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Abstract: A continuous-flow procedure for the synthesis of β-amino acid esters has been developed
via lipase-catalyzed Michael reaction of various aromatic amines with acrylates. Lipase TL IM
from Thermomyces lanuginosus was first used to catalyze Michael addition reaction of aromatic
amines. Compared with other methods, the salient features of this work include green reaction
conditions (methanol as reaction medium), short residence time (30 min), readily available catalyst
and a reaction process that is easy to control. This enzymatic synthesis of β-amino acid esters
performed in continuous-flow microreactors is an innovation that provides a new strategy for the fast
biotransformation of β-amino acid esters.
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1. Introduction

β-Amino acid ester derivatives have been widely found in biologically active molecules, many
of which possess useful biological activities (e.g., anticancer, antiviral, antibacterial, antifungal,
antipsychotics) [1–6]. β-Amino acid esters have also been used to construct peptidomimetic oligomers,
which are of high interest in medicinal chemistry [7,8]. In particular, β-amino acid esters based on
aromatic amines are important intermediates for the effective synthesis of urease inhibitors, which can
be used in the treatment of Helicobacter pylori infection [9]. Due to these widespread applications in
pharmacy and materials science, the development of synthesis methods of β-amino acid esters has
become a hot topic in the chemical field.

Michael addition is one of the simplest and most effective strategies to prepare β-amino acid
esters. Recently, Ahmed has reported the Michael addition of aromatic amines mediated by KOtBu [10];
HOTf (trifluoromethylsulfonic acid) was also used to catalyze the Michael addition of aromatic amines,
and good yields were obtained within 4 h [11]. However, the use of acids and alkalis has brought
challenges to the environment. In order to avoid such problems, various transition-metal catalysts
have been developed and used to efficiently catalyze the Michael addition to synthesize β-amino
acid esters [12–17]. Although desired results were obtained, the use of metal catalysts and expensive
ligands are still shortcomings for the practical utility.

Enzymes are versatile catalysts of biological origin that can catalyze reactions with great specificity
and high efficiency under the benign environmental conditions [18–20]. In the past few years,
several works about the synthesis of β-amino esters by enzymatic Michael addition reaction were
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reported [21–23]. However, there are few reports on the preparation of β-amino acid esters by the
enzymatic Michael addition of aromatic amines. Bhanage reported that immobilized HMC:PFL
(lipase from Pseudomonas fluorescence immobilized on hydroxypropyl methyl cellulose) could be
used to catalyze the Michael addition of aromatic amines in toluene, although only 33%–40% yields
could be obtained in 3 h [24]. Lipase CAL-B (lipase B from Candida antarctica) has also been used
to catalyze the Michael addition of aromatic amines, but it requires a long reaction time (72 h) to
achieve desired results [25]. Our attention is focused on finding a more efficient and green synthesis
method of β-amino acid esters based on aromatic amines. In recent years, more and more reports
have been published on enzymatic reactions in continuous-flow microreactors due to their advantages
of improving process efficiency and material transfer [26–28]. The small size of the continuous-flow
microreactors facilitates control of the reaction parameters, which can reduce waste generation and
increase productivities [29–31].

In the interest of developing an efficient and green synthesis method for β-amino acid esters based
on aromatic amines, we employed a continuous flow technology for the synthesis of β-amino acid
esters. Lipase TL IM from Thermomyces lanuginosus was first used to catalyze the Michael addition
reaction of aromatic amines with acrylates in continuous-flow microreactors, and 17 β-amino acid
esters (3a–3r) were obtained with excellent yields in 30 min (Scheme 1). Effects of different reaction
parameters including reaction solvent, temperature, enzyme, substrate ratio, residence time and
aromatic amine structure on the reaction were studied.
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Scheme 1. Synthesis of β-amino acid esters by enzymatic Michael reaction of aromatic amines in
continuous-flow microreactors.

2. Results and Discussion

2.1. Effect of Reaction Media

The solvent plays an important role in enzymatic reaction by promoting the dissolution of the
substrates and controlling the reaction chemo-selectivity [32]. Therefore, we first studied the effect of
reaction media on β-amino acid ester synthesis in continuous-flow microreactors (Figure 1). We chose
aniline (1a) and methyl acrylate (2a) as the model reaction; several solvents, including tert-amyl
alcohol, acetonitrile, toluene, DCM (dichloromethane), ethanol and methanol, were tested. As shown
in Figure 1, the reaction did not proceed in acetonitrile, and only 5.2% of the desired product was
obtained in tert-amyl alcohol. Further solvent screening disclosed that methanol was the best solvent.
Aromatic amines are a class of poor nucleophiles whose nucleophilicity is highly related to solvents.
Research has shown that polar solvents can promote Michael addition of aromatic amines [33].
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2.2. Effect of Reaction Temperature

Temperature plays significant functions, such as improving the interaction between the substrate
and catalyst and affecting the stability of enzyme [34]. Therefore, we investigated the effect of reaction
temperature on the synthesis of β-amino acid esters; the results are shown in Figure 2. We performed
the reactions from 30 to 55 ◦C and found that the best yield (80.3%) can be achieved at 35 ◦C. After that,
as the reaction temperature continued to increase, the yield was not improved. The higher temperature
may cause a decrease in the selectivity of enzymatic reaction, which favors the double Michael product
formation. Therefore, the optimal reaction temperature for the synthesis of β-amino acid esters is 35 ◦C.
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flow microreactors.

