol%) O/Pa

CO CH4 C2–C4 C2= − C4= C5
+ alcohol

FeCo/NC-400 48.37 10.75 1.39 67.31 14.12 11.14 0.86 5.19 0.79
FeCo/NC-500 47.45 7.37 0.00 57.88 15.52 19.15 1.04 6.41 1.24
FeCo/NC-600 37.03 5.43 1.13 44.50 20.75 27.05 1.63 4.95 1.30
FeCo/NC-700 35.89 4.91 0.00 47.40 15.21 25.65 1.22 10.52 1.69
FeCo/Al2O3 48.58 7.82 0.27 76.19 22.62 0.02 0.30 0.50

(a) Olefin to paraffin proportion (O/P) of C2−C4 over the FeCo/NC-T catalysts (reaction conditions: 0.50 g catalyst,
320 ◦C, 2 MPa, H2/CO2 = 3, space velocity = 6240 mL h–1gcat−1, and TOS = 32 h).

Mössbauer spectra are taken to identify the iron phases of the catalysts. The 57Fe Mössbauer
spectra of the FeCo/NC-600 catalyst are presented in Figure 9. The hyperfine parameters including
central shift (CS), quadrupole splitting (QS), and hyperfine magnetic field (H) are shown in Table
S2 and Figure S3. The spectrum (Figure 9a) consisted of one magnetic sextet with one central
paramagnetic doublet. Stanfield and Delgass found [63] the hyperfine magnetic field within the range
of 330–360 kOe (330 kOe for α-Fe). Hereby, the dominating sextet with parameters CS ~ 0.013 mm/s and
H ~ 339.5 kOe was attributed to the α-(Fe,Co) alloy phase. The presence of the doublet could be due to
the superparamagnetic (SP) effect of very small α-(Fe,Co) alloy particles (<10 nm), revealing the wide
size distribution of metal particles. The after-reaction spectrum (Figure 9b) shows complex features
with one doublet and six magnetic sextets, which can be assigned to iron oxides (FeOx) [64], α-(Fe,Co)
alloy, and iron carbide (FeCx) [65] as listed in Table S2. The SP doublets in all after-reaction spectra had
similar hyperfine parameters (CS ~ 0.27–0.30 mm/s, QS ~ 0.70–0.81 mm/s), which were ascribed to the
ferric ions (Fe3+) from the FeOx phase. Gnanamani reported [66] that the doublet appearing in the
room-temperature spectrum was resolved into a magnetite phase at 20 K. Herein, even though without
low-temperature Mössbauer spectra, the SP doublet of FeOx phase could be inferred, because the
sextet of magnetite phase disappeared in the Mössbauer spectrum of the FeCo/NC-700 catalyst. The
mole fraction of FeCo, FeOx, and FeCx phases in various catalysts after reaction is shown in Figure 9c.
With the rise of pyrolysis temperature, the content of Fe5C2 increased from 17% (FeCo/NC-400) to 55%
(FeCo/NC-700). Correspondingly, the content of Fe3O4 decreased from 44% to 27%.

Methane selectivity under FeCo/NC-600 (44.50%) and FeCo/NC-700(47.40%) were significantly
lower than that under FeCo/NC-400 (67.31%) and FeCo/NC-500 (57.88%). Relatively, the selectivity
of C2= − C4= shows an upward trend, from the lowest 11.14% (FeCo/NC-400) to the highest 27.05%
(FeCo/NC-600). The result shows that with the rise of pyrolysis temperature, the CO2 conversion and
CH4 selectivity decreased, but the selectivity of light olefins increased. Higher pyrolysis temperature
promoted the production of iron carbides in the reaction, which was detected from Mössbauer
spectroscopy. These iron carbides are beneficial to the production of olefins and inhibit methane
production. At the same time, the decrease in the content of Fe3O4 may result in a decrease in the activity
of the RWGS reaction, which affects the conversion of CO2. However, when the pyrolysis temperature
reached 700 ◦C, the metal carbide active sites exposed decreased due to obvious agglomeration,
therefore FeCo/NC-600 exhibited the highest selectivity for low olefins (27.05%). In addition, the
C2–C4 olefins to paraffins ratio (O/P) of the product rise with increasing pyrolysis temperature, and
FeCo/NC-700 shows the highest O/P (1.69). The decrease in the selectivity of C2–C4 paraffins at
700 ◦C might be attributed to the decrease in active sites that hinder the readsorption of light olefins
and subsequent chain growth processes, which led to an increase in the value of O/P. The basic
characterization of the FeCo/Al2O3 catalyst was added to the supporting materials (Figure S6 and
Table S3), including XRD, BET, inductively coupled plasma (ICP), SEM, etc. It can be seen from BET
that FeCo/Al2O3 had a sharp N2 absorption at a lower pressure and a H1 hysteresis loop, indicating
the presence of micropores and mesopores. The proportion of iron and cobalt obtained by ICP was
consistent with FeCo/NC, which ensures similar reaction conditions. While, the result of SEM shows
that the FeCo/Al2O3 still retained a relatively good morphology when calcined at 600 ◦C. It can be seen
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from the XRD that iron and cobalt existed in the form of M3O4 (M = Fe,Co) on Al2O3. The characteristic
diffraction peaks of these two oxides were close to indistinguishable (Fe3O4 JCPDS no. 26-1136 and
Co3O4 JCPDS no. 80-1541), but they did not form an alloy phase like FeCo/NC, so the synergy of
bimetals was not obvious. At the same time, the strong interaction between the Al2O3 support and
the metal was not conducive to the formation and stability of metal carbides. Therefore, although the
FeCo/Al2O3 catalyst had a high RWGS activity, it lacked the active site for generating and stabilizing
olefins, resulting in undesirable methane and C2–C4 paraffins with high selectivity.Catalysts 2020 10 of 16 
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after (b) reaction and (c) the variations of different iron phases content in spent catalysts as a series of
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CO is a key factor for the reaction. Compared with a single iron, the addition of cobalt can
effectively promote the conversion of CO. In the FTS process, the formation of alloy between cobalt
and iron is beneficial to promote the oxidation and carburization of iron in the reaction. On the other
hand, cobalt serves as the active site of FTS and formed the Co2C phase during the reaction, which
would promote light olefin production. The addition of sodium could effectively stabilize the presence
of the Co2C phase, as mentioned above. The metal Co will also generate some methane in the reaction,
although the selectivity of methane has significantly decreased compared to the oxide support, from
76.19% to 44.50% (FeCo/NC-600). However, methane selectivity is still higher than expected due to
the higher cobalt content in the support. To further regulate the active phase interface for better light
olefin selectivity, it is important to properly control the metal content and the proportion of bimetal.

