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Abstract: In this Special Issue on N-Heterocyclic Carbenes and Their Complexes in Catalysis, we report
the first example of Suzuki–Miyaura cross-coupling of amides catalyzed by well-defined, air- and
moisture-stable nickel/NHC (NHC = N-heterocyclic carbene) complexes. The selective amide bond
N–C(O) activation is achieved by half-sandwich, cyclopentadienyl [CpNi(NHC)Cl] complexes.
The following order of reactivity of NHC ligands has been found: IPr > IMes > IPaul ≈ IPr*. Both the
neutral and the cationic complexes are efficient catalysts for the Suzuki–Miyaura cross-coupling of
amides. Kinetic studies demonstrate that the reactions are complete in < 1 h at 80 ◦C. Complete
selectivity for the cleavage of exocyclic N-acyl bond has been observed under the experimental
conditions. Given the utility of nickel catalysis in activating unreactive bonds, we believe that
well-defined and bench-stable [CpNi(NHC)Cl] complexes will find broad application in amide bond
and related cross-couplings of bench-stable acyl-electrophiles.

Keywords: N-heterocyclic carbenes; nickel; nickel/NHC; amide bonds; Suzuki–Miyaura;
cross-coupling; N–C cleavage; N–C activation; [CpNi(NHC)X]; half-sandwich; cyclopentadienyl

1. Introduction

Nickel catalysis has recently garnered significant attention, enabling cleavage of unreactive
bonds by this abundant 3D transition metal [1–3]. Simultaneously, major advances have been made
in amide cross-coupling, wherein highly selective oxidative addition of the N–C(O) bond enables
to exploit the traditionally unreactive amides as a novel class of acyl and aryl electrophiles [4–10].
This unconventional amide bond disconnection is particularly relevant in the view of common presence
of amides in natural products, pharmaceuticals, and biopolymers, where the emergence of new catalytic
methods has a potentially major impact on the way chemists perceive synthetic routes.

In this context, palladium/NHC (NHC = N-heterocyclic carbene) catalysis using well-defined
Pd(II)–NHC precatalysts has been established as the dominant catalytic direction in activating amide
N–C(O) bonds for acyl cross-coupling [4,11–14]. However, to the best of our knowledge, there are
no methods for the use of well-defined, air- and moisture-stable nickel/NHC complexes as efficient
precatalysts in amide bond activation. In spite of the advances made by in situ formed Ni(0) catalysts,
the lack of air-stability of Ni(cod)2 severely limits the potential broad applications of the powerful Ni
catalysis platform in amide bond activation [15–17].

In this Special Issue on N-Heterocyclic Carbenes and Their Complexes in Catalysis, we report
the first example of Suzuki–Miyaura cross-coupling of amides catalyzed by well-defined, air- and
moisture-stable nickel/NHC (NHC = N-heterocyclic carbene) complexes (Figure 1). We were attracted
to the recent elegant advances made in the design of half-sandwich, cyclopentadienyl [CpNi(NHC)X]
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complexes by Chetcuti et al. [18–24]. Herein, we demonstrate that these highly practical [CpNi(NHC)Cl]
precatalysts [25–31] are capable of selective activation of amide N–C(O) bonds. The following features
of our study are noteworthy: (1) The reaction represents, to the best of our knowledge, the first
example of acyl-type cross-coupling achieved by half-sandwich [CpNi(NHC)X] complexes. (2) We
demonstrate the following order of reactivity of NHC ligands in amide bond cross-coupling: IPr >

IMes > IPaul ≈ IPr*. (3) We further establish that both the neutral and the cationic complexes are
efficient catalysts for the Suzuki–Miyaura cross-coupling of amides. (4) Kinetic studies demonstrate
that the reactions reach full conversion in < 1 h at 80 ◦C. (5) Furthermore, full selectivity in cleavage of
exocyclic N-acyl bond has been observed. Our method opens up the application of a wide variety
of [CpNi(NHC)X] and related half-sandwich complexes as well-defined, air- and moisture stable
precatalysts for cross-coupling of amide N–C bonds.
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2. Results

