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Abstract: Hydroprocessing reactions require several days to reach steady-state, leading to long
experimentation times for collecting sufficient data for kinetic modeling purposes. The information
contained in the transient data during the evolution toward the steady-state is, at present, not used
for kinetic modeling since the stabilization behavior is not well understood. The present work aims
at accelerating kinetic model construction by employing these transient data, provided that the
stabilization can be adequately accounted for. A comparison between the model obtained against
the steady-state data and the one after accounting for the transient information was carried out.
It was demonstrated that by accounting for the stabilization, combined with an experimental design
algorithm, a more robust and faster manner was obtained to identify kinetic parameters, which saves
time and cost. An application was presented in hydrodenitrogenation, but the proposed methodology
can be extended to any hydroprocessing reaction.
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1. Introduction

A good prediction of overall process performance based on the input conditions is of great interest
in many domains, especially in the chemical industry. In general, predictive models are usually trained
on the experimental data, which can then interpolate well in a similar domain with the experimental
data. However, extrapolation toward a new domain can be less reliable. Model recalibration is then
required, which leads to a demand for new training data. Collecting data is usually expensive and
time-consuming, hence, acquired data should be exploited in their entirety. Particularly for petroleum
related conversion processes (e.g., hydrotreating and hydrocracking), it appears that available data are
only partially used during modeling, see below. The challenge is, hence, to exploit the non-used data
to uncover the underlying information and determine the model more rapidly and/or precisely.

Hydrotreating is a catalytic conversion process to remove heteroatoms such as sulfur, nitrogen,
oxygen, and other impurities such as nickel and vanadium in hydrocarbon feedstocks. It is implemented
in modern refineries to meet the post-refining process specifications for the intermediate products
as well as the environmental regulations for the final products. Hydrocracking is a catalytic process
converting diverse feedstocks such as gas oil, vacuum gas oil, deasphalted oil, and biomass-derived
oils into more valuable products such as naphtha, kerosene, and diesel [1]. These processes play an
important role in refineries. Since 1950, together with the development of the transportation industries,
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hydrocracking has become a promising technology to respond to the high demand for clean diesel in
the road and railroad sector and for jet fuel in the aviation sector [2]. Furthermore, the availability of
sufficient low cost hydrogen as a by-product from the catalytic reforming of naphtha was a key factor
in the popularity of hydroprocessing. Nowadays, the interest in hydroprocessing is further increased
thanks to governmental policies focusing on emissions reduction and energy efficiency. According to
official statistics from Stratas Advisors [3], many countries among which those belonging to the EU,
North America, Russia, China, and Australia limit the sulfur content in on-road diesel to 10–15 ppm,
a limit that is progressively being adopted in all remaining countries. According to the International
Maritime Organization (IMO), even the global limit of sulfur in bunker fuel will be reduced from 3.5%
to a maximum of 0.5% m/m from January 2020 onward [4]. Low sulfur marine distillate is forecasted
to displace high sulfur fuel oil.

A kinetic model is an essential tool for the adequate design and simulation of chemical processes [5].
Hydroprocessing kinetic modeling is a challenging and time-consuming task as the crude oils contain
many compounds with complicated structures [6]. Diverse approaches for hydroprocessing modeling
have been developed in the past such as the lumping technique [7–12], detailed kinetic modeling [13–19],
and black-box approach [20–23]. The lumping technique, which consists of regrouping chemical
compounds with similar properties, is the most common and widely used [24]. The common point in
these approaches is that the model parameters are generally estimated by fitting the model to steady-state
experimental data, even if the time to reach the steady-state in hydroprocessing experimentation
can be excessively long. Yang et al. (1983) [25] demonstrated that, for hydrodenitrogenation over
a NiMo/Al2O3 catalyst, the steady state was reached after around six to eight days depending on
the operating conditions. Sau et al. (2005) [26] observed a steady state reached after eight days for
hydrocracking experiments using the zeolite-based catalyst. The time to reach steady state is denoted
as ‘stabilization’, which was recently the focus in our previous work [27]. It was found that the
stabilization is mainly driven by chemical rather than hydrodynamic phenomena. It relates to changes
in the state of the catalyst, which require up to several days, depending on the feedstock and the
operating conditions.

