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Abstract: The transformation of glucose represents a topic of great interest at different levels. In the
first place, glucose is currently conceived as a green feedstock for the sustainable production of
chemicals. Secondly, the depletion of glucose at the cellular level is currently envisioned as a promising
strategy to treat and alter the erratic metabolism of tumoral cells. The use of natural enzymes offers
multiple advantages in terms of specificity towards the glucose substrate but may lack sufficient
robustness and recyclability beyond the optimal operating conditions of these natural systems. In the
present work, we have evaluated the potential use of an inorganic based nanohybrid containing
gold nanoparticles supported onto ordered mesoporous supports. We have performed different
assays that corroborate the enzyme-mimicking response of these inorganic surrogates towards the
selective conversion of glucose into gluconic acid and hydrogen peroxide. Moreover, we conclude that
these enzyme-like mimicking surrogates can operate at different pH ranges and under mild reaction
conditions, can be recycled multiple times and maintain excellent catalytic response in comparison
with other gold-based catalysts.

Keywords: gold; nanozymes; enzyme-mimicking; glucose oxidation; mesoporous silica; surface
functionalization

1. Introduction

Saccharides are abundant, renewable and sustainable chemical compounds that play a key
role both at industrial level and in the metabolism of living beings [1,2]. Only in 2017, the United
States produced about 27.5 M tons of starch, the most plentiful polysaccharide on Earth, which
was further used for industrial and food applications. The hydrolysis of starch over supported
metal catalysts produces glucose as main product. For this reason, from a green-feedstock point
of view all selective chemical transformations of glucose are industrially attractive to produce high
value-added products [1] and have been widely studied [1–4]. Glucose oxidation yielding gluconic
acid possesses a huge industrial importance in the manufacturing of water-soluble cleansing products,
food and beverages additives or pharmaceutics and cosmetics. Currently, this industrial production of
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gluconic acid is achieved by fermentation using Aspergillus niger [3,5]. Enzyme-mediated processes
face several drawbacks: (i) difficulties in recovery and recycling; (ii) high costs in product preparation
and purification and (iii) the catalytic activity is often affected by minimal variations in the working
environment [2,6].

Transformation of glucose is also extremely important in biomedicine and multiple cancer therapy
studies are currently focused on glucose-starvation strategies to alter the local environment and
metabolism of tumor cells [7,8]. For these reasons, there is an increasing interest in developing
alternative enzyme-like catalysts based on inorganic materials that can overcome intrinsic limitations of
natural enzymes [5–7,9–11]. Several nanomaterials [8,11] have been developed in the recent years aiming
to emulate different kind of natural enzymes and so-called artificial enzymes or “nanozymes” [10–12].
Catalase-like materials are usually based on metals or metal oxides, such as Fe, Pt, Pd Ag or
Au [4,6,11,13,14], which efficiently decompose H2O2 into H2O and O2. Cerium [6,9,10] and carbon-based
nanomaterials such as fullerenes (C60) [15,16] were remarkably efficient removing superoxide anion
(O2
−) yielding H2O2 and O2, mimicking the activity of superoxide dismutase enzymes. Iron-based [11]

and noble metal based (Au [17–19], Ag [20], Pt [21] or Pd [22]) nanomaterials have been widely
reported as active catalysts to mimic peroxidase activity by oxidizing a substrate with H2O2. Finally,
the enzyme-like oxidase mimicking activity represents another important field of current developments.
Au [23], Pt [24] or Cu [25] nanomaterials can use O2 to selectively oxidize a substrate, yielding H2O2

and the corresponding oxidation products. Nevertheless, the enzyme-like behavior for each material
is affected by multiple and diverse factors, such as size, shape, pH, temperature or surface coating,
among others [26].