2.3. Catalyst Screening

We tested the efficiency of three enzymes in catalyzing β-amino acid ester synthesis (Figure 3).
Further screening of enzymes showed that lipozyme TL IM was the best catalyst. In the absence of
lipozyme TL IM, a group of blank tests was performed, and it was found that the reaction did not
occur. This indicated that lipozyme TL IM played a key role in the synthesis of β-amino acid esters.
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2.4. Effect of Substrate Ratio

Another important factor that affects the synthesis of β-amino acid ester is the molar ratio of
aniline to methyl acrylate. The influence of molar ratio (aniline/methyl acrylate) was investigated from
1:1 to 1:6. According to the Figure 4, the best reaction yield 80.3% was obtained when the molecular
ratio of aniline (1a) and methyl acrylate (2a) reached 1:4. As the content of methyl acrylate continued
to increase, the yield of target product 3a was decreased. This occurred since a higher amount of
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methyl acrylate favored the double Michael product, which reduced the yield of the target product 3a.
Therefore, we decided to choose aniline/methyl acrylate = 1:4 as the optimum substrate ratio.
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2.5. Effect of Residence Time

It is well known that prolonged reactions can promote the formation of impurities and reduce the
selectivity of products. In addition, in the case of Michael reaction, the long-term reaction facilitates
the accumulation of double Michael products [33]. In view of this, we performed the reaction from 20
to 40 min to investigate the effect of residence time/flow rate on the reaction; the results are shown in
Figure 5. The best yield was reached in 30 min with a flow rate of 20.8 µL min−1. As we continued to
extend residence time, the yield of 3a was decreased slightly. Detection found that with the increase of
time, the target product underwent a second Michael addition reaction, which reduced the yield of the
target product. Thus, we chose 30 min as the optimum residence time for the following experiment.
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2.6. The Effect of Aromatic Amine Structure on the Reaction

After identifying the optimum reaction conditions, we continued to investigate the effect of
aromatic amine structure on the enzymatic β-amino acid ester synthesis reaction under continuous-flow
microreactors. As shown in Figure 6, the reaction yields were 80.3%, 92.4%, 43.7% and 36.3% for aniline
(1a), 4-toluidine (1b), 2-aminopyridine (1g) and 4-chloroaniline (1e), respectively. Experimental
results showed that aromatic amines with electron-donating functional groups exhibited high
reactivity in the enzymatic Michael addition reaction. The electron-donating groups increased
the nucleophilicity of aniline, making the conjugated addition easier. In contrast, aromatic amines
containing electron-withdrawing groups had lower yields in the enzymatic Michael addition reaction.
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2.7. Enzymatic Synthesis of β-Amino Acid Ester in Continuous-Flow Microreactor and Batch Bioreactor

Due to high surface-to-volume ratio, better heat exchange and efficient mixing, continuous-flow
microreactor technology has become increasingly popular as an alternative to conventional batch
chemistry synthesis. In order to investigate the effects of enzymatic reactions in different reactors,
we performed the enzymatic Michael addition of aniline to synthesize β-amino acid ester in the
continuous-flow microreactor and in a batch bioreactor (Table 1). We detected the reaction process in
the batch bioreactor and found that it took about 24 h to achieve the ideal yield (method B). However,
in the continuous-flow microreactor, we could get better yield in 30 min (method A). Experiments
showed that the continuous-flow microreactor can improve the efficiency of enzymatic synthesis of
β-amino acid esters.

Table 1. Enzymatic Michael addition of aniline in the continuous-flow reactor or batch bioreactor. a
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Entry Method Yield b (%)

1 A 80.3 ± 1.5
2 B 62.3 ± 2.5

a General reaction conditions: Method A: Continuous-flow microreactor, feed A. (5.0 mmol aniline in 10 mL
methanol), feed B (20.0 mmol methyl acrylate in 10 mL methanol), residence time: 30 min, flow rate: 20.8 µL min−1,
35 ◦C, lipozyme TL IM 870 mg. Method B: Batch bioreactor, 5.0 mmol aniline, 20.0 mmol methyl acrylate and 20 mL
methanol in a 50 mL conical flask, 200 r·min−1, lipozyme TL IM 870 mg, 35 ◦C, 24 h. b Yield of 3a. Yield: 100×
(actual received quality/ideal calculated quality). The data are presented as average ± SD of triplicate experiments.

2.8. Combined Effects of Process Parameters

Lipase-catalyzed synthesis of β-amino acid ester by Michael addition between aniline and methyl
acrylate in continuous-flow microreactors was studied, and the optimum conditions for the Michael
addition were investigated. The results are shown in Tables 2 and 3.
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Table 2. Solvent, temperature and enzyme screening for enzymatic synthesis of β-amino acid esters. a
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9 Lipozyme TL IM Methanol 40 77.4 ± 2.5

10 Lipozyme TL IM Methanol 50 73.1 ± 2.6
11 Lipozyme TL IM Methanol 55 70.0 ± 1.7
12 Subtilisin Methanol 35 n.d.
13 Novozym 435 Methanol 35 23.2 ± 0.9
14 None Methanol 35 n.d.

a Experimental conditions: feed A, 5.0 mmol aniline (1a) was dissolved in 10 mL solvent, feed B, 20.0 mmol methyl
acrylate (2a) was dissolved in 10 mL solvent, enzyme 870 mg, 30 min. b Yield of 3a. n.d. means no reaction was
found. Yield: 100× (actual received quality/ideal calculated quality). The data are presented as average ± SD of
triplicate experiments.

