Supplementary information for:

First-principles mechanistic insights into the hydrogen evolution reaction on Ni₂P electrocatalyst in alkaline medium

Russell W. $Cross^a$ and Nelson Y. $Dzade^{a^*}$

^a School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, United Kingdom

*Email: <u>DzadeNY@cardiff.ac.uk</u>

This supporting information contains two figures and one table summarizing the results of the different co-adsorption geometries of OH and H explored on the (0001) and (1010) surface of Ni₂P.

Figure S1: The optimized structures of dissociated water configurations (C) on the Ni₃P₂- and Ni₃P-terminations of (0001) surface of Ni₂P.

Figure S2: The optimized structures of dissociated water configurations (C) on the Ni₂P- and NiP-terminations of the (1010) surface of Ni₂P.

Surface	Term/Config	H-Site	E _{ads} (OH + H) (eV)	avg. <i>d</i> (Ni–O) (Å)	d(О–Н) (Å)	d(Ni-H) (Å)
(0001)	Ni ₃ P ₂ /C1	Ni	-1.07	2.034	0.978	1.761
	Ni ₃ P ₂ /C2	Р	-0.26	2.051	0.976	1.439
	Ni ₃ P ₂ /C3	Ni-P	-0.13	1.998	0.987	1.633 /1.646(P)
	Ni ₃ P ₂ /C4	Ni-Ni	0.30	1.848	0.982	1.635
	Ni ₃ P ₂ /C5	Ni	0.64	1.861	0.978	1.480
	Ni ₃ P/C1	Ni-P	0.45	1.860	0.977	1.746, 1.547 (P)
	Ni ₃ P/C2	Ni	0.53	1.838	0.973	1.493
	Ni ₃ P/C3	Р	0.75	2.064	0.999	1.506 (P)
(1010)	Ni ₂ P/C1	Ni-Ni	-0.69	1.969	0.975	1.582
	Ni ₂ P/C2	Ni-P	-0.02	1.995	0.980	1.757, 1.499 (P)
	Ni ₂ P/C3	Р	0.01	1.979	0.977	1.435 (P)
	Ni ₂ P/C4	Р	0.54	1.826	0.983	1.436 (P)
	NiP/C1	Р	0.05	1.841	0.980	1.427 (P)
	NiP/C2	Ni-P	0.59	1.849	0.993	1.673 /1.584 (P)
	NiP/C3	Ni	0.63	1.830	0.982	1.495
	NiP/C4	Ni-Ni	0.71	1.836	0.984	1.662

Table S1: Dissociative adsorption energies (E_{ads}) and bond lengths (d) for water on Ni₂P (0001) and (1010) surfaces. H-P bond distances are denoted as d(P). Sites Ni, P, Ni-Ni and Ni-P denote top-Ni, top-P, bridge-Ni-Ni and bridge-Ni-P.