The XRD and HR-TEM results of the spent catalyst are shown in Figure 10. It can be obviously
seen that the change of metal phase compared with that before the reaction (Figure 10a), and many
new phases are shown in the XRD spectrum compared with spectrum before reaction (Figure 3). Fe3O4
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and Fe5C2 phases could be observed, which are important active sites in the RWGS and FTS processes.
In addition, the generation of Co2C phase was also observed, which is believed to be beneficial to
the production of olefins in the FTS reaction [42]. The HR-TEM images are shown in Figure 10b.The
stripes with a lattice spacing of 0.280 nm measured on the spent FeCo/NC-600 catalyst correspond
to the crystal plane of Fe5C2 (021). This is because the CO intermediate formed during the reaction
promotes the carburizing process of Fe. The phase transformation of iron is corresponding to the
previous results of Mössbauer spectroscopy.Catalysts 2020 11 of 16 
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3. Materials and Methods

3.1. Catalysis Preparation

3.1.1. Preparation of Fe/ZIF-67

Fe/ZIF-67 catalysts were synthesized by traditional method of incipient wetness impregnation
(IWI). Commonly, 0.2 g iron acetylacetonate was dissolved in 1.8 mL methanol. Subsequently, it was
added to the surface of 1 g ZIF-67 sample with stirring. The obtained product was dried at 25 ◦C for
8 h and at 110 ◦C overnight, and the impregnation behavior was repeated five times. NaNO3 aqueous
solution (0.136 g of NaNO3 dissolved in 1.5 g of water) was added to the sample obtained above, and
the obtained product was dried at 25 ◦C for 8 h and dried at 110 ◦C overnight. The obtained sample
was named Fe/ZIF-67.

3.1.2. Preparation of FeCo/NC

FeCo/NC was prepared by the pyrolysis of pre-synthesized Fe/ZIF-67. The sample was heated up
to specific temperature in nitrogen atmosphere (40 mL min−1) with a heating speed of 3 ◦C/min and
held for 150 min, then cooled down to 25 ◦C. The obtained product was named as FeCo/NC-T.

3.1.3. Synthesis of FeCo/Al2O3

In the same way as above, an aqueous solution of 1.94 g of Fe (NO3)3 and 3.74 g of Co (NO3)2

was respectively mingled in deionized water, then it was added to Al2O3 (1.5 g). Promoted with the
same amount of sodium for comparison. Subsequently the product was heated up to 600 ◦C in N2

atmosphere (40 mL min−1) with a heating speed of 3 ◦C/min and held for 2 h, then cooling down to
30 ◦C. The obtained sample was named as FeCo/Al2O3.

3.2. Catalyst Characterization

The element content of the FeCo/NC catalyst was analyzed by an inductively coupled plasma
(ICP, Optima 2100DV, PE, MA, USA), and the FeCo/NC samples need to be digested with a microwave
before the test. X-ray diffraction (XRD, Bruker, Karlsruhe, Germany) of the samples were tested with a
D8-Focus diffractometer at the scan speed of 8 ◦C /min from 5 to 80 ◦C by using Cu-Kα (40 kV, 200 mA)
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irradiation. Scanning electron microscopy (SEM, HITACHI, Tokyo, Japan) was tested on a Regulus
8100 (30 kV accelerating voltage). The high-resolution transmission electron microscopy (HRTEM,
HITACHI, Tokyo, Japan) and scanning transmission electron microscopy (STEM) images was taken by
using a Thermo Fischer Talos F200X microscope with mapping and energy dispersive spectroscopic
(EDS, TFS, MA, USA) analysis. In order to eliminate the variables that may exist in the discussion,
all the pyrolyzed samples were pretreated with H2 before the test.