The stabilization leads to long campaigns to obtain sufficient steady-state experimental data for
kinetic modeling purposes. However, in the transient regime toward the steady state, effluent analyses
are already carried out at regular time intervals in order to verify if the steady state has effectively
been reached. These transient data are currently not used for kinetic modeling because no specific
simulation model was available to describe this stabilization behavior. It is reported in the literature
that using transient data saves time and cost when there is a significant gap between the time required
to reach steady state and the analysis time [28], which is the case in hydroprocessing.

Hence, the aim of the present work was to employ transient data for kinetic model parameter
determination in hydroprocessing. Hydrodenitrogenation was selected as a study case since it is
a crucial reaction to remove organic nitrogen compounds, which are inhibitors for hydrocracking.
Kinetic model parameters for hydrodenitrogenation were determined either from steady-state data or in
conjunction with a description of the stabilization kinetics. The advantages of employing transient data
were demonstrated via a quality comparison between the global model performance and individual
parameter significance for both cases.

2. Results and Discussion

Experimental data using in this study was explained in Section 3.2. A model accounting for
the stabilization behavior was integrated into the kinetic model, which is detailed in Section 3.3.1.
Two approaches for kinetic parameter estimation: (1) using only steady-state data (i.e., steady-state
kinetic model) and (2) using transient and steady-state data (i.e., model including stabilization) are
compared. Section 2.1 exhibits the results of the comparison by applying the strategy described in
Section 3.3.3. Section 2.2 performs the robustness of employing transient data with a procedure detailed
in Section 3.3.4.
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2.1. Model Including Stabilization vs. Steady-State Model

The best estimates for the kinetic model parameters are believed to be obtained when all of the 38
steady-state measurements were used to fit the hydrodenitrogenation kinetic model. Figure 1 displays
the parity diagram for fitting the hydrodenitrogenation against all available 38 steady-state points.
It is considered as the reference scenario, since all the steady-state points are exploited to estimate
the kinetic parameters. The quality indicator mean absolute percentage error (MAPE) and root mean
square error (RMSE) on the entire steady-state points amounted to 36.63% and 8.53, respectively.
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Figure 1. Parity diagram of the best scenario (calibrating steady-state model with 38 steady-state points).

The model performance comparison with the parameters being determined against steady-state
data only or the data including stabilization is shown in Figure 2. The indicators were calculated on all
38 steady-state points. The impact of the number of episodes in the calibration database was analyzed
by comparing the model performance with the obtained parameter estimates to the reference scenario.
When employing the Kennard–Stone algorithm, the minimum number of selected episodes in the
calibration dataset is 2, corresponding to 10 experimental data points. However, it is impossible to
fit the model including stabilization with only two episodes since the number of parameters in the
kinetic model employing transient data amounts to 13 (i.e., 11 kinetic parameters and two transient
parameters). Hence, the minimum was three in this study. Apart from that, when using steady-state
data only, the kinetic parameters can only be calibrated using at least 11 steady-state points (of 11
episodes). It explains why in Figure 2, the performance indicators for parameter estimates determined
from transient data determined according to Kennard–Stone already appeared at the number of
episodes in the calibration database between 3 to 10. D-optimal design was used for the determination
of the kinetic parameters. As explained in Section 3.3.3, the minimum number of selected episodes
was 12 (number of parameters + 1) to allow for the determination of all the parameters including the
statistics. Note that the episodes selected by Kennard–Stone and D-optimal can be different. As can be
seen, for each comparison, the prediction performance of the model parameters obtained with the data
accounting for stabilization was similar to that with the model parameters determined against the
steady-state data only.
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Figure 2. Indicator mean absolute percentage error (MAPE) (a) and root mean square error (RMSE)
(b) on 38 steady-state points as a function of the number of episodes in the calibration dataset (the dark
green horizontal solid line represents the indicator of the best scenario).

As can be seen, one of the main advantages of accounting for stabilization is that thanks to
transient points, it becomes possible to calibrate the model with a lower number of experiments.
The Kennard–Stone algorithm is very competitive with the D-optimal design in this study. Figure 2
shows that the accuracy was similar for both cases. An example of the parity plot comparison in the
case of a calibration database containing 14 episodes selected by the Kennard–Stone technique is given
in Figure 3. Using transient data to determine the model parameter estimates (Figure 3b) led to a
slightly better prediction accuracy than when using the steady-state data only (Figure 3a).
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(b) (RMSE = 14.07) for the case with the calibration database containing 14 episodes selected by the
Kennard–Stone technique.