We first examined the cross-coupling of N-acyl-glutarimides as model substrates for the
cross-coupling with 4-tolylboronic acid using the readily prepared [CpNi(IPr)Cl] under various
conditions (Table 1, Figure 2) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). Optimization
revealed that the desired cross-coupling proceeds in 85% yield in the presence of [CpNi(NHC)Cl]
(10 mol%) as catalyst and K2CO3 (3.0 equivalent) as base in toluene as solvent at 80 ◦C using 4-Tol-B(OH)2

(3.0 equivalent) (Table 1, entry 1). Interestingly, increasing the reaction temperature to 120 ◦C had
only a minor effect on the cross-coupling (Table 1, entries 2–4). Furthermore, although previous
studies suggested the beneficial effect of phosphine ligands on the Suzuki–Miyaura C(sp2)–C(sp2)
cross-coupling catalyzed by Ni–NHC complexes [32], in our case the addition of phosphine had an
inhibitory effect on the cross-coupling (Table 1, entries 5–7). Examination of reaction parameters
revealed K2CO3 as the optimal base and toluene as the preferred solvent (Table 1, entries 8–15).
Interestingly, the use of Ni/phosphine catalysts, such as [Ni(PCy3)2Cl2] and [Ni(PPh3)2Cl2] resulted in
little or no cross-coupling (Table 1, entries 16–19). Likewise, no reaction was observed with nikelocene
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(Table 1, entry 20) [33], supporting the key role of the NHC ligand on the cross-coupling. Moreover, the
recently studied in cross-coupling of aryl sulfamates [Ni(dppf)(o-tol)Cl] [34] was unreactive under our
conditions (Table 1, entry 21), while the mixed NHC/phosphine Ni(II) complex, [Ni(IPr)(PPh3)Cl2] [35],
appeared as a potentially useful catalyst, but was less reactive than [CpNi(IPr)Cl] (Table 1, entry 22).

Table 1. Optimization of the Suzuki–Miyaura cross-coupling of amides using Ni–NHCs 1.
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(mol%) Base Solvent T

(◦C) Yield (%)

1 [CpNi(IPr)Cl] 10 K2CO3 toluene 80 85
2 [CpNi(IPr)Cl] 5 K2CO3 toluene 80 42
3 [CpNi(IPr)Cl] 10 K2CO3 toluene 120 80
4 [CpNi(IPr)Cl] 5 K2CO3 toluene 120 39

5 2 [CpNi(IPr)Cl] 10 K2CO3 toluene 120 40
6 3 [CpNi(IPr)Cl] 10 K2CO3 toluene 120 54
7 3 [CpNi(IPr)Cl] 10 K2CO3 toluene 80 27
8 [CpNi(IPr)Cl] 5 K2CO3 dioxane 120 34
9 [CpNi(IPr)Cl] 10 K2CO3 dioxane 120 48

10 [CpNi(IPr)Cl] 10 K2CO3 THF 80 <10
11 [CpNi(IPr)Cl] 10 Na2CO3 THF 80 20
12 [CpNi(IPr)Cl] 10 Na2CO3 THF 120 <5
13 [CpNi(IPr)Cl] 10 Na2CO3 dioxane 80 <5
14 [CpNi(IPr)Cl] 10 Na2CO3 dioxane 120 <5
15 [CpNi(IPr)Cl] 10 K3PO4 toluene 80 38
16 [Ni(PCy3)2Cl2] 10 Na2CO3 dioxane 80 31
17 [Ni(PCy3)2Cl2] 10 Na2CO3 dioxane 120 16
18 [Ni(PPh3)2Cl2] 10 K2CO3 toluene 120 <5
19 [Ni(PPh3)2Cl2] 10 Na2CO3 dioxane 80 <5
20 [NiCp2] 10 K2CO3 toluene 120 <5
21 [Ni(dppf)(o-tol)Cl] 10 K2CO3 toluene 120 <5
22 [Ni(IPr)(PPh3)Cl2] 10 K2CO3 toluene 120 64
23 [CpNi(IPr)(NCMe)](PF6) 10 K2CO3 toluene 80 44
24 [CpNi(IPr)(NCMe)](PF6) 5 K2CO3 toluene 80 28
25 [CpNi(IMes)Cl] 10 K2CO3 toluene 80 77
26 [CpNi(IMes)Cl] 5 K2CO3 toluene 80 40
27 [CpNi(IPaul)Cl] 10 K2CO3 toluene 80 68
28 [CpNi(IPaul)Cl] 5 K2CO3 toluene 80 39
29 [CpNi(IPr*)Cl] 10 K2CO3 toluene 80 63
30 [CpNi(IPr*)Cl] 5 K2CO3 toluene 80 42