The first catalysts tested in the catalytic oxidation of glucose using O2 were Pd [26–28] and
Pt [29–31] particles. Although some of them yielded >99% gluconic acid, these materials suffered
from oxidation and critical deactivation caused by adsorption of reaction products. The introduction
of Bi [32] partially avoided the previous problems, but their reusability was not evaluated. Among
these inorganic enzyme surrogates, Au particles [4,23,33–44] have been the most studied material since
early 2000s for the selective oxidation of glucose to gluconic acid. Gold is much more resistant to O2

poisoning than previously cited elements [39] and reaction products have less affinity to adsorption
process onto the Au surface [44] apart from being more active and selective [2,18,19]. However, the
main drawback is the strong-dependence of catalytic activity on Au surface and particle size [44], being
dramatically affected by sintering phenomena [37]. Typically, Au NPs-mediated catalytic oxidation of
glucose (Scheme 1) is performed in neutral to basic medium (pH = 7–9). At this pH, the open and
more reactive tautomer is promoted [28] and the protonation of carboxyl groups of the products is
avoided, which may easily remain adsorbed onto Au surfaces [44]. While regular enzymatic pathways
suggest the formation of an additional δ-gluconolactone intermediate [45], gold mimicking surrogates
may follow other mechanisms involving a nucleophilic attack of Au–O− sites that would ease the
conversion into gluconic acid under milder experimental conditions [46].
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stability in absence of basic conditions with the selection of suitable stabilizing agents [48] or after
immobilization in different functional supports [49].

Several supports have been used for Au NPs deposition and applied in the catalytic oxidation
of glucose including carbon-based materials [38,50–53], Al2O3 [42,54], CeO2 [38,39,52], ZrO2 [55],
TiO2 [28,41], mesoporous SiO2 [50] or polymers such as poly(methyl methacrylate), polystyrene or
polyaniline [43], achieving in most of the cases >80% of glucose conversion and >90% selectivity for
gluconic acid. The catalyst preparation method plays a key role in the catalytic activity [40]. The nature
of Au-support interactions is also essential to ensure the stability of the catalytic system [36,56].
For instance, supports with high density of –OH groups on their surface promote the anchoring of Au
NPs [27,57]. Likewise, –NH2 surface functional groups can endorse stronger affinity with AuNPs by
electrostatic attraction thereby resulting in a more efficient immobilization of both the active metallic
nanoparticles and the glucose sustrate [58–60].

In this work, we describe the synthesis of an amino-functionalized mesoporous silica nanoplatform
decorated with small gold nanoparticles immobilized by electrostatic attraction. This hybrid Au-silica
nanohybrid has been evaluated as a potential enzyme surrogate with glucose-oxidase mimicking
response. Multiple reaction conditions have been thoroughly explored to identify the best performing
scenario and the main reaction products (i.e., gluconic acid and hydrogen peroxide) expected from
the selective oxidation of glucose. Furthermore, this work addresses different colorimetric assays
to identify these main reaction products and shows competitive catalytic results working under
mild, environmentally friendly conditions that are favorable for environmental and biomedical
targeted applications.

2. Results and Discussion

2.1. Synthesis and Characterization of Gold-Mesoporous Silica Heteronanostructures

Figure 1a summarizes the different synthesis stages required to fabricate the gold-based
nanohybrids. The first step (denoted as (i) in Figure 1a) consisted on the preparation of the gold
nanoparticles (Au-NPs). A phosphonium derived salt, tetrakis(hydroxymethyl) phosphonium chloride
(THPC), was employed as reducing and stabilizing ligand of the Au NPs. The use of this ionic
stabilizing agent has been previously reported by Duff et al. [61] and our group [49,62,63] as a
successful alternative to poly-alcohols and other polymeric stabilizers with greater steric hindrance [62].
Cs-corrected Scanning Transmission Electron Microscopy (STEM) images demonstrated the formation
of crystalline Au NPs with average diameters below 5 nm (Figure 1c). The second step (denoted as (ii)
in Figure 1a) consisted on the synthesis of nanostructured silica hosts containing ordered mesoporous
channels as demonstrated by TEM inspection (Figure 1d,e). These silica spheres were functionalized
with an amino-grafting agent (see the Materials and Methods section for further details) containing
–NH2 terminal groups (~8% wt. according to thermogravimetric analysis and considered optimal to
keep a good colloidal and thermal stability [59,64]) and Si-O bonds able to attach on the surface of the
silica spheres [49,65,66].