In the case of a calibration database containing 20 episodes selected by the D-optimal design,
the accuracy of the model including stabilization was similar to the steady-state model. The parity
plots are detailed in Figure 4.
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Figure 4. Parity plot of steady-state model (a) (RMSE = 8.23) and model including stabilization
(b) (RMSE = 10.52) for the case with the calibration database containing 20 episodes selected by the
D-optimal design.

Parameter estimates determined from data including stabilization had the same order of magnitude
as the ones determined from the steady-state data only. More narrow confidence intervals were obtained
in the former case. Regarding the technique of selecting episodes, parameter estimates obtained
when using the D-optimal and Kennard–Stone technique were similar. An example of the confidence
intervals of the resin adsorption coefficient (parameter A0) is shown in Figure 5. The pink dashed line
and blue solid line represent the confidence interval in the case of steady-state data only and data
including stabilization, respectively, in the D-optimal technique. In the Kennard–Stone case, it was
shown as the green dashed line and orange solid line. Irrespective of the number of episodes used,
a more narrow confidence interval was obtained by employing transient data. Figure 5 also nicely
demonstrates how the confidence also becomes narrower with the number of episodes considered in
the calibration dataset.
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Figure 5. Confidence interval of parameter A0 as a function of the number of episodes in the calibration
database chosen by the D-optimal and Kennard–Stone algorithm.

Figure 2 also shows that a good model fitting can be obtained from eight episodes onwards,
selected by the Kennard–Stone algorithm. The prediction accuracy using the parameter estimates
obtained against the data including stabilization then converged to its lowest value. The obtained
results indicate that the Kennard–Stone technique can effectively be used to determine the operating
conditions for transient experiments. As Kennard–Stone is a technique based on the distance of
points in the variable space, it can be applied for complex models when no initial parameter guesses
are available. Figure 6 shows the liquid effluent nitrogen as a function of time on stream of these
eight episodes. As can be seen, the values simulated by the model fit well the dynamic behavior of
the experimental data. Table 1 completes Figure 6 with the corresponding operating conditions of
each episode.
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Table 1. Operating conditions of eight selected episodes.

Episode LHSV (h−1) T (◦C) P (bar) Feedstock

1 3 370 140 China
2 1 400 140 South American
3 1 390 90 Iranian 1
4 2 390 140 Iranian 2
5 3 370 115 North American
6 1 370 140 Russian
7 3 390 140 North American
8 1 370 140 South American

The parity plot of the 38 steady-state points is shown in Figure 7. The plot was very close to the
best scenario shown in Figure 1.
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Figure 7. Parity plot of the model with the stabilization function case with the calibration database
containing eight episodes selected by the Kennard–Stone technique (MAPE = 56%, RMSE = 15).

The experimental plan containing eight episodes as selected by the Kennard–Stone method is
displayed in Figure 8. The selected episodes covered all the feedstocks available in the database as well
as a wide range of operating conditions. The first two selected episodes were acquired at significantly
different liquid hourly space velocity (LHSV), temperature, and characteristics of feedstocks. The first
episode was acquired with a straight-run distillate of Chinese origin while the second one corresponded
to South American heavy vacuum gas oil. Detailed characteristics of feedstocks are described in
Section 3.2. As can be seen, the selected points covered the entire range of operating conditions.
Regarding the feedstocks, all of them were already covered in the first six episodes. North American
and South American feedstocks were then repeated in episodes 7 and 8. Regarding the LHSV and
temperature, all selected episodes reached the extreme value of the investigated domain, except that
episode 4 was in the middle of the region. Different values of pressure were also taken into account
in the selected episodes. Episodes 1 and 2 had a similar pressure of 140 bar while it was reduced to
90 bar for episode 3. Episode 4, which had an intermediate LHSV and temperature, also had a higher
pressure of 140 bar. Subsequently, episode 5 was performed at an intermediate pressure of 115 bar.
The Kennard–Stone technique is more efficient than intuitive selection since it selects samples with a
uniform distribution over the variable space and the selected samples can sufficiently represent the
entire samples. The selected episodes could be carried out in practice within a single experimental
campaign, requiring about 45~50 days (which is the maximum duration without deactivation in the
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pilot plant). Compared to the case of two campaigns lasting 90~100 days and 15 days of catalyst
unloading/loading in-between, exploiting transient data generates a tremendous time-and-cost saving
around 50% in time and cost. Furthermore, mathematically speaking, the model parameters could
be identified by using only transient data at a shorter time (i.e., no need to wait for the steady state).
However, the impact of changing operating conditions when the steady state has not been reached
needs to be analyzed.
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2.2. Model Robustness