1 Conditions: Amide (1.0 equivalent), 4-Tol-B(OH)2 (3.0 equivalent), base (3.0 equivalent), [Ni] (5-10 mol%), solvent
(0.25 M), T, 15 h. 2 PPh3 (20 mol%). 3 PPh3 (11 mol%). Yields were determined by 1H NMR.

Pleasingly, the cationic complex [CpNi(IPr)(NCMe)](PF6), readily prepared by chloride abstraction
with KPF6 according to the procedure Chetcuti [18] showed promising reactivity (Table 1, entries
23–24), indicating potential application of this class of cationic Ni–NHC catalysts in amide bond
cross-coupling in the future.

Further, we were particularly interested in evaluating steric demand of NHC ligands on
the performance of [CpNi(NHC)Cl] complexes in amide cross-coupling [36,37]. We found that
[CpNi(IMes)Cl] is slightly less reactive than [CpNi(IPr)Cl] (Table 1, entries 25–26). Furthermore,
examination of the highly attractive class of bulky but flexible NHC ligands, IPaul [38] and IPr* [39]
revealed [CpNi(IPaul)Cl] and [CpNi(IPr*)Cl] as promising catalysts for N–C bond activation. Of



Catalysts 2020, 10, 372 4 of 11

note, [CpNi(IPaul)Cl] is commercially-available, which should facilitate the discovery of future
cross-couplings of amide bonds mediated by this precatalyst.
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Figure 2. Structures of well-defined, air- and moisture-stable Ni–NHC catalysts.

With the optimized catalyst system in hand, we examined the scope of this Suzuki–Miyaura
cross-coupling catalyzed by well-defined Ni(II)–NHC precatalysts (Tables 2 and 3, and see Supporting
Information). As shown, the reaction was compatible with electron-donating groups on the boronic
acid (3a–c). Steric-hindrance at the ortho-position of the boronic acid was well-tolerated (3d–e).
Furthermore, fluorine functionalized boronic acids, such as 3-fluoro and 3-trifluoromethyl (3f–g)
could be introduced by this Ni-catalyzed approach. We were further pleased that conjugated arenes,
such as naphthalene and biphenyl delivered the desired biaryl ketone products in good yields (3h–i).
Only one aliphatic boronic acid was tested, and it was incompatible with the reaction conditions (entry
10). In terms of the amide scope, pleasingly, electron-rich and electron-withdrawing groups were
well-tolerated on the amide component (3a,c,j), while the electron-deficient amides appeared to be more
reactive (vide infra). Steric hindrance on the ortho-position of the amide was tolerated, albeit it exerted
a more pronounced effect than on the boronic acid, consistent with a decreased amide bond twist by
ortho-substitution (3d). Furthermore, fluorine-containing amides and heterocyclic amides provided
the desired products in good yields (3k–l). It is noteworthy that decarbonylation to give Ar–Ni after
loss of CO was not observed [40], consistent with the stability of acyl-Ni(NHC) intermediate.