Table 3. Effects of substrate ratio and residence time on enzymatic synthesis of β-amino acid esters. a

Entry n1a:n2a Time/Min Flow Rate/µL min−1 Yield b (%)

1 1:1 30 20.8 62.6 ± 2.3
2 1:2 30 20.8 68.1 ± 1.6
3 1:4 30 20.8 80.3 ± 1.5
4 1:6 30 20.8 77.4 ± 2.8
5 1:4 20 31.2 58.7 ± 2.2
6 1:4 25 25.0 69.0 ± 0.9
7 1:4 35 17.8 80.1 ± 1.6
8 1:4 40 15.6 78.0 ± 1.2

a Experimental conditions: feed A, 5.0 mmol aniline (1a) was dissolved in 10 mL methanol, feed B, methyl acrylate
(2a) was dissolved in 10 mL methanol, lipozyme TL IM 870 mg, 35 ◦C. b Yield of 3a. Yield: 100× (actual received
quality/ideal calculated quality). The data are presented as average ± SD of triplicate experiments.

For enzymatic reactions, the reaction medium and temperature are important influencing factors
which affect the enzyme activity and process of the reaction. Preliminary experiments showed that the
best reaction yield can be achieved when the reaction was catalyzed by lipozyme TL IM in methanol
at 35 ◦C (Entry 8, Table 2). As we continued to increase the reaction temperature, the yield was not
improved. Higher temperature may decrease the selectivity of enzymatic reactions, which increases
the by-product formation. Residence time and substrate ratio are also important factors affecting
the synthesis of β-amino acid esters. With the increase of residence time or methyl acrylate, the
target product 3a underwent a second Michael addition reaction, which reduced the yield of the
target product.

2.9. The Scope and Limitation for the β-Amino Acid Ester Synthesis Methodology

Finally, we explored the scope and limitation of this continuous flow methodology for β-amino
acid ester synthesis catalyzed by lipase TL IM from Thermomyces lanuginosus. Nine aromatic amines
(aniline (1a), 4-toluidine (1b), 4-tert-butylaniline (1c), 4-methoxyaniline (1d), 4-chloroaniline (1e),
4-bromoaniline (1f), 2-aminopyridine (1g), 3,4-(methylenedioxy)aniline (1h) and 2-naphthylamine (1i))
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and two acrylates (methyl acrylate (2a) and tert-butyl acrylate (2b)) were subjected to the optimal
reaction conditions, using continuous-flow microreactors. Seventeen β-amino acid esters (3a–3r) were
synthesized after 30 min residence time in excellent yields (Table 4).

Table 4. Continuous-flow synthesis of β-amino acid esters by enzymatic Michael addition of aromatic
amines. a
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 3i 

36.3 ± 1.2 

10 4-chloroaniline (1e) 
 3j 

48.5 ± 3.1 

11 4-bromoaniline (1f) 
 3k 

42.4 ± 1.5 

12 4-bromoaniline (1f) 
 3l 

47.3 ± 1.1 

13 2-aminopyridine (1g) 
 3m 

43.7 ± 2.4 

14 2-aminopyridine (1g) 
 3n 

trace 

15 3,4-(methylenedioxy)aniline (1h) 
 3o 

88.1 ± 2.2 

3h
82.1 ± 2.6

9 4-chloroaniline (1e)
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75.1 ± 1.9 

3 4-toluidine (1b) 
 3c 

92.4 ± 0.8 

4 4-toluidine (1b) 
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81.2 ± 1.7 

5 4-tert-butylaniline (1c) 

 3e 

83.6 ± 2.1 

6 4-tert-butylaniline (1c) 

 3f 

87.7 ± 2.9 

7 4-methoxyaniline (1d) 
 3g 

85.0 ± 2.7 

8 4-methoxyaniline (1d) 
 3h 

82.1 ± 2.6 

9 4-chloroaniline (1e) 
 3i 

36.3 ± 1.2 

10 4-chloroaniline (1e) 
 3j 

48.5 ± 3.1 

11 4-bromoaniline (1f) 
 3k 

42.4 ± 1.5 

12 4-bromoaniline (1f) 
 3l 

47.3 ± 1.1 

13 2-aminopyridine (1g) 
 3m 

43.7 ± 2.4 

14 2-aminopyridine (1g) 
 3n 

trace 

15 3,4-(methylenedioxy)aniline (1h) 
 3o 

88.1 ± 2.2 

3i
36.3 ± 1.2

10 4-chloroaniline (1e)
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aromatic amines (aniline (1a), 4-toluidine (1b), 4-tert-butylaniline (1c), 4-methoxyaniline (1d), 
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(2b)) were subjected to the optimal reaction conditions, using continuous-flow microreactors. 

Seventeen β-amino acid esters (3a–3r) were synthesized after 30 min residence time in 

excellent yields (Table 4). 

Table 4. Continuous-flow synthesis of β-amino acid esters by enzymatic Michael addition of 

aromatic amines. a 

 
Entry Aromatic Amine Product Yield b (%) 

1 aniline (1a) 
 3a 

80.3 ± 1.5 

2 aniline (1a) 
 3b 

75.1 ± 1.9 

3 4-toluidine (1b) 
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92.4 ± 0.8 

4 4-toluidine (1b) 
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81.2 ± 1.7 

5 4-tert-butylaniline (1c) 

 3e 

83.6 ± 2.1 

6 4-tert-butylaniline (1c) 

 3f 

87.7 ± 2.9 

7 4-methoxyaniline (1d) 
 3g 

85.0 ± 2.7 

8 4-methoxyaniline (1d) 
 3h 

82.1 ± 2.6 

9 4-chloroaniline (1e) 
 3i 

36.3 ± 1.2 

10 4-chloroaniline (1e) 
 3j 

48.5 ± 3.1 

11 4-bromoaniline (1f) 
 3k 

42.4 ± 1.5 

12 4-bromoaniline (1f) 
 3l 

47.3 ± 1.1 

13 2-aminopyridine (1g) 
 3m 

43.7 ± 2.4 

14 2-aminopyridine (1g) 
 3n 

trace 

15 3,4-(methylenedioxy)aniline (1h) 
 3o 

88.1 ± 2.2 

3j
48.5 ± 3.1

11 4-bromoaniline (1f)
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Finally, we explored the scope and limitation of this continuous flow methodology for 

β-amino acid ester synthesis catalyzed by lipase TL IM from Thermomyces lanuginosus. Nine 
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(2b)) were subjected to the optimal reaction conditions, using continuous-flow microreactors. 