The robustness test explained in Section 3.3.4 was carried out. The RMSE on the validation
database comprising 23 episodes is illustrated in Figure 9. Blue circles and red crosses represent
the steady-state model and the model including stabilization, respectively. The results indicate that
the prediction accuracy when using the parameters estimated against data including stabilization
was more stable and lower than when only steady-state data were used to estimate the parameters.
The statistics mean (µ) and standard deviation (σ) of the distribution of MAPE and RMSE for each case
are also summarized in Table 2. The mean of RMSE was 28.6 and 20.6 for the steady-state model and
model including stabilization, respectively. The higher standard deviation in the “steady-state model”
case reflects the more significant impact of outliers when using only steady-state data.
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Table 2. Statistical results of the accuracy indicator distribution.

Model
MAPE RMSE

µ σ µ σ

Steady-state kinetic model 83.9 43.3 29.1 12.6
Model including stabilization 69.4 26.9 20.5 4.0

Accounting for stabilization was, hence, found to be more robust to outliers, as was possible
with the nitrogen measurements. It can be explained by the fact that by employing the transient data,
the model was fitted to an entire episode, which is an ordered series of points and not a random
one. The points in an episode well represented the episode so that the impact of an outlier on one of
them was less pronounced on model fitting. This demonstration confirms the interest of exploiting
transient data.

3. Materials and Methods

3.1. Pilot Plant

The experimental data were obtained using a hydrotreating pilot plant located at IFP Energies
Nouvelles, Solaize, France. The latter comprises four parallel fixed bed reactors, operated in down-flow
mode. The catalyst volume of each reactor amounts to 50 cm3. Temperature is controlled along the
reactor to ensure isothermal operation. During the experiment, effluent properties such as nitrogen
content, density, and refractive index were determined every 24 hours. The steady state is considered
to be established when these effluent properties are stabilized. After this, the operating conditions
were switched to those corresponding with the next experimental measurement. It is worth noting
that transient data have not been acquired for the purpose of using them for kinetic modeling at first,
but are part of the evolution toward steady state during catalyst evaluation.

3.2. Operating Conditions and Feedstocks

Experimental points were measured in terms of nitrogen content in the liquid effluent over time
on stream. For one set of operating conditions, the series of consecutive experimental points obtained
during transient regime until reaching the steady-state is denoted as an ‘episode’ [27]. In other words,
consecutive experimental data points at the same operating conditions were recorded as one episode.
Figure 10 shows an example of one experimental test comprising seven episodes totaling 42 data points
acquired in about 45 days. The first episode corresponded to the start of the test at specific operating
conditions, while later episodes were initiated by a change in operating conditions such as LHSV
or temperature. Note that LHSV represents the ratio of liquid volumetric flowrate and the catalyst
volume in the reactor, which is the inverse of the space time.

The entire database employed in this work covered 38 episodes with a total of 233 data points
(i.e., 38 steady-state points and 195 transient points. The latter represents 84% of the total number
of points in the database. Data covered different feedstocks over a single industrial hydrotreating
catalyst within a wide range of operating conditions: LHSV from 1 to 3 h−1, temperature between
370 and 400 ◦C, and total pressure between 90 and 140 bar. The latter were similar to industrially
employed hydrocracker conditions. Note that the low LHSV of 0.5 h−1 led to a very low level of organic
nitrogen in the total liquid product. The latter were considered less reliable for model construction
and parameter determination. Nevertheless, the model constructed based on the data excluding the
measurements at LHSV 0.5 h−1 could properly reproduce the latter data. Six feedstocks with diverse
characteristics were covered: one Russian blend of cracked feedstock, one South American heavy
vacuum gas oil, and four straight-run distillates of North American, Iranian (2), and Chinese origin.
The Russian and Iranian feedstocks were low in specific gravity and nitrogen content, but were high in
sulfur content while that of the South American origin was heavier and contained more nitrogen and
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sulfur. The feedstocks of North American and Chinese origin were lighter and contained less nitrogen
as well as sulfur. These feedstocks provide good diversity in the database to construct a robust model
that can be used for a variety of different feedstocks. The characteristics of feed and the operating
conditions are respectively shown in Figure 11.Catalysts 2020, 10, x FOR PEER REVIEW 10 of 19 
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3.3. Modeling