The final step (see (iii) in Figure 1a) involved the gold seeding of the amino-functionalized silica
hosts favored by the electrostatic attraction of positively charged –NH3

+ terminal groups and negatively
charged Au NPs [49,59,65,66]. The negative charge of these type of Au NPs has been previously
reported [67,68] and tentatively attributed to the coexistence of Au–O− surface bonds and chloride
stabilizing ions [67–69]. TEM and STEM images (Figure 1f,g) confirmed the successful attachment of
the Au NPs. Pore size restrictions limited the loading of the bigger Au NPs within the mesochannels.
ICP analysis confirmed 1% Au wt. loadings. Following this strategy, Au NPs are endowed with higher
catalytic sites availability while preventing them from partially coarsening events typically observed in
freestanding Au NPs of this nature [63]. Furthermore, providing a solid and stable silica support can
facilitate the recovery of the catalytic Au NPs for their potential reusability and/or regeneration [59].
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Figure 1. Synthesis and characterization of the Au-mesoporous silica hybrids: (a) Schematic description
of the different synthesis stages including (i) the synthesis of the Au NPs with the aid of THPC [59,62];
(ii) the synthesis of the MCM-41 ordered mesoporous spheres and the amino-grafting step with
APTES [49,65,66]; (iii) the gold seeding attachment by electrostatic attraction; (b–c) HAADF-STEM
images of the individual Au NPs; (d–e) TEM images at different magnifications of the mesoporous
silica supports showing the ordered organization of the mesochannels; (f–g) TEM and STEM images
displaying the correct gold seeding process via electrostatic attraction and the formation of the Au-silica
hybrid nanoparticles.

2.2. Evaluation of Au-MCM-41 Nanohybrids as Enzyme-Mimicking Surrogates Towards Glucose Oxidation

2.2.1. Colorimetric Assays to Determine the Oxidation of Glucose into Gluconic Acid

Au-MCM-41 hybrids were evaluated as inorganic structured materials mimicking the action of the
natural enzyme glucose oxidase (GOx). Our enzyme-like surrogates were tested towards the aerobic
oxidation of glucose under mild reaction conditions.

In order to evaluate the successful conversion of glucose into gluconic acid (hereafter GA) and
hydrogen peroxide (H2O2) (the expected reaction products), a combination of different colorimetric
assays were carried out while exploring the influence of different experimental variables. First of
all, formation of GA was indirectly validated by UV-Vis spectroscopy. GA can selectively react
with hydroxylamine and a trivalent iron salt form a red-colored hydroxamate complex with a broad
absorption centered at 505 nm (see Figure 2a,c) [12,70].
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Figure 2. Determination of the presence of gluconic acid as one of the expected products retrieved
from the oxidation of glucose in the presence of the enzyme-like gold-silica nanocatalyst: (a) Schematic
display of the reaction of gluconic acid with hydroxylamine and trivalent Fe salt to form a red colored
Fe-hydroxamate complex with a maximum absorbance centered at 505 nm (inset: digital image showing
the evolution of the red-colored vials upon increasing reaction times related to increasing formation of
gluconic acid); (b) Comparison of the maximum absorbance detected at different time intervals with
different reaction temperatures and neutral pH = 7.4; (c) Representative UV-Vis spectra of the Fe-complex
exhibiting an increase in the maximum absorbance centered at 505 nm after different reaction time
intervals; (d) Comparison of the maximum absorbance detected at different time intervals and different
pH conditions (temperatures fixed at 37 ◦C); (e) Concentrations of gluconic acid determined after
colorimetric titration with NaOH and phenolphthalein as indicator (inset: digital image of the final color
obtained after completing the neutralization of the gluconic acid with NaOH using phenolphthalein
as colorimetric indicator). Experimental conditions: [catalyst] = 0.025 mg/mL; [glucose] = 150 mM;
reaction media buffered with 0.2 M sodium acetate/acetic acid. Titration experiments were carried out
using titration controls with known concentrations of commercial gluconic acid at pH adjusted to 4.

