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Abstract: Heavy fuel oils contain a high amount of sulfur. In this work, an extent amount of sulfur
content waste tire pyrolysis oil (WTPO) was used as a fuel feedstock. A promising alternative oxidative
desulfurization (ODS) method was applied in sulfur removal from WTPO using a S-ZrO2/SBA-15
solid acid catalyst, hydrogen peroxide (H2O2) as an oxidant and acetonitrile as an extracting
solvent at varied conditions. The prepared catalyst was characterized by X-ray diffraction (XRD),
Bruanuer-Emmet-Teller (BET) method and Fourier transform infrared spectroscopy (FTIR) analysis.
The influence of reaction parameters such as reaction time (30-60 min), catalyst loading (0.5–1.5 wt.%),
oxidant to oil mole ratio (5–15) at fixed reaction temperature 70 ◦C on desulfurization of WTPO were
investigated. Taguchi method was selected to design the experiment for optimizing the reaction
parameters by maximizing the sulfur removal efficiency. The maximum desulfurization efficiency
59.49% was obtained under optimum conditions reaction time (60 min), catalyst loading (1.0 wt.%)
and oxidant to sulfur mole ratio (10:1). A catalytic S-ZrO2/SBA-15 -H2O2 oxidation system for
oxidative desulfurization of waste tire pyrolysis oil using at mild reaction conditions was developed.

Keywords: optimization; oxidative desulfurization; taguchi method; waste tire oil

1. Introduction

The energy crisis and environmental pollution are the two main problems in the world today
due to the increasing human population and rapid industrialization. To meet the fuel energy demand,
many initiatives are being taken to find alternative fuel oils due to the depletion of fossil fuels. Fuel oil
derived from waste tire pyrolysis is becoming a promising alternative energy source because of its
higher heating value and availability [1,2].

A large amount of waste tires is produced every day due to the high demand for personal and
commercial transportation. There are several ways to manage the disposal of waste tires, such as
landfill deposition and incineration. However, these techniques have limitations due to the availability
of land space, possibility of fire at the waste tire storage areas. In addition, some toxic gases and black
smog are produced during the incineration of waste tires, which can cause air pollution [3,4].

Waste tires are made of natural rubber, synthetic rubber, fabric, and carbon including other
chemicals. Another important component of waste tire is sulfur, which acts as a cross-linking agent.
Waste tires have a higher heating value compared to waste biomass. Therefore, waste tires have huge
potential for use as an alternative energy source to conventional fuel oils. Usually, waste tire oil is
produced using a pyrolysis process. However, the main disadvantage of waste tire pyrolysis oil is its
high sulfur content (1–1.4 wt.%) [3–6].

Sulfur is one of the major sources of air pollution, which threatens human health and the
surrounding environment. Therefore, it is important to reduce the amount of sulfur in waste tire oil
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to make it a green fuel oil and to meet the standard for sulfur content (10–15 ppm) set by the United
States Environmental Protection Agency (USEPA) [7–10].

Commercially, hydrodesulfurization (HDS) is used in the oil refinery industry to remove sulfur
compounds from liquid fuel oils with a high removal efficiency in the presence of valuable metal
catalysts. However, the main drawback of this method is that it needs high temperature (~400 ◦C)
and high pressure (~100 atm), which increase the operational cost. In recent years, the catalytic
oxidative desulfurization (ODS) process has drawn attraction due to its milder reaction conditions
(low temperature and pressure [11–16].

The catalytic oxidative desulfurization (ODS) process consists of two steps. In the first step,
sulfur containing fuel oil is subjected to catalytic oxidation to produce oxidized sulfur compounds
(sulfones/sulfoxides) in the presence of an oxidant. In the second step, the oxidized sulfur compounds
are removed from the reaction mixture using an adsorption or liquid/liquid extraction method
(Figure 1). Highly polar solvents such as DMF, NMP, DMSO, and acetonitrile are used to extract the
sulfur compounds [16–19].
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Figure 1. Mechanism of catalytic oxidative desulfurization of fuel oil.

