Synergistic Effect in Au-Cu Bimetallic Catalysts for the valorization of lignin-derived compounds.

Marta Stucchi¹, Sofia Capelli¹, Simone Cardaci¹, Stefano Cattaneo¹, Andrea Jouve¹, Andrea Beck ², György Sàfràn³, Claudio Evangelisti⁴, Alberto Villa¹ and Laura Prati^{1*}

Supporting Information

The high resolution spectra of Cu of both C- and Al₂O₃-supported samples are reported in figures S1 and S2.

Figure S1. Cu 2p deconvolution for A) Au₄Cu₁ B) Au₁Cu₁ and C) Au₁Cu₄ C-supported catalysts

Figure S2. Cu 2p deconvolution for A) Au₄Cu₁ B) Au₁Cu₁ and C) Au₁Cu₄ Al₂O₃-supported catalysts.

The high resolution spectra of Au of both C- and Al_2O_3 -supported samples are reported in figures S3 and S4. Spectra related to Au_1Cu_4 are not reported because the too low resolution of the Au signal does not allow for deconvolution.

Figure S3. Au 4f deconvolution for A) Au₁Cu₁ B) Au₄Cu₁ C-supported catalysts.

Au1Cu1/Al2O3 - Au4f

Au₄Cu₁/Al₂O₃ - Au₄f

Figure S4. Au 4f deconvolution for A) Au1Cu1 B) Au4Cu1 Al2O3-supported catalysts.

The A) gold and B) copper surface exposure as a function of the conversion of VA after 1 h for Al₂O₃ supported catalysts is reported in figure S5.

Figure S5. Influence of A) gold and B) copper surface exposure on the conversion of VA after 1 h for Al₂O₃ supported catalysts.

The influence of Au^{0}_{exp} exposure on the conversion at 1 h of reaction is reported in figure S6.

Figure S6. influence of Au^{0}_{exp} exposure on the conversion at 1 h of reaction.