3.3.1. Kinetic Model

Hydrodenitrogenation was selected as a study case in this work since it is a crucial reaction in
hydrotreating to remove nitrogen from hydrocarbons, avoiding hydrocracking catalyst poisoning by
organic nitrogen. Hydrotreatment reaction was previously described using a continuous lumping
approach by our team [7]. The pseudo kinetic model for hydrodenitrogenation was used for the
purpose of simplicity. The “steady-state hydrodenitrogenation kinetic model” is given in Equation (1).
It contains 11 parameters (i.e., k0, E, m, n, a, b, A0, C0, u, tt, and v). The temperature dependence of
the rate coefficient is expressed via a reparametrized Arrhenius equation in which k0 is the reference
rate coefficient at T0 and E is the activation energy of the reaction. Other parameters account for the
actual oil composition as well as H2 partial pressure (see also the nomenclature in the Appendix A).
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The numerator in the equation represents the reaction kinetics while the denominator accounts for
composition effects. The rest term performs the thermodynamic limit.

dCN

dt
= −

k0 exp
(
−E
R

(
1
T −

1
T0

))( ppH2
ppH2,ref

)m
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(
1 + C0
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) ×

(
1− u

(
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)a

exp
(
−b
R

(
1
T
−

1
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))(
TMP

TMPref

)v

Ctt
N

)
(1)

The main idea is to include the stabilization effects as a function of time on stream in the rate
expression presented in Equation (1). During the transient stabilization phase, the catalyst undergoes
modifications that are accounted for according to a first-order response [27]. Both the total number of
sites as well as their ‘activity’ are assumed to evolve in a first-order manner. As a result, the reference
rate coefficient k0 is multiplied by a first-order transfer function f and the activation energy E and b
are multiplied by another first-order transfer function g. By including these transfer functions in the
model, Equation (2) is obtained as below:
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In our previous work [27], it was found that the stabilization due to hydrodynamics was
significantly faster than the real observed stabilization. The first-order response found for the latter
was not due to the macroscopic physical variables, but mainly driven by chemical phenomena.
The stabilization behavior can be mathematically described as the response of the process to a slowly
varying operating condition (e.g., instead of the state of the catalyst), which is denoted as the apparent
operating condition. LHSV and temperature were changed in the experimental test. The function f
is then defined as the evolution of LHSV versus time on stream when changing LHSV from episode
(i − 1) to episode i. The function f is shown in Equation (3) where LHSVapp is the apparent LHSV.

fi (TOS) =
LHSVi

LHSVapp
=

LHSVi

LHSVi−1 + (LHSVi − LHSVi−1) ×
(
1− exp(−TOS−TOSinit_i

τi
)
) (3)

The same structure is used for transfer function g, see Equation (4). It is built under a hypothesis
of the temperature evolution during stabilization. Tapp in Equation (4) is the apparent temperature
that evolves from the temperature of episode (i − 1) to the temperature of episode i.

gi (TOS) =
Ti

Tapp
=

Ti

Ti−1 + (Ti − Ti−1) ×
(
1− exp

(
−

TOS−TOSinit_i
τi

)) (4)

Here, τi appearing in Equations (3) and (4) is the parameter representing the characteristic time
of episode i, called ‘transient parameter’. For each episode, only one τ is attributed to the variation
of LHSVapp and Tapp. Upon a feedstock change, the apparent feedstock composition representing
the slowly varying change from the previous feedstock to the new one (i.e., organic nitrogen, sulfur,
and resin content) is employed in the kinetic model.

By substituting Equations (3) and (4) in Equation (2), the ‘model including stabilization’, as shown
in Equation (5) is obtained.
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The model including the stabilization function contains the 11 kinetic parameters (identical to
steady-state kinetic model) and a number of transient parameters τi corresponding to the number of
episodes in the calibration database. The notation ‘kinetic parameter’ was used to distinguish these 11
parameters in the steady-state kinetic model from transient parameters τi in the stabilization function.
It is evident from the above equations that when the time on stream is sufficient to reach the steady
state f and g converges to 1. The model including stabilization converged toward the steady-state
kinetic model.