Catalysts play an important and effective role in the ODS process because the catalysts activate the
activity of the oxidizing agent. Many catalytic-oxidation systems have been applied in the oxidation
of sulfur compounds such as acetic acid/formic acid catalytic/oxidation [20,21], heteropoyacid (HPA)
catalytic/oxidation [22,23], ionic liquid catalytic/oxidation [24,25], polyoxometalate catalytic/oxidation,
silica and molecular sieve catalytic-oxidation [26,27] and ultrasound assisted/ oxidation [28,29]. Among
them, transition-metal supported composite catalytic oxidation systems are getting more attention
because of their excellent catalytic performance. The acidity of the support such as silica, alumina,
silica-alumina and magnesia-alumina and the dispersion of the active sites of the catalyst show high
activity on the oxidation of sulfur containing fuel oil.

In the present work, sulfate zirconium oxide (SO42−/ZrO2) supported by high surface area
silica (SBA-15), S-ZrO2/SBA-15, superacid catalyst was successfully prepared using a direct wet
impregnation method in acidic media and used for desulfurization of waste tire pyrolysis oil (WTPO).
It is expected that when an oxidant such as H2O2 encounter the acidic sites on sulfated zirconia
catalyst, the thermodynamically strong oxidant can be formed, which can oxidize sulfur compounds.
The large surface area of S-ZrO2/SBA-15 super acid catalyst can enhance the contact between the sulfur
compounds and H2O2 oxidant. The Taguchi method was selected as the design of the experiment
(DOE) to minimize the excess experiments cost and optimize the reaction parameters. The effect of
solvent to oil ratio and stirring speed on the sulfur removal of WTPO were studied. In addition,
the reusability and stability of the catalyst also was investigated under mild reaction conditions.

2. Results and Discussion

2.1. Catalyst Characterization

2.1.1. X-ray Diffraction

XRD was recorded to observe the mesoporous structure of SBA-15 and crystalline ZrO2. The results
depicted in Figure 2 show that there are three intense peaks observed at 30◦, 50◦, and 60◦, and two
small peaks at 35◦ and 62◦ for SO4

2−/ZrO2 (S-ZrO2) calcined at 540 ◦C. These diffraction peaks prove
the presence of a bulk ZrO2 crystalline phase and the absence of other impurities. They also show that
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the introduction of sulfate group can stabilize the crystalline phase of ZrO2, which is a prerequisite
for sulphated zirconia catalytic activity [30]. The XRD pattern of S-ZrO2/SBA-15 also shows similar
diffraction peaks characteristic of ZrO2. The XRD pattern of S-ZrO2/SBA-15 also showed one broad
intense peak at 20–30◦, which is characteristic for the hexagonal structure of SBA-15 support [31].
From these findings, it can be concluded that the S–ZrO2/SBA-15 solid acid catalyst retains the
structure of the SBA-15 support even after it was subjected to the wet impregnation process with ZrO2,
the introduction of sulfuric acid, and calcination at high temperature.
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Figure 2. XRD pattern recorded for the S-ZrO2/SBA-15 catalyst.

2.1.2. FTIR Spectroscopy

Figure 3 shows the FTIR spectra recorded for the sulfated zirconia SO4
2−/ZrO2 (S-ZrO2) and

S-ZrO2/SBA-15 catalysts. The band observed at ~1400 cm−1 is attributed to the covalent S=O bond,
which is considered as the characteristic band for SO4

2− for S-ZrO2 and indicate the strength of its
superacidity. This band shifts to ~1530 cm−1 in the S-ZrO2/SBA-15 catalyst. The band shift can be
attributed to the interaction between ZrO2 and SBA-15 [32]. All the bands observed between 700 and
900 cm−1 correspond to the Zr-O-Si bond. This indicates the successful impregnation of zirconia into
SBA-15 [33].Catalysts 2019, 9, x FOR PEER REVIEW 4 of 15 
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2.1.3. Surface Analysis of the Catalysts

The N2 adsorption-desorption isotherms and pore size distribution of the SBA-15 and
S-ZrO2/SBA-15 catalysts are displayed in Figure 4A, B respectively, and their surface data (surface
area, pore volume, and pore size) are presented in Table 1. Figure 4 shows both isotherms were
typical IV isotherms with a H1 hysteresis loop, as defined by IUPAC. The hysteresis loop indicates the
uniform mesoporous structure of SBA-15 with large dimensions [34,35]. Table 1 shows that the surface
area of the SBA-15 support (805.48 m2/g) is decreased to 573.11 m2/g after the incorporation of ZrO2.
Meanwhile, the pore volume and pore diameter also decreased. These results confirm that zirconia
was dispersed on the surface of the SBA-15 support.Catalysts 2019, 9, x FOR PEER REVIEW 5 of 15 
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S-ZrO2/SBA-15.