Seventeen β-amino acid esters (3a–3r) were synthesized after 30 min residence time in 

excellent yields (Table 4). 

Table 4. Continuous-flow synthesis of β-amino acid esters by enzymatic Michael addition of 

aromatic amines. a 

 
Entry Aromatic Amine Product Yield b (%) 

1 aniline (1a) 
 3a 

80.3 ± 1.5 

2 aniline (1a) 
 3b 

75.1 ± 1.9 

3 4-toluidine (1b) 
 3c 

92.4 ± 0.8 

4 4-toluidine (1b) 
 3d 

81.2 ± 1.7 

5 4-tert-butylaniline (1c) 

 3e 

83.6 ± 2.1 

6 4-tert-butylaniline (1c) 

 3f 

87.7 ± 2.9 

7 4-methoxyaniline (1d) 
 3g 

85.0 ± 2.7 

8 4-methoxyaniline (1d) 
 3h 

82.1 ± 2.6 

9 4-chloroaniline (1e) 
 3i 

36.3 ± 1.2 

10 4-chloroaniline (1e) 
 3j 

48.5 ± 3.1 

11 4-bromoaniline (1f) 
 3k 

42.4 ± 1.5 

12 4-bromoaniline (1f) 
 3l 

47.3 ± 1.1 

13 2-aminopyridine (1g) 
 3m 

43.7 ± 2.4 

14 2-aminopyridine (1g) 
 3n 

trace 

15 3,4-(methylenedioxy)aniline (1h) 
 3o 

88.1 ± 2.2 

3k
42.4 ± 1.5

12 4-bromoaniline (1f)
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 3a 

80.3 ± 1.5 

2 aniline (1a) 
 3b 

75.1 ± 1.9 

3 4-toluidine (1b) 
 3c 

92.4 ± 0.8 

4 4-toluidine (1b) 
 3d 

81.2 ± 1.7 

5 4-tert-butylaniline (1c) 

 3e 

83.6 ± 2.1 

6 4-tert-butylaniline (1c) 

 3f 

87.7 ± 2.9 

7 4-methoxyaniline (1d) 
 3g 

85.0 ± 2.7 

8 4-methoxyaniline (1d) 
 3h 

82.1 ± 2.6 

9 4-chloroaniline (1e) 
 3i 

36.3 ± 1.2 

10 4-chloroaniline (1e) 
 3j 

48.5 ± 3.1 

11 4-bromoaniline (1f) 
 3k 

42.4 ± 1.5 

12 4-bromoaniline (1f) 
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43.7 ± 2.4

14 2-aminopyridine (1g)
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excellent yields (Table 4). 
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Entry Aromatic Amine Product Yield b (%) 

1 aniline (1a) 
 3a 

80.3 ± 1.5 

2 aniline (1a) 
 3b 

75.1 ± 1.9 

3 4-toluidine (1b) 
 3c 

92.4 ± 0.8 

4 4-toluidine (1b) 
 3d 

81.2 ± 1.7 

5 4-tert-butylaniline (1c) 
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83.6 ± 2.1 
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87.7 ± 2.9 

7 4-methoxyaniline (1d) 
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85.0 ± 2.7 

8 4-methoxyaniline (1d) 
 3h 

82.1 ± 2.6 

9 4-chloroaniline (1e) 
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36.3 ± 1.2 
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48.5 ± 3.1 

11 4-bromoaniline (1f) 
 3k 

42.4 ± 1.5 

12 4-bromoaniline (1f) 
 3l 

47.3 ± 1.1 

13 2-aminopyridine (1g) 
 3m 

43.7 ± 2.4 

14 2-aminopyridine (1g) 
 3n 

trace 

15 3,4-(methylenedioxy)aniline (1h) 
 3o 

88.1 ± 2.2 
3o

88.1 ± 2.2

16 3,4-(methylenedioxy)aniline (1h)
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16 3,4-(methylenedioxy)aniline (1h) 
 3p 

85.4 ± 1.7 

17 2-naphthylamine (1i) 
 3q 

74.0 ± 1.4 

18 2-naphthylamine (1i) 
 3r 

72.1 ± 1.2 

a Experimental conditions: feed A, 5.0 mmol aromatic amine was dissolved in 10 mL methanol, 

feed B, 20.0 mmol acrylic ester was dissolved in 10 mL methanol, lipozyme TL IM 870 mg, 30 

min, 35 °C. b Yield of β-amino acid esters. Yield: 100× (actual received quality/ideal calculated 

quality). The data are presented as average ± SD of triplicate experiments. 

The results showed that this continuous-flow enzymatic method has a broad 

applicability. Most aromatic amines showed good reactivity, except the halogen-substituted 

anilines and 2-aminopyridine (Entries 9–14, Table 4). The electronic effects of substrates 

have some impacts on additions. The introduction of electron-donating groups increased the 

nucleophilicity of aniline, making the conjugated addition easier, which was consistent with 

previous reports [25]. In addition, our studies have shown that Michael addition of aromatic 

amines catalyzed by lipase in continuous-flow microreactors was markedly influenced by 

the reaction parameters. The lipozyme TL IM catalyzed the Michael addition of aromatic 

amines with acrylates in methanol, which could effectively achieve the synthesis of β-amino 

acid esters. The selectivity of enzymatic reaction decreased with high reaction temperature 

or long residence time, which led to the increase of by-products. Compared with 

conventional batch bioreactor, continuous-flow microreactor improved the efficiency of 

enzymatic synthesis, which realized the rapid conversion of β-amino acid esters. 