3.3.2. Parameter Estimation

Transient and kinetic parameters were determined using a calibration dataset including transient
and steady-state points by minimizing the weighted least squares. In this study, the model was
assumed to be correct and there was no error for the input variables. The output measurements were
carried out independently and the experimental errors were assumed to be normally distributed with
a mean of 0 and a constant standard deviation. As the steady-state points are supposed to contain
more reliable information for the parameter estimation, it is supposed that the closer the point is to the
steady state, the higher the weight that can be attributed to it. The weight of the steady-state points
was set at 1. Equation (6) is used to calculate the weight of the transient data points:

wij =
TOSij − TOSinit_i

TOSi_final − TOSinit_i
(6)

where wij is the weight of point j in episode I; TOSij is the time on stream of point j in episode i (h);
TOSi_final is time on stream of the last point in episode i where the steady state is reached (h); and
TOSinit_i is the beginning of episode i (h).

Figure 12 shows the parameter estimation algorithm for the model including stabilization.
The model simulates the output variable by using the transient and kinetic parameters as well as the
input variables. The calculated response value was compared with the experimentally observed one via
an objective function, which is the sum of weighted squared relative errors. A Levenberg–Marquardt
algorithm [29,30] was used to determine the minimum of this objective function. As the problem is
nonlinear, the optimization may yield a local minimum (i.e., it does not guarantee the identification
of the global minimum). Therefore, we needed to repeat the optimization a number of times using
randomly selected initial parameters. Only the optimal parameters corresponding to a minimum value
of objective function were retained. The optimal kinetic parameters were then validated by using a
validation database at the steady-state condition. Whether stabilization was accounted for or not, the
parameter estimation procedure was identical, except that the transient parameters are irrelevant when
considering the steady-state data only. Hence, the data at steady-state condition can be employed to
calibrate the steady-state model while the transient as well as steady-state data can be included in the
calibration database to tune the model including stabilization. The technique to obtain the calibration
and validation database is described in Section 3.3.3.
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Figure 12. Parameter estimation framework for the “model including stabilization”.

3.3.3. Comparison Strategy

The entire database was first split into the calibration and validation database. The calibration
database was used to estimate the parameters in the models as discussed above. The estimated
parameters were then tested on the validation dataset. Kinetic parameters estimated using steady-state
data only or steady-state and transient data were compared several times via different calibration
and validation databases. Data splitting can be carried out via some experimental design techniques.
The techniques adopted in the present work where the Kennard–Stone algorithm [31] and D-optimal
design [32–34].

The Kennard–Stone technique intends to select the best representative subset from all the candidates
available based on their Euclidean distance. The Euclidean distance between two n-components
vectors Xp and Xq is shown in Equation (7) [35]:

ED(Xp,Xq) = ED(Xq,Xp) =

√√√ n∑
j=1

(
xj, p − xj, q

)2
(7)

where n represents the number of components in vector X; xj,p and xj,q are the jth component of vector
Xp and Xq, respectively. The method assumes that Xp and Xq are dissimilar when the distance between
them is high and similar when the distance is low. The Kennard–Stone algorithm is a step-by-step
procedure. First, the two candidate points with the largest Euclidean distance are selected. After that,
the candidate point that displays the greatest distance with respect to the selected points is added to
the list. The distance between the candidate point and the selected points is the distance from the
candidate point to its closest selected point. This step is repeated until reaching the required number
of samples.

D-optimality represents an alternative technique within the possibilities for model-based
experimental design. It is based on the optimization of the eigenvalues of the information matrix
(i.e., the inverse of the variance-covariance matrix). The parameter estimates and corresponding joint
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confidence interval form an ellipsoid that is characterized by the eigenvalues of this matrix. The aim of
the model-based experimental design is to reduce the eigenvalues, which correspondingly reduces the
volume of the joint confidence interval of the parameter estimates. Different criteria can be considered:

• D-criterion: maximize the determinant of the information matrix, which means minimizing the
volume of the ellipsoid

• A-criterion: minimize the sum of eigenvalues that correspond to the trace of the
variance-covariance matrix

• E-criterion: minimize the largest eigenvalues that minimizes the size of the larger axis of the
confidence region, also denoted as the shape criterion.