Table 1. The physiochemical properties of SBA-15 and S-ZrO2/SBA-15.

Catalyst SBET (m2/g) Vp (cm3g−1) D (nm)

SBA-15 824.07 1.227 4.896
S-ZrO2/SBA-5 496.86 0.690 4.318

2.2. Optimization of the Reaction Parameters

The experimental data was evaluated using the signal to noise ratio (S/N) (Figure 5) according
to the Taguchi (L9) orthogonal experimental design method (Table 2. S/N is the ratio between the
desired value of the response variable and undesired value of the response variable. The largest S/N
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ratio was selected in the optimization of process parameters (reaction time, catalyst and molar ration
of oxidant (H2O2) to sulfur) to maximize the sulfur removal efficiency. The S/N ratio was calculated
using Equation (1).

S/N = 10log 1/n (Σ 1/y2) (1)

where n is the number of observations and y is the observed value.
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Table 2. The orthogonal array generated using the Taguchi method to optimize the reaction conditions
for upgrading WTPO.

Run
Reaction Parameter

Time (min) Catalyst Loading (%) H2O2/S Molar Ratio Sulfur Removal
Efficiency (%)

1 30 0.5 5 16.47
2 30 1.0 10 28.94
3 30 1.5 15 25.65
4 45 0.5 10 26.00
5 45 1.0 15 22.59
6 45 1.5 5 21.29
7 60 0.5 15 25.88
8 60 1.0 5 28.35
9 60 1.5 10 27.18

The S/N ratio and main effects plots for the S/N ratio were measured using Minitab 18 software.
The maximum value for the S/N ratio indicates the optimum for the reaction parameter. Figure 5

shows that the maximum sulfur removal efficiency can be achieved using an optimum reaction time of
60 min, 1 wt.% catalyst loading, an oxidant to sulfur (H2O2/S) molar ratio of 10:1.

2.3. Statistical Analysis

In the present study, analysis of variance (ANOVA) was performed to identify which parameter in
time, catalyst loading, and H2O2/S mole ratio significantly affected desulfurization efficiency (Table 3).
ANOVA was performed using Minitab 18 statistical software. F-value was used to identify the influence
of process parameters [36,37]. Contribution of percentage was also calculated using contribution factor
formula. The contribution factor also indicates the significant parameters, but it can be reconfirmed by
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F-value [38]. From the Table 3, oxidant to sulfur mole ratio (H2O2/S) was the most significant parameter
with higher F-value (1.27). The other factors, Time (min) and catalyst loading, followed moderately.

Table 3. The response table for the S/N ratios.

Source DF Adj SS Adj MS F-Value Percentage (%) Rank

Time (min) 2 26.83 13.41 0.80 29.2 2
Catalyst loading (wt.%) 2 22.16 11.08 0.66 24.4 3

H2O2/S mole ratio 2 42.72 21.36 1.27 46.58 1
Errors 2 33.54 16.74 - - -
Total 8 125.25 - - - -

DF = degrees of freedom, Adj SS = adjusted sum of square, Adj MS = adjusted means of square, F =
Probability distribution

2.4. The Effect of the Extracting Solvent to Oil Ratio on the Desulfurization Reaction

The concentration of sulfur decreased upon increasing the solvent to oil ratio (v/v). The amount
of sulfur initially decreased rapidly and then slowed down gradually. When the amount of solvent
was increased, the miscibility between solvent and oxidized sulfur compounds (sulfoxides/sulfones)
increased, which increased the rate of desulfurization. Figure 6 shows that the highest desulfurization
efficiency was achieved at a solvent to oil ratio of 4. Therefore, a solvent to oil ratio of 4 was selected in
our further experiments.
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2.5. The Effect of Stirring Speed on the Desulfurization Reaction

The effect of stirring rate on desulfurization of WTPO was also investigated because the sulfur
removal efficiency is highly dependent on the contact between the raw oil and catalyst. The sulfur
removal efficiency may be high due to efficient mixing between the oil and catalyst [39,40]. Figure 7
shows that the desulfurization efficiency increased upon increasing the stirring rate. When the stirring
rate was increased up to 400 rpm, the reaction mixture (oil, catalyst, and oxidant) was mixed uniformly
and the sulfur removal efficiency was increased. There was a slight change in the desulfurization
efficiency when stirring speed was further increased to 450 rpm. Therefore, 400 rpm was selected as
the optimum stirring rate for our further experiments.
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2.6. A Comparison of Different Catalysts on the Desulfurization of Waste Tire Oil