The progressive formation of the Fe-complex was monitored at different reaction times under
neutral pH conditions. Figure 2b shows the positive influence of increasing the reaction temperature
from 25 to 50 ◦C to increase the selective oxidation of glucose into GA that readily reacts to form the
colored complex (see inset in Figure 2a,b). Likewise, the influence of the pH was further evaluated at
a fixed reaction temperature of 37 ◦C. Figure 2d shows the evolution of the absorption band of the
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hydroxamate complex at different pH values and confirms poorer performance of the Au-MCM-41
catalyst under basic conditions. It is also worth noting that no additional evolution was observed
after 60 min of reaction. The formation and quantification of GA as reaction product was additionally
determined by a colorimetric titration with sodium hydroxide and phenolphthalein [50,71]. According
to the amounts of GA generated (see Figure 2e), the glucose conversion levels reached up to 85% at
neutral pH conditions and T = 37 ◦C after 45 min of reaction. Titration methods confirmed the lower
response under more acidic conditions as previously shown by UV-Vis spectroscopy (Figure 2d).

2.2.2. Colorimetric Assays to Identify the Formation of Hydrogen Peroxide

The other main reaction product expected from an enzyme-like glucose oxidase activity is typically
hydrogen peroxide (Figure 3a). In order to assess its presence, two different colorimetric assays were
performed [12]. The H2O2 generated during the oxidation of glucose was initially reduced with
the aid of a horseradish peroxidase (HRP) enzyme (Figure 3a). In the first colorimetric assay, this
reduction step induced the simultaneous oxidation of 3,3,5,5-tetramethylbenzidine (hereafter TMB)
into its blueish colored derivative with a maximum absorption at 652 nm (Figure 3a,c). The systematic
evaluation of the glucose oxidation under different pH conditions rendered a similar trend as observed
for the detection of gluconic acid (vide infra Figure 3d). Neutral and basic media ensured the best
time-dependent catalytic response of the Au-MCM-41 nanohybrids and the highest absorption values
for the TMB(ox) dye (Figure 3b,c).
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Figure 3. Colorimetric determination of the presence of hydrogen peroxide as reaction product retrieved
from the glucose oxidation reaction (TMB assay): (a) Schematic display of the formation of hydrogen
peroxide and its subsequent redox reaction mediated by a horseradish enzyme that readily reacts with
TMB to render the blue colored oxidized derivative with maximum absorption spectrum centered at
652 nm; (inset: digital image showing the evolution of the blue-colored vials upon increasing reaction
times related to increasing formation of H2O2); (b) Time-dependent evolution of the maximum absorption
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of TMB(ox) at different pH conditions and keeping reaction temperatures of 37 ◦C; (c) Representative
UV-Vis spectra of the TMBox dye after increasing reaction times (inset: digital image of the final
solution after 60 min reaction); Experimental conditions: [catalyst] = 0.025 mg/mL; [glucose] = 150 mM;
reaction media buffered with 0.2 M sodium acetate/acetic acid.

An analogous colorimetric assay mediated by the HRP enzyme to promote the simultaneous
oxidation of a 2,2-azino-bis (3-ethylbenzothiozoline)-6-sulfonic acid salt (ABTS) into its blue colored
oxidized derivative was also carried out (see scheme in Figure 4a). A similar behavior regarding the
pH influence over time could be observed (Figure 4b). No catalytic activity could be detected at lower
pH values of 4 or 5. Furthermore, no additional evolution of the maximum absorption spectrum at
415 nm (Figure 4c) was detected beyond the first 60 min of reaction under neutral or basic conditions
(Figure 4b).
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Figure 4. Colorimetric determination of the presence of hydrogen peroxide as reaction product retrieved
from the glucose oxidation reaction (using the ABTS mediated assay): (a) Schematic display of the
formation of hydrogen peroxide and its subsequent redox reaction mediated by a horseradish enzyme
that readily reacts with ABTS to render the blue colored oxidized derivative with maximum absorption
spectrum centered at 415 nm; (inset: digital image showing the evolution of the blue-colored vials upon
increasing reaction times related to increasing formation of H2O2); (b) Time-dependent evolution of
the maximum absorption of ABTS(ox) at different pH conditions and keeping reaction temperatures of
37 ◦C; (c) Representative UV-Vis spectra of the ABTS(ox) molecule at increasing reaction time intervals;
Experimental conditions: [catalyst] = 0.025 mg/mL; [glucose] = 150 mM; reaction media buffered with
0.2 M sodium acetate/acetic acid.