Next, intermolecular competition experiments were conducted to gain preliminary insight into
the reaction (Schemes 1 and 2). As shown, competitions revealed electron-deficient amides to be
significantly more reactive than electron-rich amides (Scheme 1, CF3:MeO = 93:7). In contrast, a
comparable reactivity of electron-rich and electron-deficient boronic acids was observed (Scheme 2,
MeO:CF3 = 58:42). These preliminary studies are consistent with oxidative addition of the N–C(O)
bond as the rate limiting step of the reaction [41]. Further studies on the mechanism are ongoing.
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Table 2. Scope of the Suzuki–Miyaura cross-coupling of amides using [CpNi(IPr)Cl] 1.
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Kinetic studies were performed to gain insight into the reaction profile (Figure 3). As shown, the
reaction reached 75% conversion after 5 min, while 86% and >95% conversion was observed after 30
and 60 min, respectively, consistent with efficient generation of the reactive Ni(0)–NHC catalyst [40,41]
under the reaction conditions (TON = 8.5, 10 mol%; TOF = 1.5 min-1). Studies on the mechanism are
underway and will be reported in due course.
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Figure 3. Kinetic profile of 1a. Conditions: 1a, 4-Tol-B(OH)2 (3.0 equivalent), [CpNi(IPr)Cl] (10 mol%),
K2CO3 (3.0 equivalent), toluene (0.25 M), 80 ◦C, 1–60 min.

Finally, we were interested to probe the effect of different acyl leaving groups on the cross-coupling
(Scheme 3). N-Acyl-glutarimides have emerged as the go-to amides to develop new cross-coupling
methods by N–C activation. Furthermore, the present coupling is compatible with N-sulfonyl
activation in acyclic amides, such as N,N-Ph/Ts, and N-acyl-succinimides, albeit the cross-coupling
product was obtained in lower yield under the present conditions. In contrast, N-Boc-carbamates,
were recovered unchanged from the reaction conditions, indicating a potential for chemoselective
coupling. Typically, N-Ts amides and N-acyl-succinimides are consumed under the reaction
conditions, while other electrophiles were recovered unchanged. Moreover, the C–O cross-coupling
is also feasible under the present conditions as demonstrated by the cross-coupling of Opfp ester
(pfp = pentafluorophenyl) [42,43]. In contrast, the unactivated phenolic ester was recovered unchanged,
consistent with a considerable potential of [CpNi(NHC)Cl] catalysts in chemoselective activation of
C(acyl)–O electrophiles.
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3. Discussion

In summary, we have reported the first example of Suzuki–Miyaura cross-coupling of amides
catalyzed by well-defined, air- and moisture-stable nickel/NHC complexes. The reaction delivers biaryl
ketones in good yields using inexpensive nickel catalyst with excellent N–C(O) cleavage selectivity
cf. endocylic amide bond and acyl vs. decarbonylative coupling. In a broad sense, this report
establishes the capacity of highly attractive half-sandwich [CpNi(NHC)Cl] complexes as catalysts for
activation of amide N–C(O) bonds. Furthermore, we have established the order of reactivity of NHC
ligands in [CpNi(NHC)Cl] complexes as IPr > IMes > IPaul ≈ IPr*, and showed that both neutral and
cationic complexes serve as efficient catalysts for amide bond cross-coupling. Reaction profile studies
demonstrated that these reactions are complete in < 1 h at 80 ◦C. In a broader context, the present
method should be evaluated in comparison with other known approaches to biaryl ketones from
amides [3–10] and acyl electrophiles [15]. The use of Ni catalysis [1–3] and the beneficial performance
of Ni–NHC complexes [25–29] may accelerate the development of new approaches to activating amide
bonds. Considering the utility of nickel catalysis in activation of unreactive bonds, we anticipate that
[CpNi(NHC)Cl] complexes will be of interest in activation of bench-stable acyl electrophiles. Further
mechanistic studies, as well as efforts to expand the scope of electrophiles in cross-coupling catalyzed
by well-defined Ni–NHC complexes are ongoing.

4. Materials and Methods

4.1. General Information

General methods have been published (See Supporting Information) [11].