3. Materials and Methods 

3.1. Materials 

Unless otherwise stated, all chemicals were obtained from commercial sources and used 

without further purification. Lipozyme TL IM from Thermomyces lanuginosus was purchased from 

Novo Nordisk (Copenhagen, Denmark), and 4-tert-butylaniline, 4-methoxyaniline, 

3,4-(methylenedioxy)aniline, 2-aminopyridine, 2-naphthylamine were purchased from Energy 

Chemical (Shanghai, China). Aniline, 4-toluidine, 4-chloroaniline, 4-bromoaniline, methyl acrylate 

and tert-butyl acrylate were purchased from Aladdin (Shanghai, China). Harvard Apparatus PHD 

2000 syringe pumps were purchased from Harvard (Holliston, MA, USA). Bruker-ADΝANCE III 

500 MHz NMR spectrometer (Billerica, MA, USA) and Liquid Chromatography/Mass Spectrometer 

Detector (Agilent LC1290-MS6530, Santa Clara, CA, USA) were used in this study. 

3.2. β-Amino Acid Ester Synthesis Operating Conditions 

3.2.1. Experimental Setup 

The equipment configuration that was used for synthesis of β-amino acid esters via 

lipase-catalyzed Michael reaction of aromatic amines with acrylates is described in Figure 7. 

The continuous-flow microreactor was composed of a syringe pump (Harvard Apparatus 

PHD 2000), reactant injectors, Y-shaped mixer (Φ = 1.8 mm; M), microchannel reactor and 

product collector. Syringe pump was used to deliver reagents from reactant injectors to the 

Y-shaped mixer and then to the microchannel reactor. Reagent feed A (10 mL) with aromatic 

amines in methanol solution and reagent feed B (10 mL) with acrylates in methanol solution 

were fully mixed in the Y-shaped mixer. The microchannel reactor consists of a PFA reactor 

coil (inner diameter ID = 2.0 mm, length = 100 cm) filled with lipozyme TL IM (catalyst 

reactivity: 250 IUN g−1). The microchannel reactor was immersed into a thermostatic 

apparatus (water bath) to control the temperature. The final solution was collected in a 

3p
85.4 ± 1.7

17 2-naphthylamine (1i)
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product collector. Syringe pump was used to deliver reagents from reactant injectors to the 

Y-shaped mixer and then to the microchannel reactor. Reagent feed A (10 mL) with aromatic 

amines in methanol solution and reagent feed B (10 mL) with acrylates in methanol solution 

were fully mixed in the Y-shaped mixer. The microchannel reactor consists of a PFA reactor 
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apparatus (water bath) to control the temperature. The final solution was collected in a 
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74.0 ± 1.4

18 2-naphthylamine (1i)
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72.1 ± 1.2

a Experimental conditions: feed A, 5.0 mmol aromatic amine was dissolved in 10 mL methanol, feed B, 20.0 mmol
acrylic ester was dissolved in 10 mL methanol, lipozyme TL IM 870 mg, 30 min, 35 ◦C. b Yield of β-amino acid
esters. Yield: 100× (actual received quality/ideal calculated quality). The data are presented as average ± SD of
triplicate experiments.

The results showed that this continuous-flow enzymatic method has a broad applicability.
Most aromatic amines showed good reactivity, except the halogen-substituted anilines and
2-aminopyridine (Entries 9–14, Table 4). The electronic effects of substrates have some impacts
on additions. The introduction of electron-donating groups increased the nucleophilicity of aniline,
making the conjugated addition easier, which was consistent with previous reports [25]. In addition, our
studies have shown that Michael addition of aromatic amines catalyzed by lipase in continuous-flow
microreactors was markedly influenced by the reaction parameters. The lipozyme TL IM catalyzed
the Michael addition of aromatic amines with acrylates in methanol, which could effectively achieve
the synthesis of β-amino acid esters. The selectivity of enzymatic reaction decreased with high
reaction temperature or long residence time, which led to the increase of by-products. Compared with
conventional batch bioreactor, continuous-flow microreactor improved the efficiency of enzymatic
synthesis, which realized the rapid conversion of β-amino acid esters.

3. Materials and Methods

3.1. Materials

Unless otherwise stated, all chemicals were obtained from commercial sources and used without
further purification. Lipozyme TL IM from Thermomyces lanuginosus was purchased from Novo Nordisk
(Copenhagen, Denmark), and 4-tert-butylaniline, 4-methoxyaniline, 3,4-(methylenedioxy)aniline,
2-aminopyridine, 2-naphthylamine were purchased from Energy Chemical (Shanghai, China). Aniline,
4-toluidine, 4-chloroaniline, 4-bromoaniline, methyl acrylate and tert-butyl acrylate were purchased
from Aladdin (Shanghai, China). Harvard Apparatus PHD 2000 syringe pumps were purchased from
Harvard (Holliston, MA, USA). Bruker-ADNANCE III 500 MHz NMR spectrometer (Billerica, MA,
USA) and Liquid Chromatography/Mass Spectrometer Detector (Agilent LC1290-MS6530, Santa Clara,
CA, USA) were used in this study.