2.2.3. Steady-State Kinetics and Recyclability Evaluation

To quantify the glucose-oxidase enzyme mimicking activity of the Au-MCM-41 nanocatalyst,
a kinetic study of the glucose conversion into gluconic acid was carried out. The kinetic parameters
were determined after performing a series of experiments with increasing concentrations of glucose
(Figure 5a) and adjusting the gluconic acid generated after 30 min of reaction by quantitative colorimetric
assays that included pH titration [50,71] and UV-Vis spectroscopy [70,72] (see Experimental section for
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further details). The data were fitted to a non-linear regression of the Michaelis-Menten equation and
the apparent kinetic parameters were obtained using the Lineweaver-Burk double reciprocal plot as
previously suggested by Gao et al. [73] (see inset in Figure 5a).
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Figure 5. (a) Steady-state kinetic assay and evaluation of the conversion rates of glucose in the
presence of the enzyme-like gold-silica nanocatalyst using different substrate concentrations (fixed
concentrations of glucose: 10, 20, 50, 100, 120, 150, 180 mM). The formation of Fe-hydroxamate complex
after 30 min was evaluated for each concentration to plot the apparent reaction rate (Vo) and 1/Vo;
(inset: double-reciprocal plots of the glucose-oxidase mimicking activity of the nanocatalyst assuming a
Lineweaver-Burk plot). Experimental details: [glucose] = 10–180 mM; [catalyst] = 0.025 mg/mL;
pH = 7.4 in 0.2 M acetate/acetic buffer; temperature: 37 ◦C. (b) Reusability of the enzyme-like
gold-silica nanocatalyst after 4 consecutive cycles. Experimental details: [glucose] = 150 mM;
[catalyst] = 0.025 mg/mL; pH = 7.4 in 0.2 M acetate/acetic buffer; temperature: 37 ◦C; the nanocatalyst
was recovered by centrifugation.

An apparent Michaelis-Menten constant (defined as Km) of ~55 mM and a maximum velocity
(Vmax) of 18 × 10−6 M/s were determined (inset graph in Figure 5a). This apparent Km constant is higher
than other values reported for freestanding gold nanozymes (Km ~7 mM) [71], polymer-coated gold
mimics (Km ~0.4 mM) [19], gold-supported mimicking systems (Km ~27 mM) [50] or the glucose oxidase
(GOx) natural enzyme (Km ~5 mM) [71]. According to this value, our Au-MCM-41 nanozymes show
a slightly weaker affinity towards the glucose substrate [19,50,71]. Nevertheless, the corresponding
catalytic activity (Kcat) defined by the coefficient Vmax/[concentration of catalyst] improves the values
reported for natural GOx (Kcat ~14.2 s−1 vs. Kcat ~9.7 s−1, respectively) and it is close to freestanding
Au NPs (Kcat ~18.5 s−1) reported by Luo et al. [71]. From the catalytic standpoint, the enzyme-like
Au-MCM-41 nanohybrids exhibit a very positive response probably due to the good accessibility and
homogeneous distribution of the gold active sites in the mesoporous support. The glucose conversion
levels achieved (85–92% in less than 1 h of reaction) working under mild reaction conditions (in
the absence of co-solvents or basic conditions and without high temperature or working pressure)
are extremely competitive with current gold-based systems available in the literature and briefly
summarized in Table 1 (vide infra).

It is also plausible that a controlled O2 feeding would have led to an even better performance.
Still, it is a very positive outcome if a potential application to modify the microenvironment of tumoral
cells (with low O2 concentration levels) is envisioned. As suggested by Cattaneo et al. [46] it is quite
plausible that the reaction of glucose is strongly favored by the nucleophilic attack of glucose on Au–O−

sites. This reaction would be favored at higher pH and temperatures but those requirements would
be still less demanding than those reported in the regular enzymatic pathway, where the hydrolysis
of the δ-glucono-lactone is the rate-limiting step for gluconic acid generation [45]. Even though the
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final product is the same, the Au-based nanozyme may follow a different mechanism. Additional
insights with the aid of Nuclear Magnetic Resonance (NMR) techniques and theoretical simulation
studies can be noteworthy for the corroboration of these differences in reaction mechanisms between
natural enzyme and artificial enzyme systems [45,46,53,74–76]. Furthermore, the silica mesoporous
support provides not only a great active surface area for the accommodation of glucose but also a more
favorable platform to facilitate the recovery and reutilization of the nanozyme than in freestanding
systems. Figure 5b illustrates the capability of these Au-silica hybrids to be reutilized in multiple
consecutive reaction cycles with a minimal reduction of the glucose conversion levels, most likely
attributable to an incomplete retrieval of all the catalyst from cycle to cycle.