4.2. General Procedure for [CpNi(IPr)Cl] Catalyzed Cross-Coupling of Amides

In a typical cross-coupling procedure, an oven-dried vial was charged with an amide substrate
(neat, 1.0 equivalent), boronic acid (typically, 3.0 equivalent), potassium carbonate (typically, 3.0
equivalent), [CpNi(NHC)Cl] (typically, 10 mol%), placed under a positive pressure of argon or nitrogen,
and subjected to three evacuation/backfilling cycles under high vacuum. Toluene (to reach 0.25 M
concentration) was added at room temperature, the reaction mixture was placed in a preheated oil bath
at 80 ◦C, and stirred at 80 ◦C. After the indicated time, the reaction was cooled down, diluted with
CH2Cl2 (10 mL), filtered, and concentrated. The sample was analyzed by 1H NMR (CDCl3, 500 MHz)
and GC-MS to obtain conversion, selectivity, and yield using internal standard and comparison
with authentic samples. Unless stated otherwise, all compounds have been previously reported.
All compounds have been quantified by 1H NMR spectroscopy using nitromethane as internal standard
(500 MHz, CD3Cl). All reactions have been carried out in microwave vials with heavy-wall, Type I,
Class A borosilicate. These vials are designed to withstand pressures up to 300 PSI (20 bars) and are
equivalent to Fisher-Porter tube.
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4.3. Representative Procedure for [CpNi(IPr)Cl] Catalyzed Cross-Coupling of Amides

An oven-dried vial was charged with 1-benzoylpiperidine-2,6-dione (neat, 108.6 mg, 0.5 mmol),
4-tolylboronic acid (204.0 mg, 1.5 mmol, 3.0 equivalent), K2CO3 (207.3 mg, 1.5 mmol, 1.5 equivalent),
[CpNi(IPr)Cl] (10 mol%, 27.4 mg), placed under a positive pressure of argon, and subjected to three
evacuation/backfilling cycles under high vacuum. Toluene (0.25 M, 2.0 mL) was added at room
temperature, the reaction mixture was placed in a preheated oil bath at 80 ◦C, and stirred for 15 h
at 80 ◦C. After the indicated time, the reaction was cooled down, diluted with CH2Cl2 (10 mL),
filtered, and concentrated. A sample was analyzed by 1H NMR (CDCl3, 500 MHz) and GC-MS
to obtain conversion, yield, and selectivity using internal standard and comparison with authentic
samples. Purification by chromatography on silica gel (hexanes/ethyl acetate) afforded the title product.
Yield 81% (79.5 mg). White solid. Characterization data are included in the section below.

4.4. Characterization Data for Products 3a–l (Tables 2-3)

The following Characterization Data are shown in Supporting Information.
Phenyl(p-tolyl)methanone (3a). 1H NMR (500 MHz, CDCl3) δ 7.82-7.80 (d, J = 8.1 Hz, 2 H),

7.76-7.74 (d, J = 8.0 Hz, 2 H), 7.62-7.59 (t, J = 7.5 Hz, 1 H), 7.51-7.48 (t, J = 7.6 Hz, 2 H), 7.32-7.28
(d, J = 7.9 Hz, 2 H), 2.47 (s, 3 H). 13C NMR (125 MHz, CDCl3) δ 196.53, 143.26, 137.98, 134.90, 132.17,
130.33, 129.95, 128.99, 128.22, 21.68.

(4-(tert-Butyl)phenyl)(phenyl)methanone (3b). 1H NMR (500 MHz, CDCl3) δ 7.84-7.82 (d, J =

7.7 Hz, 2 H), 7.80-7.78 (d, J = 8.3 Hz, 2 H), 7.61-7.58 (t, J = 7.3 Hz, 1 H), 7.53-7.48 (m, 4 H), 1.39 (s, 9
H). 13C NMR (125 MHz, CDCl3) δ 196.45, 156.19, 137.97, 134.85, 132.17, 130.15, 129.98, 128.22, 125.26,
35.13, 31.17.