3.2. β-Amino Acid Ester Synthesis Operating Conditions

3.2.1. Experimental Setup

The equipment configuration that was used for synthesis ofβ-amino acid esters via lipase-catalyzed
Michael reaction of aromatic amines with acrylates is described in Figure 7. The continuous-flow
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microreactor was composed of a syringe pump (Harvard Apparatus PHD 2000), reactant injectors,
Y-shaped mixer (Φ = 1.8 mm; M), microchannel reactor and product collector. Syringe pump was
used to deliver reagents from reactant injectors to the Y-shaped mixer and then to the microchannel
reactor. Reagent feed A (10 mL) with aromatic amines in methanol solution and reagent feed B (10 mL)
with acrylates in methanol solution were fully mixed in the Y-shaped mixer. The microchannel reactor
consists of a PFA reactor coil (inner diameter ID = 2.0 mm, length = 100 cm) filled with lipozyme TL
IM (catalyst reactivity: 250 IUN g−1). The microchannel reactor was immersed into a thermostatic
apparatus (water bath) to control the temperature. The final solution was collected in a product
collector connected to the microchannel reactor. The residence time was controlled by setting the flow
rates of feed A and feed B.
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Figure 7. Experimental setup for the synthesis of β-amino acid esters.

3.2.2. General Procedure for β-Amino Acid Ester Synthesis in Continuous Flow Microreactor

Here, 5.0 mmol of aromatic amines were dissolved in 10 mL methanol (feed A, ~0.5 M), and
20.0 mmol acrylates were dissolved in 10 mL methanol (feed B, ~2.0 M). Lipozyme TL IM (870 mg)
was added to the PFA reactor coil (inner diameter ID = 2.0 mm, length = 100 cm). Streams A and B
were mixed together at a flow rate of 10.4 µL min−1 in a Y-mixer at 35 ◦C, and the resulting stream
(20.8 µL min−1) was connected to a sample vial which was used to collect the final mixture. The final
mixture was then evaporated, and the residue was submitted to column chromatography on silica gel
(200–300 mesh). The crude product was purified by silica gel flash chromatography with a petroleum
ether/ethyl acetate gradient from 20:1 to 5:1. The purification was monitored by TLC. The fractions
containing the main products were pooled, and the solvent was evaporated. The residue was analyzed
by 1H NMR, 13C NMR and ESI-MS.

3.3. Analytical Methods

3.3.1. Thin-Layer Chromatography

Thin-layer chromatography analysis was conducted on silica gel plates with ethyl acetate/

petroleum ether (1:5, by vol) as the eluent. Spots were detected by ultraviolet irradiation at 254 nm.

3.3.2. High-Performance Liquid Chromatography (HPLC)

The reaction was monitored by HPLC analysis using a Shim-Pack VP-ODS column (4.6 × 150 mm)
and a UV detector (285 nm). Hexane/2-propanol solution 90/10 (v/v) was used as the mobile phase
(flow rate: 1.0 mL min−1).
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3.3.3. Nuclear Magnetic Resonance (NMR) and Electrospray Ionization Mass Spectrometry
(ESI/MS) Analysis

After purification of the synthesized products by column chromatography, the chemical structures
of β-amino acid esters were determined by 1H NMR, 13C NMR and ESI-MS. 1H (500 MHz) and 13C
(126 MHz) NMR spectra were acquired on a Bruker-ADNANCE III 500 MHz NMR spectrometer.
The sample temperature was 22 ◦C and using CDCl3 or DMSO-d6 as solvent. ESI-MS was measured on
a Liquid Chromatography/Mass Spectrometer Detector (Agilent LC1290-MS6530). Evaporated samples
were dissolved in methanol. The injection volume was 10 µL. Reaction mixtures were injected and
infused into the electrospray ion source at 0.2 mL min−1. The spectrometer was operated in the positive
ionization mode with the capillary voltage set to +3.5 kV. The sheath gas flow rate was 11 L min−1,
and the sheath gas temperature was 300 ◦C.

Methyl 3-(phenylamino)propanoate (3a). White solid. 1H NMR (500 MHz, CDCl3) δ 7.23 (dd, J = 8.6,
7.3 Hz, 2H), 6.77 (tt, J = 7.3, 1.1 Hz, 1H), 6.67 (dd, J = 8.7, 1.1 Hz, 2H), 3.74 (s, 3H), 3.49 (t, J = 6.4 Hz,
2H), 2.66 (t, J = 6.4 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ 172.83, 147.59, 129.35, 117.77, 113.09, 51.76,
39.47, 33.73. HRMS (ESI): calcd for C10H14NO2 [M + H]+: 180.1016, found: 180.1018.

Tert-butyl 3-(phenylamino)propanoate (3b). White powder. 1H NMR (500 MHz, CDCl3) δ 7.21 (dd, J = 8.6,
7.3 Hz, 2H), 6.75 (tt, J = 7.3, 1.1 Hz, 1H), 6.65 (dd, J = 8.6, 1.2 Hz, 2H), 3.43 (t, J = 6.4 Hz, 2H), 2.55
(t, J = 6.4 Hz, 2H), 1.49 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 171.72, 147.73, 129.25, 117.60, 113.06,
80.83, 39.65, 35.08, 28.10. HRMS (ESI): calcd for C14H16NO2 [M + H]+: 222.1489, found: 222.1491.

Methyl 3-(p-tolylamino)propanoate (3c). White solid. 1H NMR (500 MHz, DMSO-d6) δ 6.84–6.96 (m, 2H),
6.48 (d, J = 8.4 Hz, 2H), 5.37 (t, J = 6.0 Hz, 1H), 3.61 (s, 3H), 3.24 (q, J = 6.6 Hz, 2H), 2.55 (t, J = 6.8 Hz,
2H), 2.14 (s, 3H); 13C NMR (126 MHz, DMSO) δ 172.18, 146.17, 129.39, 124.31, 112.29, 51.36, 39.77, 33.56,
20.09. HRMS (ESI): calcd for C11H16NO2 [M + H]+: 194.1176, found: 194.1177.