The effects of different types of catalysts on the desulfurization of waste tire oil via oxidative
desulfurization were studied. The catalytic activity of ZrO2, S-ZrO2, and S-ZrO2/SBA-15 were evaluated
under the optimum conditions. Figure 8 shows that the catalytic performances of the different catalysts
were in the following order: S-ZrO2/SBA-15 > SO4

2−/ZrO2 > ZrO2. The sulfur removal efficiency of
S-ZrO2/SBA-15 was high when compared to the other bulk catalysts (ZrO2 and SO4

2−/ZrO2).
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2.7. Reusability of the Catalyst

The reusability of synthesized heterogeneous acid catalyst was studied to investigate its stability.
After each catalytic run, the catalyst was separated using filtration, washed with acetonitrile, dried at
80 ◦C for 1–2 h, and regenerated upon calcination at 540 ◦C for 6 h. The regenerated catalyst was used
again in the next run under the same reaction conditions. The results obtained for the ODS reactions
after recycling the catalyst several times are presented in Figure 9. They show that the sulfur removal
efficiency was comparable to the fresh catalyst after three cycles. This was attributed to the high
stability of the S-ZrO2/SBA-15 catalyst during the oxidative desulfurization process [41]. To observe
the structural stability of the catalyst after several cycles, the XRD patterns of regenerated catalysts
were recorded. The results are depicted in Figure 9.
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2.8. The Effect of the Number of Extraction Steps on the Desulfurization Reaction

The number of extraction steps can play a significant role in the removal of the oxidized sulfur
compounds during the extraction of waste tire oil. It is expected that the desulfurization efficiency
will be increased upon increasing the number of extraction steps in order to improve the extraction
efficiency of the oxidized sulfur compounds [42]. In this study, the extraction of the oxidized sulfur
compounds was investigated using acetonitrile as the extracting solvent. Figure 10 shows that the
sulfur removal efficiency was increased upon increasing the number of extraction steps from 1 to 3.
Therefore, multiple extraction steps were very effective to reduce the sulfur content in WPTO.
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2.9. FTIR Analysis

The FTIR spectra of WTPO before and after the desulfurization process are presented in Figure 11.
The peaks observed in the region between 1035 to 1328 cm−1 correspond to the sulfoxide and sulfone
derivatives, respectively [39,43,44]. Figure 11 shows that after the desulfurization process the peaks
corresponding to the sulfur compounds were decreased, which confirms that they were partially
removed after oxidation followed by extraction with acetonitrile.
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3. Materials and Methods

3.1. Collection of Crude WTPO

WTPO was produced and collected from the CECP laboratory, Department of Environmental
Engineering, Yonsei University, Korea. Passenger side car tires were used as raw materials and were
obtained from the waste tire disposal facility in Busan, Korea. The pyrolysis reaction was carried out
in a conical spouted bed reactor. The characteristics of crude WTPO are presented in Table 4.
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Table 4. The characteristics of crude WTPO.

Properties Value (%) Method

Elemental analysis

Carbon 85.599
Hydrogen 8.973
Nitrogen 0.661 ASTM D3176
Oxygen 4.767

Total sulfur 1.16

Proximate analysis

Moisture 19.76
Ash 0.78

Volatile 77.23 ASTM E 1131
Fixed carbon 2.22

Heating value 43.8 MJ/Kg

3.2. Materials and Feedstock

Zirconium hydroxide and Pluronic P123 were obtained from Sigma-Aldrich Co., (St. Louis,
MO, USA). Hydrochloric acid (HCl) and sulfuric acid were purchased from Dae-Jung Chemical &
Metals Co., Ltd., Gyeonggi-do, Korea. Tetraethyl orthosilicate (C8H20O4Si, 98%) was purchased from
ACROS Organics Co., (Morris, NJ, USA). These chemicals were reagent grade. Hydrogen peroxide
and acetonitrile were purchased from Daejung Chemical & Metals Co., Ltd., Gyeonggi-do, Korea.

