Supporting Information

Bifunctional Heterometallic Metal-organic Frameworks for

Solvent-free Heterogeneous Cascade Catalysis

Mingming Zheng^{1,2*}, Yanxiang Wang² and Pingyun Feng^{2*}

¹Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China

² Department of Chemistry, University of California, Riverside, California 92521, United States

Materials: In(NO₃)₃·xH2O, Ga(NO₃)₃·xH2O, VCl₃, MnCl₂, FeCl₃·6H₂O, InCl₃, Mg(OAc)₂·4H2O, Sc(OAc)₃·xH₂O, Co(OAc)₂·4H₂O, N,N-dimethylacetamide (DMA), N,N-Diethylformamide (DEF) and HCl (37%, AR grade) were purchased from Aldrich Chemical Co. and used as received without further purification. 3,3',5,5'-azobenzenetetracarboxylic acid (H₄ABTC) was prepared according to the methods previously reported^{S1}.

1. Synthesis of CPM200 MOFs

Synthesis of [InMg₂(OH)(ABTC)_{1.5}(H₂O)₃] (CPM-200-In/Mg): In a 20 ml glass vial, 44 mg of InCl₃, 172 mg of Mg(OAc)₂·4H₂O, and 71 mg of H₄ABTC were dissolved in a mixture of 8.0 g of DMA and 1.6 g of H₂O. After addition of 240 mg HCl, the vial was sealed and placed in a 90 °C oven for 2 days. Pure yellow cubic crystals were obtained after cooling to room temperature. Pure sample was obtained by filtering and washing the raw product with DMA.

Synthesis of [InCo₂(OH)(ABTC)_{1.5}(H₂O)₃] (CPM-200-In/Co): In a 20 ml glass vial, 44 mg of InCl₃, 200 mg of Co(OAc)₂·4H₂O, and 71 mg of H₄ABTC were dissolved in a mixture of 8.0 g of DMA and 1.6 g of H₂O. After addition of 240 mg HCl, the vial was sealed and placed in a 90°C oven for 3 days. Pure reddish-brown cubic crystals were obtained after cooling to room temperature. Pure sample was obtained by filtering and washing the raw product with DMA.

Synthesis of [InMn₂(OH)(ABTC)_{1.5}(H₂O)₃] (CPM-200-In/Mn): In a 20 ml glass vial, 44 mg of InCl₃, 160 mg of MnCl₂·4H₂O, and 71 mg of H₄ABTC were dissolved in a mixture of 8.0 g of DMA and 1.6 g of H₂O. After addition of 240 mg HCl, the vial was sealed and placed in a 90°C oven for 1 days. Pure yellow cubic crystals were obtained after cooling to room temperature. Pure sample was obtained by filtering and washing the raw product with DMA.

Synthesis of [FeMg₂(OH)(ABTC)_{1.5}(H₂O)₃] (CPM-200-Fe/Mg): In a 20 ml glass vial, 54 mg of FeCl₃·6H₂O, 172 mg of Mg(OAc)₂·4H₂O, and 71mg of H₄ABTC were dissolved in a mixture of 8.0 g of DMA and 1.6 g of H₂O. After addition of 240 mg HCl, the vial was sealed and placed in a 90°C oven for 5 days. Pure yellow cubic crystals were obtained after cooling to room temperature. Pure sample was obtained by filtering and washing the raw product with DMA.

Synthesis of [GaMg₂(OH)(ABTC)_{1.5}(H₂O)₃] (CPM-200-Ga/Mg): In a 20 ml glass vial, 56 mg of Ga(NO3)₃·*x*H2O, 172 mg of Mg(OAc)₂·4H₂O, and 71 mg of H₄ABTC were dissolved in a mixture of 8.0 g of DMA and 1.6 g of H₂O. After addition of 240 mg HCl, the vial was sealed and placed in a 90°C oven for 3 days. Pure yellow irregular polyhedral crystals were obtained after cooling to room temperature. Pure sample was obtained by filtering and washing the raw product with DMA.

Synthesis of [VMg₂(OH)(ABTC)_{1.5}(H₂O)₃] (CPM-200-V/Mg): In a 20 ml glass vial, 48 mg of VCl₃, 258 mg of Mg(OAc)₂·4H₂O, and 106 mg of H₄ABTC were dissolved in a mixture of 12.0 g of DMA and 2.4 g of H₂O. After addition of 360 mg HCl, the vial was sealed and placed in a 90°C oven for 5 days. Pure yellow cubic crystals were obtained after cooling to room temperature. Pure sample was obtained by filtering and washing the raw product with DMA. Synthesis of [ScMg₂(OH)(ABTC)_{1.5}(H2O)₃] (CPM-200-Sc/Mg): In a 20 ml glass vial, 45 mg of Sc(NO₃)₃·xH₂O, 172 mg of Mg(OAc)₂·4H₂O, and 71 mg of H₄ABTC were dissolved in a mixture of 8.0 g of DEF and 1.6 g of H₂O. After addition of 240 mg HCl, the vial was sealed and placed in a 90 °C oven for 5 days. Pure yellow cubic crystals were obtained after cooling to room temperature. Pure sample was obtained by filtering and washing the raw product with DEF.

Fig. S1 FT-IR spectra for ligand and seven CH₂Cl₂-exchanged CPM200 MOFs

Fig.S2 TGA curves for CH₂Cl₂-exchanged CPM200 MOFs.

Fig. S3. CO_2 -TPD (A) and NH₃-TPD (B) profiles of CPM200 V/Mg catalysts.

Fig. S4 Experimental PXRD patterns before and after used and simulated PXRD patterns for CPM-200 MOFs

CPM200	In/Mg	In/Co	In/Mn	In/Ni	Fe/Mg	V/Mg	Sc/Mg	Ga/Mg
Molecular	765.84	835.08	827.10	834.64	706.87	701.96	695.96	720.74
weight								
Surface area	1347	1040	941	877	1459	1011	1041	1056
Bet (m^2/g)								
Pore volume	0.65	0.51	0.45	0.43	0.72	0.50	0.51	0.54
(cm^{3}/g)								

Table S1 Summary of molecular weight, surface area and pore volume data for CPM-200 MOFs ^{S2}.

References

[S1] Wang, S.; Wang, X.; Li, L.; Advincula, R. C. J. Org. Chem. 2004, 69, 9073.

[S2] Zhai, Q. G.; Bu, X. H.; Mao, C. Y.; Zhao, X.; Feng, P. Y., J. Am. Chem. Soc. 2016, 138, 2524-2527