Tert-butyl 3-(p-tolylamino)propanoate (3d). White solid. 1H NMR (500 MHz, CDCl3) δ 7.07 (d, J = 7.8 Hz,
2H), 6.63 (d, J = 8.4 Hz, 2H), 3.44 (t, J = 6.4 Hz, 2H), 2.58 (t, J = 6.4 Hz, 2H), 2.33 (s, 3H), 1.54 (s, 9H);
13C NMR (126 MHz, CDCl3) δ 171.59, 145.38, 129.58, 126.51, 113.12, 80.49, 39.85, 34.92, 27.93, 20.21.
HRMS (ESI): calcd for C14H22NO2 [M + H]+: 236.1643, found: 236.1646.

Methyl 3-((p-(tert-butyl)phenyl)amino)propanoate (3e). White powder. 1H NMR (500 MHz, DMSO-d6)
δ 6.91–7.24 (m, 2H), 6.66 – 6.18 (m, 2H), 5.41 (t, J = 6.0 Hz, 1H), 3.61 (s, 3H), 3.25 (q, J = 6.6 Hz, 2H), 2.56
(t, J = 6.8 Hz, 2H), 1.21 (s, 9H); 13C NMR (126 MHz, DMSO) δ 172.19, 146.03, 138.17, 125.53, 111.90,
51.36, 38.98, 33.61, 33.46, 31.49. HRMS (ESI): calcd for C14H22NO2 [M + H]+: 236.1643, found: 236.1645.

Tert-butyl 3-((p-(tert-butyl)phenyl)amino)propanoate (3f). Yellow oil. 1H NMR (500 MHz, CDCl3)
δ 7.17–7.38 (m, 2H), 6.48–6.77 (m, 2H), 3.45 (t, J = 6.4 Hz, 2H), 2.58 (t, J = 6.4 Hz, 2H), 1.52 (s, 9H), 1.35
(s, 9H); 13C NMR (126 MHz, CDCl3) δ 171.72, 145.36, 140.25, 125.95, 112.76, 80.66, 39.85, 35.18, 33.77,
31.50, 28.06. HRMS (ESI): calcd for C17H28NO2 [M + H]+: 278.2112, found: 278.2113.

Methyl 3-((p-methoxyphenyl)amino)propanoate (3g). Light yellow solid. 1H NMR (500 MHz, DMSO-d6)
δ 6.68–6.80 (m, 2H), 6.65 – 6.45 (m, 2H), 5.14 (t, J = 6.1 Hz, 1H), 3.65 (s, 3H), 3.63 (s, 3H), 3.26 (q, J = 6.6
Hz, 2H), 2.58 (t, J = 6.8 Hz, 2H); 13C NMR (126 MHz, DMSO) δ 172.10, 150.86, 142.53, 114.47, 113.21,
55.09, 51.13, 39.54, 33.50. HRMS (ESI): calcd for C11H16NO3 [M + H]+: 210.1124, found: 210.1127.

Tert-butyl 3-((p-methoxyphenyl)amino)propanoate (3h). Yellow oil. 1H NMR (500 MHz, CDCl3) δ 6.71–6.96
(m, 2H), 6.38–6.73 (m, 2H), 3.76 (s, 3H), 3.36 (t, J = 6.4 Hz, 2H), 2.52 (t, J = 6.4 Hz, 2H), 1.47 (s, 9H);
13C NMR (126 MHz, CDCl3) δ 171.76, 152.29, 141.90, 114.84, 114.57, 55.69, 40.74, 35.06, 28.06. HRMS
(ESI): calcd for C14H22NO3 [M + H]+: 252.1596, found: 252.1595.

Methyl 3-((4-chlorophenyl)amino)propanoate (3i). White powder. 1H NMR (500 MHz, CDCl3) δ 7.06–7.19
(m, 2H), 6.50–6.58 (m, 2H), 3.71 (s, 3H), 3.42 (t, J = 6.4 Hz, 2H), 2.62 (t, J = 6.3 Hz, 2H); 13C NMR
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(126 MHz, CDCl3) δ 172.63, 146.10, 129.05, 122.16, 114.03, 51.75, 39.44, 33.46. HRMS (ESI): calcd for
C10H13ClNO2 [M + H]+: 214.0628, found: 214.0630.

Tert-butyl 3-((4-chlorophenyl)amino)propanoate (3j). Yellow oil. 1H NMR (500 MHz, CDCl3) δ 6.98–7.20
(m, 2H), 6.35–6.66 (m, 2H), 3.38 (t, J = 6.3 Hz, 2H), 2.53 (t, J = 6.3 Hz, 2H), 1.47 (s, 9H); 13C NMR
(126 MHz, CDCl3) δ 171.61, 146.20, 129.12, 122.37, 114.28, 81.06, 39.91, 34.85, 28.12. HRMS (ESI): calcd
for C13H19ClNO2 [M + H]+: 256.1096, found: 256.1098.

Methyl 3-((4-bromophenyl)amino)propanoate (3k). White powder. 1H NMR (500 MHz, CDCl3) δ 7.02–7.64
(m, 2H), 6.00–6.82 (m, 2H), 3.71 (s, 3H), 3.42 (t, J = 6.3 Hz, 2H), 2.62 (t, J = 6.3 Hz, 2H); 13C NMR
(126 MHz, CDCl3) δ 171.61, 146.20, 129.12, 122.37, 114.28, 81.06, 39.91, 34.85, 28.12. HRMS (ESI): calcd
for C10H13BrNO2 [M + H]+: 258.0124, found:258.0126.

Tert-butyl 3-((4-bromophenyl)amino)propanoate (3l). Clear oil. 1H NMR (500 MHz, CDCl3) δ 7.06–7.42
(m, 2H), 6.36–6.65 (m, 2H), 3.37 (t, J = 6.3 Hz, 2H), 2.53 (t, J = 6.3 Hz, 2H), 1.46 (s, 9H); 13C NMR
(126 MHz, CDCl3) δ 171.60, 146.63, 131.98, 114.74, 109.35, 81.07, 39.77, 34.82, 28.12. HRMS (ESI): calcd
for C13H19BrNO2 [M + H]+: 300.0593, found:300.0595.