(4-Methoxyphenyl)(phenyl)methanone (3c). 1H NMR (500 MHz, CDCl3) δ 7.87-7.85 (d, J = 8.7
Hz, 2 H), 7.79-7.77 (d, J = 8.2 Hz, 2 H), 7.61-7.58 (t, J = 6.8 Hz, 1 H), 7.51-7.48 (t, J = 7.6 Hz, 2 H), 7.00-6.98
(d, J = 8.7 Hz, 2 H), 3.92 (s, 3 H). 13C NMR (125 MHz, CDCl3) δ 195.59, 163.24, 138.31, 132.58, 131.90,
130.19, 129.75, 128.20, 113.57, 55.52.

Phenyl(o-tolyl)methanone (3d). 1H NMR (500 MHz, CDCl3) δ 7.84-7.82 (d, J = 8.3 Hz, 2 H),
7.62-7.59 (t, J = 7.5 Hz, 1 H), 7.50-7.47 (t, J = 7.9 Hz, 2 H), 7.43-7.40 (t, J = 7.5 Hz, 1 H), 7.35-7.31 (t, J =

7.8 Hz, 2 H), 7.29-7.26 (t, J = 7.5 Hz, 1 H), 2.36 (s, 3 H). 13C NMR (125 MHz, CDCl3) δ 198.67, 138.63,
137.76, 136.77, 133.14, 131.01, 130.25, 130.15, 128.53, 128.47, 125.21, 20.00.

(2-Methoxyphenyl)(phenyl)methanone (3e). 1H NMR (500 MHz, CDCl3)δ 7.85-7.83 (d, J = 7.7
Hz, 2 H), 7.59-7.56 (t, J = 7.5 Hz, 1 H), 7.51-7.48 (t, J = 7.4 Hz, 1 H), 7.47-7.44 (t, J = 7.2 Hz, 2 H),
7.39-7.38 (d, J = 7.7 Hz, 1 H), 7.08-7.05 (t, J = 7.2 Hz, 1 H), 7.03-7.01 (d, J = 7.7 Hz, 1 H), 3.75 (s, 3
H). 13C NMR (125 MHz, CDCl3) δ 196.48, 157.37, 137.83, 132.93, 131.88, 129.85, 129.61, 128.88, 128.22,
120.50, 111.46, 55.62.

(3-Fluorophenyl)(phenyl)methanone (3f). 1H NMR (500 MHz, CDCl3)δ 7.83-7.82 (d, J = 7.5 Hz,

2 H), 7.65-7.59 (m, 2 H), 7.54-7.47 (m, 4 H), 7.33-7.30 (t, J = 8.3 Hz, 1 H). 13C NMR (125 MHz, CDCl3) δ

164.59, 162.51 (d, JF = 246.78 Hz), 137.05, 132.79, 130.03, 130.01, 129.95, 128.44, 125.83 (d, JF = 2.9 Hz),
119.44 (d, JF = 21.4 Hz), 116.77 (d, JF = 22.3 Hz). 19F NMR (471 MHz, CDCl3) δ -111.99.

Phenyl(3-(trifluoromethyl)phenyl)methanone (3g). 1H NMR (500 MHz, CDCl3) δ 8.09 (s, 1 H),
8.01-7.99 (d, J = 7.7 Hz, 1 H), 7.88-7.86 (d, J = 7.8 Hz, 1 H), 7.83-7.81 (d, J = 7.1 Hz, 2 H), 7.67-7.64 (t, J =

7.6 Hz, 2 H), 7.55-7.52 (t, J = 7.8 Hz, 2 H). 13C NMR (125 MHz, CDCl3) δ 195.24, 138.29, 136.76, 133.14,

133.03, 131.01 (q, J2 = 32.7 Hz), 130.04, 128.97, 128.86 (q, JF = 3.5 Hz), 128.58, 126.72 (q, JF = 3.8 Hz),
123.71 (q, JF = 270.8 Hz). 19F NMR (471 MHz, CDCl3) δ -62.74.