Thermogravimetric (TG, TA, DE, USA) analysis was taken by using a Q500A equipment. The
result was obtained with a ramping speed of 8 ◦C/min from 20 to 780 ◦C under a N2 atmosphere.
ASAP-2020 physical adsorption instrument was used to test the catalyst pore structure and specific
surface area.

The degree of graphitization of carbon support after pyrolysis was tested by Raman with an
excitation source of 532 nm.

Use X-ray photoelectron spectroscopy (XPS, TFS, MA, USA) to identify the surface properties of
FeCo/NC samples with a monochromatic Al Ka radiation on a Thermo Scientific K-Alpha+ spectrometer.
The curves were corrected according to carbon 1s spectra at 284.8 eV.

The phases and contents of iron species were identified by Mössbauer spectra (MS-500, Wissel,
Germany) at room temperature. α-Fe absorber and 57Co(Rh) source (25 mCi) was used. The curves
fittings were measured by Lorentzian multiplet analysis.

CO2 temperature programmed desorption (CO2-TPD) was taken by using an AMI-300 apparatus.
The type and amount of alkalinity on the catalyst surface and the CO2 adsorption capacity were
tested by the change of CO2 concentration with the peak temperature. Firstly, a catalyst of 60 mg
was pretreated under 10% H2/Ar (25 mL·min−1) at 400 ◦C for 60 min. Subsequently, the temperature
was cooled down to 40 ◦C under Ar atmosphere and stay for 20 min. The test was taken by injecting
continuous pulses of CO2 into the He flow. The result was collected from 50 to 350 ◦C at a ramping
rate of 8 ◦C·min−1 in a He flow.

H2 temperature programmed reduction (H2-TPR) was taken by using an AutoChem II 2920
apparatus to get the best pretreatment temperature. The detailed description is listed in supporting.

Karl Fisher titration method was used to analyze the water content of liquid products on an
870 KF Titrino plus instrument

3.3. Catalytic Performances

Typically, a fixed-bed reactor with a 10 mm inner diameter was taken to test the CO2 hydrogenation
performance. 0.5 g sample (20–30 mesh) mixed with 3.5 g quarta sands (20–30 mesh) was loaded. Before
the test, the sample was pretreated in H2 (400 ◦C, 40 mL min−1) for 2 h. Subsequently, the reactor was
cooled down to the 50 ◦C and the mixed gas with a H2/CO2/N2 ratio of 69/23/8 (N2 used as an internal
standard) was led in the reaction still under 2.0 MPa and 350 ◦C, the space velocity = 6240 mL g−1 h−1.

The reaction result was evaluated by operating two gas chromatographs. CO2, CO, N2, and CH4

were studied by using a GC Micro 490 with a TCD detector. While hydrocarbons and oxygenates were
researched by using a GC 2010 with an FID detector.

CO2 conversion was evaluated by carbon atom balance according to the Equation:

CO2 conversion =
CO2in −CO2out

CO2in

× 100%

CO2 in and CO2 out mean the molar fraction of CO2 at the inlet and outlet of the reactor.
CO and different hydrocarbon selectivity were given as follows:

CO selectivity =
COout

CO2in −CO2out

× 100%
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Ci selectivity =
Mole o f Ci × i∑n

i=1 Mole o f Ci × i
× 100%

4. Conclusions

ZIF-67 was pyrolyzed at different temperatures to synthesize a carbon-encapsulated Fe–Co
bimetallic catalyst, and the surface properties were promoted by sodium. We used different
characterization methods to characterize the catalyst and evaluate the CO2 hydrogenation activity,
then further clarified the synergy of bimetals and the effect of pyrolysis temperatures on the samples.
Compared with the traditional oxide support, the formation of the NC layer can effectively anchor and
disperse the metal nanoparticles, promoting the reduction and carburization of the metal during the
reaction, thereby forming a higher olefin selectivity. On the other hand, different pyrolysis temperatures
had a profound effect on the degree of carbonization of the support, metal loading, particle size, and
degree of carburization during the reaction. When the pyrolysis temperature was above 500 ◦C, the
ZIF-67 was completely pyrolyzed, and the metal nanoparticles were well embedded in the generated
carbon support. With the raise of the pyrolysis temperature, the carburization of the metal during the
reaction was facilitated. The Fe3O4 content of the iron phase during the reaction decreased from 44%
(400 ◦C) to 27% (700 ◦C). Relatively, the Fe5C2 content increased from 17% (400 ◦C) to 55% (700 ◦C).
Meanwhile, part of the metal cobalt was converted into Co2C, which also promoted the conversion
of CO to light olefin in the FTS reaction. When the pyrolysis temperature reached 700 ◦C, the active
sites exposed decreased due to sintering. Therefore FeCo/NC-600 exhibited the highest selectivity
for low olefins (27.05%). These results are important for the subsequent further adjustment of the
catalyst structure and metal composition, as well as the understanding of strategies for the control of
active phase transition products of CO2 hydrogenation. Such catalysts are currently being studied in
more detail.
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