Methyl 3-(pyridin-2-ylamino)propanoate (3m). White solid, 1H NMR (500 MHz, CDCl3) δ 8.04 (ddd,
J = 5.1, 1.9, 0.9 Hz, 1H), 7.34 (ddd, J = 8.4, 7.1, 1.9 Hz, 1H), 6.51 (ddd, J = 7.1, 5.1, 1.0 Hz, 1H), 6.35 (dt,
J = 8.4, 1.0 Hz, 1H), 5.04 (t, J = 6.3 Hz, 1H), 3.64 (s, 3H), 3.60 (q, J = 6.3 Hz, 2H), 2.61 (t, J = 6.3 Hz, 2H);
13C NMR (126 MHz, CDCl3) δ 172.85, 158.12, 147.85, 137.11, 112.76, 107.50, 51.52, 37.19, 33.87. HRMS
(ESI): calcd for C9H13N2O2 [M + H]+: 181.0972, found: 181.0975.

Methyl 3-(benzo[d][1,3]dioxol-5-ylamino)propanoate (3o). Light yellow solid. 1H NMR (500 MHz, CDCl3)
δ 6.64 (d, J = 8.3 Hz, 1H), 6.25 (d, J = 2.3 Hz, 1H), 6.04 (dd, J = 8.3, 2.3 Hz, 1H), 5.82 (d, J = 0.8 Hz, 2H),
3.68 (d, J = 0.7 Hz, 3H), 3.35 (t, J = 6.4 Hz, 2H), 2.58 (t, J = 6.4 Hz, 2H); 13C NMR (126 MHz, CDCl3)
δ 172.59, 148.19, 143.15, 139.62, 108.40, 104.51, 100.38, 96.10, 51.48, 40.24, 33.41. HRMS (ESI): calcd for
C11H14NO4 [M + H]+: 224.0918, found: 224.0919.

Tert-butyl 3-(benzo[d][1,3]dioxol-5-ylamino)propanoate (3p). Light yellow oil. 1H NMR (500 MHz, CDCl3)
δ 6.66 (d, J = 8.3 Hz, 1H), 6.27 (d, J = 2.4 Hz, 1H), 6.07 (dd, J = 8.3, 2.3 Hz, 1H), 5.86 (s, 2H), 3.33
(t, J = 6.3 Hz, 2H), 2.51 (t, J = 6.3 Hz, 2H), 1.47 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 171.73, 148.34,
143.48, 139.81, 108.59, 104.90, 100.55, 96.38, 80.84, 40.76, 34.96, 28.09. HRMS (ESI): calcd for C14H20NO4

[M + H]+: 266.1385, found: 266.1386.

Methyl 3-(naphthalen-2-ylamino)propanoate (3q). Pink powder. 1H NMR (500 MHz, CDCl3) δ 7.70 (d,
J = 8.6 Hz, 1H), 7.66 (d, J = 5.8 Hz, 1H), 7.64 (d, J = 5.5 Hz, 1H), 7.39 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H),
7.23 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 6.90 (dd, J = 8.8, 2.4 Hz, 1H), 6.85 (d, J = 2.3 Hz, 1H), 3.74 (s, 3H),
3.59 (t, J = 6.4 Hz, 2H), 2.72 (t, J = 6.3 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ 172.85, 145.18, 135.11,
129.06, 127.67, 127.63, 126.37, 125.94, 122.16, 118.11, 104.66, 51.81, 39.41, 33.52. HRMS (ESI): calcd for
C14H16NO2 [M + H]+: 230.1176, found: 230.1181.

Tert-butyl 3-(naphthalen-2-ylamino)propanoate (3r). Pale violet powder. 1H NMR (500 MHz, CDCl3) δ 7.69
(d, J =8.10 Hz, 1H), 7.66 (d, J =6.25 Hz, 1H), 7.64 (d, J =5..45 Hz, 1H), 7.37–7.40 (m, 1H), 7.21–7.24
(m, 1H), 6.92 (dd, J =8.8, 2.3 Hz, 1H), 6.87 (d, J =2.0 Hz, 1H), 3.53 (t, J =6.3 Hz, 2H), 2.63 (t, J =6.3 Hz,
2H), 1.48 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 171.72, 147.73, 129.25, 117.60, 113.06, 80.83, 39.65, 35.08,
28.10. HRMS (ESI): calcd for C17H22NO2 [M + H]+: 272.1645, found: 272.1649.

4. Conclusions

In summary, we have developed an effective and environmentally friendly methodology for the
synthesis of β-amino acid esters based on aromatic amines catalyzed by lipase TL IM from Thermomyces
lanuginosus under continuous-flow microreactors. Lipase TL IM from Thermomyces lanuginosus was first
used to catalyze Michael addition reaction of aromatic amines with acrylates. We studied the effects of
various reaction parameters including the reaction medium, reaction temperature, enzyme, substrate
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molar ratio, residence time/flow rate and substrate structure on the reaction. Through this technique,
17 β-amino acid esters were rapidly synthesized. Compared with traditional methods, the salient
features of this method include green reaction solvent (methanol), mild reaction condition (35 ◦C),
short residence time (30 min) and high yield. These features make our methodology an attractive
alternative to the current synthesis of β-amino acid esters. Our studies highlight the importance of
selecting a reaction system for a specific biotransformation and show that enzymatic reactions can
benefit greatly from the continuous-flow microreactor. Our results provide direction for the exploration
of new enzyme catalysis processes.
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