Naphthalen-2-yl(phenyl)methanone (3h). 1H NMR (500 MHz, CDCl3) δ 8.30 (s, 1 H), 7.98 (s,
2 H), 7.96-7.94 (d, J = 8.0 Hz, 2 H), 7.90-7.89 (d, J = 7.4 Hz, 2 H), 7.65 (s, 2 H), 7.60-7.53 (m, 3 H).
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13C NMR (125 MHz, CDCl3) δ 196.78, 137.93, 135.29, 134.85, 132.40, 132.28, 131.89, 130.12, 129.44,
128.36, 128.34, 128.32, 127.84, 126.82, 125.81.

[1,1’-Biphenyl]-4-yl(phenyl)methanone (3i). 1H NMR (500 MHz, CDCl3) δ 7.94-7.92 (d, J = 7.2
Hz, 2 H), 7.88-7.86 (d, J = 7.5 Hz, 2 H), 7.75-7.73 (d, J = 7.3 Hz, 2 H), 7.69-7.68 (d, J = 7.7 Hz, 2 H), 7.65-7.62
(t, J = 7.1 Hz, 1 H), 7.55-7.50 (m, 4 H), 7.45-7.42 (t, J = 6.7 Hz, 1 H). 13C NMR (125 MHz, CDCl3) δ
196.38, 145.26, 140.01, 137.79, 136.26, 132.40, 130.75, 130.02, 128.99, 128.33, 128.21, 127.33, 126.99.

Phenyl(4-(trifluoromethyl)phenyl)methanone (3j). 1H NMR (500 MHz, CDCl3) δ 7.93-7.91 (d,
J = 8.0 Hz, 2 H), 7.84-7.82 (d, J = 8.2 Hz, 2 H), 7.79-7.77 (d, J = 8.1 Hz, 2 H), 7.67-7.64 (t, J = 7.6
Hz, 1 H), 7.55-7.52 (t, J = 7.7 Hz, 2 H). 13C NMR (125 MHz, CDCl3) δ 195.55, 140.74, 136.75, 133.74

(q, J2 = 32.5 Hz), 133.11, 130.15, 130.12, 128.55, 125.37 (q, J3 = 3.7 Hz), 123.69 (q, J1 = 270.9 Hz).
19F NMR (471 MHz, CDCl3) δ -63.00.

(3,4-Difluorophenyl)(phenyl)methanone (3k). 1H NMR (500 MHz, CDCl3) δ 7.76 (d, J = 7.7 Hz,
2 H), 7.68 (t, J = 9.0 Hz, 1 H), 7.60 (t, J = 13.0 Hz, 2 H), 7.50 (t, J = 7.7 Hz, 2 H), 7.27 (q, J = 8.3 Hz, 1 H).
13C NMR (125 MHz, CDCl3) δ 194.22, 154.42 (dd, JF = 255.0, 12.5 Hz), 150.33 (dd, JF = 255.0, 12.5 Hz),

137.01, 134.58 (t, JF = 3.8 Hz), 132.94, 129.98, 128.63, 127.23 (q, JF = 3.8 Hz), 119.46 (dd, JF =17.5, 1.2 Hz),
117.41 (d, JF = 17.5 Hz). 19F NMR (471 MHz, CDCl3) δ -130.59 (d, J = 21.4 Hz), -136.17 (d, J = 21.4 Hz).

Phenyl(thiophen-2-yl)methanone (3l). 1H NMR (500 MHz, CDCl3) δ 7.90-7.89 (d, J = 8.2 Hz, 2
H), 7.76-7.75 (d, J = 4.9 Hz, 1 H), 7.68-7.67 (d, J = 3.7 Hz, 1 H), 7.64-7.61 (t, J = 7.5 Hz, 1 H), 7.54-7.51
(t, J = 7.7 Hz, 2 H), 7.20-7.19 (t, J = 4.8 Hz, 1 H). 13C NMR (125 MHz, CDCl3) δ 188.26, 143.67, 138.18,
134.86, 134.22, 132.28, 129.20, 128.43, 127.97.

Supplementary Materials: General Methods, Characterization Data, 1H and 13C NMR Spectra are available
online at http://www.mdpi.com/2073-4344/10/4/372/s1.
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