Table 1. Selection of Au-based catalysts reported for glucose oxidation.

Catalyst Glucose/Au
(mol/mol) [Glucose]0

O2
(mL/min) T (◦C) pH %Conversion

(react. time) Ref.

1.0% Au/C 100 0.20 M 20 40 BF b 80.0 (18 h) [38]
1.0% Au/C 1000 0.22 M 20 50 9.5 100 (50 min) [23,55]
0.5% Au/C 40,000 3.00 M 100 50 9.5 95.0 (55 min) [55,77]

1.0% Au/NPC 32,000 0.30 M 120 50 9.0 >99.0 [40]
2.0% Au/C 100 0.20 M 0.1 MPa 40 BF 78.0 (18 h) [38]

0.9% Au/CMK 1050 a 0.10 M 0.3 MPa 110 BF 92.0 (2 h) [53]
1.0% Au/Al2O3 32,000 0.30 M 120 50 9.0 100 (15 min) a [35]
1.6% Au/Al2O3 100 0.20 M 20 120 BF 78.0 (18 min) [39]
0.3% Au/Al2O3 - 0.10 M 500 40 9.0 100 [33]

2.0% Au-Mt/CeAl 100 0.20 M 0.1 MPa 120 BF >75 (16 h) [78]
1.0% Au/ZrO2 32,000 0.30 M 120 50 9.0 100 (12 min) a [35]

Au/TiNT 100 0.25 M SP 5 bar 80 9.5 73.0 (6 h) [27]
AuPd/TiNT 100 0.25 M SP 5 bar 80 9.5 74.4 (6 h) [27]

0.5%Au/TiO2 1000 0.10 M 1 MPa 110 BF 92.0 (2 h) [42]
3.9% Au/CeO2 100 0.20 M 20 120 BF 70.0 (18 h) [39]

0.9%Au/meso SiO2 1080 a 0.10 M 0.3 MPa 110 BF 67.0 (2 h) [53]
1.0%Au/MCM-41 118,200 0.15 M - 37 7.4 85.0 (45 min) This work

a Calculated from the reference; b Base-free.

3. Materials and Methods

3.1. Chemicals

Chemicals were used as received without further purification. Gold(III) chloride hydrate
(HAuCl4·3H2O, 50% Au basis), Tetrakis(hydroxymethyl) phosphonium chloride solution (THPC,
80 wt%, Aldrich, Germany), Sodium hydroxide (NaOH), Hexadecyltrimethylammonium bromide
(CTABr, 96%), Tetraethyl orthosilicate (TEOS, ≥99.0%, GC), (3-aminopropyl)triethoxysilane (APTES,
99%), Triethanolamine (TEA, ≥ 99.0%, GC), D-(+)-glucose (ACS reagent), Peroxidase from horseradish
(type VI-A), 2,2-azino-bis (3-ethylbenzothiozoline)-6-sulfonic acid diammonium salt (ABTS-(NH4)2),
98% HPLC), 3,3,5,5-tetramethylbenzidine (TMB, 99%), Iron (III) chloride hexahydrate (97%),
hydroxylamine solution (50 wt% H2O, 99.999%) were purchased from Sigma-Aldrich, Germany).
Sodium hydroxide solutions were kept in well-washed polyethylene containers, and chloroauric acid
solutions were excluded from the light. The solutions were prepared using ultrapure water which was
purified by a Millipore Milli-Q system (Merck, Madrid, Spain).