3.3. Catalyst Preparation

Sulfated zirconium oxide supported by SBA-15 (S-ZrO2/SBA-15) was synthesized using a direct
wet impregnation method using SBA-15 and the desired amount of zirconium hydroxide, according
to the following method with some modification [31]. Sulphated Zr (OH)4 and Zr (OH)4/SBA-15
were filtered, dried at 80 ◦C for 2 h, and calcined at 540 ◦C for 6 h to give SO4

2−/ZrO2 (S-ZrO2) and
S-ZrO2/SBA-15.

3.4. Catalytic ODS of WTPO

3.4.1. ODS of WTPO

All ODS reactions were carried out in a 350 mL stainless steel batch reactor equipped with a
magnetic stirrer and condenser (Joyoung al-tex Co. Ltd. Model TPS20-G2, Daejon, Korea) Before
running the reaction, nitrogen gas was purged due to provide an inert atmosphere inside the
reaction vessel and reaction medium. In each run, 50 mL of WTPO was charged into the reaction
vessel. Subsequently, a certain amount of catalyst and oxidant were added to the reaction vessel.
The reaction mixture was heated to the target temperature (70 ◦C) and then was stirred at 400 rpm
under atmospheric pressure.

3.4.2. Extraction of Desulfurized WTPO

After completing the reaction, the catalyst was recovered via filtration and then the extracting
solvent was used to extract the oxidized sulfur compounds. Acetonitrile was used as the extracting
solvent at a solvent /oil ratio of 2:1 in the decanter. Then, the decanter was shaken for 30 min and kept
overnight for phase separation (oil-solvent phase). Two layers were formed (solvent and oil layer).
Finally, the extracted oil phase was collected, and the sulfur content determined by elemental analysis
(ASTM D3176). The sulfur removal efficiency was calculated using Equation (2) [7,17]

Sulfur removal efficiency (%) = [1 − S0/St] (2)
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where S0 and St represent the initial and final concentration of sulfur after the ODS reaction, respectively.

3.5. Experimental Design for the ODS of WTPO

The Taguchi method was selected to design the experiments used to optimize the sulfur removal
efficiency of the ODS reaction of WTPO. The Taguchi method is a very fruitful DOE approach, which
not only determines the impact of the reaction parameters, but also reduce the production cost and
time [32,45]. The effect of the oxidant, catalyst loading, and reaction time on the desulfurization
reaction were investigated. The experimental range and reaction parameters are presented in Table 5.

Table 5. The design of the optimization experiments.

Reaction Parameter Number of Levels Value

Time (min) 3 30 45 60
Catalyst loading (wt.%) 3 0.5 1.0 1.5

Molar ratio of oxidant (H2O2) to sulfur 3 5 10 15

Using statistical software (Minitab 18), an orthogonal array was formed based on the Taguchi
method to generate the number of reactions to be carried out to investigate the effect of the reaction
parameters with different levels.

4. Conclusions

Solid superacid catalyst S-ZrO2/SBA-15 has been successfully prepared using a direct wet
impregnation method. The analytical results obtained from XRD, BET, and FTIR confirm the structure
and properties of the as-synthesized catalyst. S-ZrO2/SBA-15 was evaluated in the removal of
sulfur compounds from waste tire oil by developing a moderate oxidation desulfurization process.
The experiment was designed using the Taguchi method to save additional experimental cost and all
reactions were run to maximize the sulfur removal efficiency using H2O2 as the oxidant, S-ZrO2/SBA-15
as the catalyst, and acetonitrile as the extracting solvent. The signal to noise ratio was selected to
optimize the reaction parameters. The maximum desulfurization efficiency (59.13%) was obtained
under the optimum reaction conditions (reaction time, 60 min; catalyst loading, 1.0 wt.%; H2O2

molar ratio of H2O2, 10:1; and extracting solvent acetonitrile to oil ratio, 4:1 (v/v) at fixed reaction
temperature 70 ◦C). Multi-step extraction was effective in reducing the amount of sulfur in the fuel oil
feedstock. The catalyst was successfully recycled three times, which indicates its high catalytic stability.
The stability of catalyst was further confirmed using XRD after its reuse. The results indicate that
S-ZrO2/SBA-15-H2O2 catalytic oxidation system has potential in the purifying process of WTPO by
reducing the sulfur content under mild reaction conditions.
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