Since D-criterion was found to be the most widely used criterion [36], we decided to employ
D-optimal design to split the database. More dedicated articles can be found in the literature for the
readers interested in D-optimal design [32,36,37].

Applying this to our problem, each episode is considered as a candidate and, hence, the entire
database corresponded to 38 candidates. Regarding the Kennard–Stone method, the variables
established vector X comprised the feed properties (organic nitrogen, sulfur, resin content,
specific gravity) and the operating conditions (LHSV, temperature, total pressure). Different calibration
databases were constructed with the number of episodes running from two (the minimum selected
candidates) to 20 episodes. D-optimal design was applied using the steady-state model. As D-optimal
design is a model-based technique, the minimum number of selected episodes from D-optimal was 12
(i.e., number of parameters + 1) [36]. The selected number of episodes for the calibration dataset varied
from 12 to 20 in the case of D-optimality. The corresponding validation databases for both techniques
were the leftover steady-state points of non-selected episodes.

At each defined number of selected episodes, the calibration database was employed to estimate
the parameters (transient and steady-state points for the model including stabilization and steady-state
points for the hydrodenitrogenation kinetics model only). After that, the optimal kinetic parameters
were tested on the validation database. The effect of the size of the calibration database was also
investigated via the comparison on different calibration databases. To be able to compare the prediction
accuracy of both modeling strategies, the quality performance was calculated based on 38 steady-state
points of 38 episodes. The used metrics of the MAPE and RMSE formula are given in Equations (8)
and (9). As liquid product nitrogen in the experimental data varies across a wide range of values
(0.6–500 ppm), it is preferable to simultaneously analyze MAPE and RMSE to compare the prediction
accuracy. The results were also compared with the best scenario when all 38 steady-state points were
used to calibrate the steady-state model.

MAPE =
100%

n

n∑
i=1

∣∣∣∣∣∣∣y
sim
i − yexp

i

yexp
i

∣∣∣∣∣∣∣ (8)

RMSE =

√√
1
n

n∑
i=1

(
ysim

i − yexp
i

)2
(9)

Parameter uncertainties were estimated from the covariance matrix. The 95% confidence interval
of parameter estimate θi can be calculated using Equation (10), where seθi is the standard error of
parameter θi approximated as the square root of the diagonal element of the covariance matrix and
t(0.95, df) is the value of the Student t-distribution at 95% confidence level for df degrees of freedom. The
covariance matrix was estimated via the inverse of the Hessian matrix (i.e., the negative second-order
partial derivatives of the objective function).

CIθi = θi ± seθi × t(0.95, df) (10)
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The model was coded in Fortran 2008. The ODE was solved using LSODE solver from the SLATEC
mathematical library [38]. Parameter estimation was carried out using the DN2FB solver from the
PORT library [39]. An executable file (.exe) based on the code was created to ease the implementation.
The file was then called from R software version 3.6.1, which is a free software environment supported
by the R Foundation for Statistical Computing. In R, there are several packages dedicated to data
analysis and statistics. The statistical analysis was carried out using the ’base’ package. Figures were
produced using ‘ggplot’ in the ‘ggplot2’ package. Regarding the experimental design algorithm,
Kennard–Stone and D-optimal were undertaken by using the ‘kenStone’ function in the ‘prospectr’
package and ‘optFederov’ function in the ‘AlgDesign’ package, respectively.