3.2. Synthesis of Gold Nanoparticles Using THPC as Reducing and Stabilizing Agent (Au-NPs)

Ultrasmall Au-NPs were prepared as described previously elsewhere with slight modifications [62,63].
Successive charging of a 50 mL glass vial, while stirring, with 14 mL of distilled water and then,
in order, portions of aqueous solutions of sodium hydroxide (1 M, 165 µL), the reducing agent THPC
(65 mM, 333 µL), and the freshly dissolved chloroauric acid salt (3 mg, 1 mL) results in the formation
of orange-brown hydrosols of gold. Two minutes was allowed between the addition of THPC and that
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of chloroauric acid. The reaction mixture was stirred for 1 day at room temperature, protecting the
mixture from light to prevent the photothermal decomposition of precursors [79]. Finally, the resulting
colloid Au-NPs were stored in a refrigerator at 4 ◦C until further use.

3.3. Synthesis of Amino-Functionalized Mesoporous Silica Supports (MCM-41 Type Material)

Silica materials with hexagonally arranged uniform mesopores were synthesized using the
previously reported approach [59,80,81] for base catalysed sol gel condensation of TEOS in the presence
of structure directing agent. MCM-41-like mesoporous nanoparticles were synthesized by the following
procedure: CTAB (1.00 g, 2.7 mmol) was first dissolved in deionized water (1 L). NaOHaq. (2.00 M,
5 mL) was added to the CTAB solution, and the temperature was adjusted to 80 ◦C. TEOS (7 mL,
0.05 mmol) was then added drop-wise to the surfactant solution. The mixture was left to stir for 3 h to
give a white precipitate. The solid product was centrifuged and washed with deionized water until
a neutral pH. Finally, the solid was dried. To prepare the final porous material, the as-synthesized
solid were dissolved in acidic EtOH (100 mL, and few drops of HCl 37%) for 12 h to remove the
template phase. The precipitate was recovered by centrifugation at 20,000 g and thoroughly washed
with distilled H2O/EtOH (1:1, 2x) and EtOH (2x). Then the product was dried overnight under reduced
pressure. Subsequently, primary amine groups were grafted on the surface of the mesochannels by
condensation of 3-aminopropyltriethoxysilane (APTES), to favor electrostatic interactions between the
MCM-41 nanoparticles and the Au-NPs [49,59,65,82]. Briefly, 0.50 g of MCM-41 material was dispersed
in 10 mL of toluene, 100 µL of TEA and 200 µL of APTES. The reaction was refluxed for 24 h, and the
product was centrifuged and washed twice prior to total drying under vacuum for further use.

3.4. Synthesis of the Au-MCM-41 Nanohybrids

To prepare the gold-silica nanohybrid, 0.10 g of amino modified MCM-41 nanoparticles was
dispersed in 10 mL of the Au-NCs stored suspension. The suspension was adjusted to pH 5 and stirred
at 20 ◦C for 12 h in the dark. Subsequently, the product was collected by centrifugation, washed several
times with water, and re-dispersed in water until further use. The synthesis of materials has been
performed by the Platform of Production of Biomaterials and Nanoparticles of the NANOBIOSIS ICTS,
more specifically by the Nanoparticle Synthesis Unit of the CIBER in BioEngineering, Biomaterials &
Nanomedicine (CIBER-BBN).

3.5. Determination of Activity and Steady-State Kinetics of the Au-MCM-41 Nanohybrids

The glucose oxidation reactions were carried out with temperature control in a thermoplate,
equipped with a mechanical stirrer operating at 750 rpm, using a total volume of 100 mL and different
glucose concentrations from 10 up to 180 mM. The concentration of the Au-MCM-41 nanocatalyst was
0.025 mg/mL. Concentration of dissolved O2 was typically in the range of 6–8 mg/L (determined with an
Orion Optical Dissolved O2 sensor, Thermo Scientific). The pH of the reaction mixture was held constant
at 7.4. The kinetics of the catalytic reaction could be well adjusted to a typical Michaelis–Menten
curve [70,72]. The Michaelis–Menten constant was calculated using the Lineweaver–Burk plot:
1/V0 = (Km/Vmax)·(1/[S]) + (1/Vmax), where V0 is the initial velocity, Vmax is the maximal reaction
velocity, and [S] is the concentration of the substrate. The rate of the catalytic reaction was defined as
the amount of generated product, gluconic acid, in a fixed time interval of 30 min. The concentration
of gluconic acid was determined via titration with NaOH (0.1 M) using phenolphthalein at pH 8.2
as colorimetric pH indicator. Likewise, this reaction product, (i.e., gluconic acid), was also verified
by reaction with hydroxylamine and a trivalent FeIII salt, leading to a red complex hydroxamate-Fe3+

