Supplementary materials ## Mechanism and Chemoselectivity of Mn-catalyzed Intramolecular Nitrene Transfer Reaction: C-H Amination vs. C=C Aziridination Juping Wang^{1*}, Kangcheng Zheng², Ting Li¹, Xiaojing Zhan¹ - 1. Department of Pharmaceutical Engineering, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China - 2. School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China - * Correspondence: jupingwang@gdpu.edu.cn; Tel.: +86-20-3935-2119; Optimized structures of the species in the reaction pathways of allylic C-H amination and C=C aziridination. Figure S1(a). Optimized structures with important geometrical parameters (bond lengths in Å) of the species in the reaction pathways of allylic C-H amination. Figure S1(b). Optimized structures with important geometrical parameters (bond lengths in Å) of the species in the reaction pathways of allylic C=C aziridination.