3.3.4. Robustness

During experimentation, atypical observations, also denoted as ‘outliers’, may occur. In this
work, robustness is defined as the stability of the model prediction accuracy in the presence of
outliers. An outlier in the calibration database might have an impact on the parameter estimation in
the case of the steady-state model since the outlier point is fitted to estimate the kinetic parameter.
As the regression using the transient measurements uses more data points than the one based on
the steady-state measurements, it can be expected to be more robust to outliers. In order to test the
robustness of the kinetic model using transient points, the whole database was split into a calibration
database containing 15 episodes selected by the Kennard–Stone algorithm (15 steady-state points + 89
transient points, which totaled 104 points) and a validation database with 23 steady-state points from
the remaining episodes. Outliers can occur in the transient as well as in the steady-state measurements.
A total of 20% of the steady-state points and 20% of transient and steady-state points were randomly
selected for the steady-state model and the model including stabilization, respectively. The noise
was artificially added to the selected points in the calibration database by varying them randomly in
a severe manner at either +25% or −25%. Organic nitrogen measured using a chemiluminescence
detector [40] has an uncertainty around ± 10%. The percentage of 25% aims to imitate an extreme
outlier case. The scenario of selecting points is summarized in Table 3. Since the points to be modified
were randomly selected, the procedure was repeated 300 times. The steady-state model and the model
including stabilization were calibrated via the ‘noisy’ calibration dataset. Estimated kinetic parameters
were then tested on the validation database so that the metrics MAPE and RMSE on the validation set
(23 steady-state points) could be estimated.

Table 3. Strategy of adding noise to the calibration database.

Steady-State Kinetic Model Model Including Stabilization

Original calibration database 15 steady-state points 104 points (89 transient points + 15
steady-state points)

Strategy

Select randomly and add noise to
3 steady-state points

(corresponding to 20% of the
original calibration database)

Select randomly and add noise to
21 points, which can be transient

and/or steady-state points
(corresponding to 20% of the
original calibration database)

4. Conclusions

The long stabilization in hydroprocessing has been addressed as one of the major challenges
in experimental data collection for kinetic modeling. A methodology exploiting transient data to
determine the parameters in a kinetic model for hydrodenitrogenation has been devised by employing a
model considering the stabilization as a function of time on stream. Stabilization is considered to follow
a first-order behavior characterized by parameter τ, specifically accounting for the transient phenomena.

The results demonstrate that accounting for stabilization results in a similar prediction accuracy
as when relying on steady-state data only. The parameter values can already be determined from a
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lower number of episodes and, hence, steady-state points, thanks to the explicit use of transient data
contained in these episodes. It significantly reduces, i.e., up to halving, the duration of experimental
work for kinetic modeling. Transient data also help to reduce the impact of outliers on the model quality,
which makes the model including stabilization more robust than the steady-state one. By combining with
an experimental design technique such as the Kennard–Stone algorithm, transient data can accelerate
parameter identification. The Kennard–Stone method has been found to provide a representative
experimental plan for the transient experiments.

Catalyst research and development work aims to improve the efficiency and performance and
to reduce the cost as well as to reduce the development time, in order to respond expeditiously to
market demand. Exploiting transient data is a very promising approach to save enormous time and
cost regarding experimental work for kinetic model construction.
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Appendix A

Nomenclature
a Order associated with hydrogen partial pressure in thermodynamic term -
A0 Resin adsorption coefficient -
b Parameter in thermodynamic term -
C0 Coefficient of the ratio nitrogen/sulfur in feedstock -
CN Organic nitrogen concentration in liquid output stream ppm m/m
CN,0 Organic nitrogen concentration in feed ppm m/m
CS,0 Organic sulfur concentration in feed % m/m
E Activation energy J.mol−1

fi Transfer function f of episode i -
gi Transfer function g of episode i -
LHSV Liquid hourly space velocity h−1

LHSVapp Apparent liquid hourly space velocity of episode i h−1

LHSVi Liquid hourly space velocity of episode i h−1

LHSVi−1 Liquid hourly space velocity of episode i − 1 h−1

m Order of ppH2 -
n Order of concentration of organic nitrogen -
ppH2 Hydrogen partial pressure bar
ppH2,ref Reference H2 partial pressure bar
R Ideal gas constant J·mol−1

·K−1

res0 Feed resin % m/m
t Residence time h
T Reactor temperature K
T0 Reference temperature K
Tapp Apparent temperature of episode i K
Ti Temperature of episode i K
Ti−1 Temperature of episode i − 1 K

TMP
Weighted average temperature of simulated distillation by gas
chromatography of feed

◦C

TMPref
Reference weighted average temperature of simulated distillation by gas
chromatography

◦C
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TOS Time on stream h
TOSi−1 Time on stream of the last point of episode i − 1 h
TOSinit_i Time on stream when the episode i starts h
tt Order of concentration of organic nitrogen in thermodynamic term -
u factor in thermodynamic term -
v Order associated with the heaviness of feed -
τi Stabilization time at episode i h
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