(with a maximum absorbance at 505 nm) [70]. Namely, 125 µL of solution 1 (5 mmol/L EDTA and
0.15 mmol/L triethylamine in water) and 12.5 µL of solution 2 (3 mol/L NH2OH in water) were added
to 200 µL of the supernatant centrifuged reaction solution, and the mixture was allowed to react for
25 min. Finally, 62.5 µL of solution 3 (1 mol/L HCl, 0.1 mol/L FeCl3, and 0.25 mol/L CCl3COOH in
water) was added to the reaction medium, and reaction was incubated for another 5 min before spectral



Catalysts 2020, 10, 333 11 of 15

acquisition. Absorbance values from the Fe-complex at different reaction times and total gluconic
acid concentrations were correlated using the Lambert-Beer law and a molar absorption coefficient of
61.2 [50,70–72]. In order to prevent the influence of the nanoparticles, the suspensions were previously
centrifuged at 6000 rpm in 2 mL Eppendorfs.

Hydrogen peroxide (H2O2) was indirectly tested with the aid of a horseradish peroxidase (HRP)
enzyme that selectively favored the reduction of the H2O2 present in solution and the simultaneous
oxidation of ABTS or TMB with specific absorbances at 415 and 652 nm, respectively [12,70,72]. In a
standard procedure, 300 µL of the filtered catalytic reaction solution was added to 50 µL of 8 mM
ABTS and 50 µL of 0.4 µg/mL HRP. The oxidation produced a green color with a major absorbance
peak at 415 nm (final concentrations after dilutions for UV-Vis measurements were 1 mM ABTS and
0.05 µg/mL HRP). Also, 350 µL of the filtered catalytic reaction solution was added to 8 µL of 40 mM
TMB and 50 µL of 0.4 µg/mL HRP (final concentrations after dilutions for UV-Vis measurements were
0.8 mM TMB and 0.05 µg/mL HRP). The oxidation produced a blue color with a maximum absorbance
centered at 652 nm. Acetate/Acetic acid buffer solutions (0.2 M, 0.2 mL) were prepared combining 5.4 g
sodium acetate trihydrate +1.2 mL glacial acetic acid in 198.8 mL water. Recycling experiments carried
out after one hour reaction runs included 2 centrifuge cycles and redispersion in water prior to the
addition of fresh glucose solutions. This process was repeated prior to each reuse.

3.6. Catalyst Characterization

The textural properties of the MCM-41 materials were determined from nitrogen adsorption
isotherms measured by an ASAP 2020 instrument (Micromeritics, Norcross, GA, USA). The samples
were out-gassed at 26.7 Pa and 623 K for 6 h before the measurement. The amount of amine groups
grafted onto silica surface was determined by thermogravimetric analysis (SDTA-851 equipment,
Mettler Toledo, Barcelona, Spain). Samples of ca. 3 mg were heated at 5 ◦C/min up to 800 ◦C) under
synthetic air flow. The morphologies, size distribution and crystalline structure of these materials were
determined by Transmission Electron Microscopy (TEM) in a T20 (Tecnai, Thermo Fisher, Hillboro,
OR, USA) and Titan Cube (FEI, Thermo Fisher, Hillboro, OR, USA) system operated at 200–300 kV,
respectively, and coupled with a CCD camera (Gatan, CA, USA). The samples for TEM analysis
were prepared by suspension of the corresponding sample in water, dropping the suspension onto a
200-mesh carbon-coated copper grid (Electron Microscopy Sciences, Hatfield, PA, USA) and letting it
dry under ambient air with the aid of anti-capillary tweezers. The UV-vis absorption spectra of the
products of reaction were systematically recorded using a V-67 UV/Visible spectrophotometer (JASCO,
Madrid, Spain) using a quartz cell of 1 cm light path.

4. Conclusions

Au NPs supported onto mesoporous silica supports via electrostatic attraction represents a feasible
and straightforward strategy to fabricate glucose-oxidase enzyme-like inorganic platforms able to
deliver a successful performance under mild reaction conditions (neutral pH and temperature).
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