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Abstract: Ginsenoside Rg3 is a bioactive compound from Panax ginseng and exhibits diverse notable
biological properties. Glycosylation catalyzed by uridine diphosphate-dependent glycosyltransferase
(UGT) is the final biosynthetic step of ginsenoside Rg3 and determines its diverse pharmacological
activities. In the present study, promiscuous UGT Bs-YjiC from Bacillus subtilis 168 was expressed
in Escherichia coli and purified via one-step nickel chelate affinity chromatography. The in vitro
glycosylation reaction demonstrated Bs-Yjic could selectively glycosylate the C12 hydroxyl group
of ginsenoside Rg3 to synthesize an unnatural ginsenoside Rd12. Ginsenoside Rd12 was about
40-fold more water-soluble than that of ginsenoside Rg3 (90 µM). Furthermore, in vitro cytotoxicity
of ginsenoside Rd12 against diverse cancer cells was much stronger than that of ginsenoside
Rg3. Our studies report the UGT-catalyzed synthesis of unnatural ginsenoside Rd12 for the first
time. Ginsenoside Rd12 with antiproliferative activity might be further exploited as a potential
anticancer drug.

Keywords: ginsenoside Rg3; unnatural ginsenoside; glycosyltransferase; water solubility;
antiproliferative activity

1. Introduction

Ginseng (Panax ginseng) is the most famous medicinal-edible plant recorded in the Chinese
Pharmacopoeia [1,2]. This precious perennial herb is crowned the “King of All Herbs” [3]. Ginseng
has been widely used to provide nutrition, strengthen immunity, and increase vital energy for
thousands of years in Oriental countries [4]. Ginsenosides are the principal effective ingredients of
ginseng [5]. These natural compounds are a group of glycosylated triterpene saponins and exhibit
diverse intriguing pharmacological activities, including anti-inflammatory, antiaging, anticancer,
antitumor, neuroprotective, skin-whitening, and immunoregulatory effects [6–9].

Over 140 ginsenosides have been isolated from diverse Panax species [10]. These naturally
occurring products are mainly grouped into protopanaxadiol-type (PPD) and protopanaxatriol-type
(PPT) according to the structure of the aglycone skeleton [11]. Glycosylation catalyzed by uridine
diphosphate-dependent glycosyltransferase (UGT) is the last biosynthetic step of ginsenosides and
determines their tremendous structural and functional diversity [12]. PPD contains hydroxyl groups at
C3, C12, and C20 positions, whereas PPT contains hydroxyl groups at C3, C6, C12, and C20 positions.
For PPD-type ginsenosides, the sugar moieties are attached to the C3 and/or C20 hydroxyl groups.
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For PPT-type ginsenosides, the sugar moieties are attached to the C6 and/or C20 hydroxyl groups.
Despite both PPD and PPT skeletons containing the C12 hydroxyl group, ginsenosides with sugar
moieties attached to the C12 hydroxyl group have never been identified from Panax species.

Compared with plant-derived UGTs, microbial UGTs generally exhibit remarkable aglycone
flexibility and poor regiospecificity [13–18]. These promiscuous UGTs could be exploited as robust
biocatalysts for glycodiversification of natural and unnatural products for new drug discovery [19,20].
Bs-YjiC from Bacillus subtilis 168 is a flexible and effective UGT toward a numerous number of
structurally diverse compounds [21,22]. Bs-YjiC could glucosylate the C3, C6, and C12 hydroxyl
groups of PPT to synthesize unnatural ginsenosides [10]. Bs-YjiC could also catalyze a continuous
two-step glucosylation of the C3 and C12 hydroxyl groups of PPD to synthesize ginsenoside Rh2 and
an unnatural ginsenoside F12 [23]. However, the regiospecificity of Bs-YjiC toward other ginsenosides
have not been thoroughly elucidated.

In the present study, Bs-YjiC was heterologously expressed in Escherichia coli and purified to
homogeneity via one-step nickel chelate affinity chromatography. Ginsenoside Rg3 (a PPD-type
ginsenoside) was selected as the aglycone using uridine diphosphate glucose (UDPG) as the glucosy
donor (Figure 1). Furthermore, water solubility and antiproliferative activity of the synthesized
unnatural ginsenoside toward diverse cancer cell lines were also determined.
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Figure 1. Chemical structures of ginsenosides Rg3 and Rd12.

2. Results and Discussion

2.1. Expression and Purification of Bs-YjiC

Bs-YjiC was cloned from B. subtilis 168 and heterologously expressed in E. coli BL21 (DE3) as
an N-terminal His6-tagged protein. Recombinant Bs-YjiC was mainly expressed as a soluble protein
and could be purified easily by one-step nickel chelate affinity chromatography. SDS-PAGE analysis
indicated a clear band at around 45 kDa (over 90% purity), which was consistent with the calculated
molecular weight of the recombinant Bs-YjiC (Figure 2).
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2.2. Glycosylation of Ginsenoside Rg3 with Bs-YjiC

Glycosyltransferase activity of Bs-YjiC toward ginsenoside Rg3 was determined with UDPG as the
glucosyl donor. High-performance liquid chromatography (HPLC) analysis of the Bs-YjiC-catalyzed
reaction mixtures revealed that only one new product with the retention time (RT) of 13.1 min
was produced, whereas no new product was detected in the control reactant (Figure 3A). Further,
HPLC coupled with ionization-mass spectrometry (HPLC-ESI-MS) analysis of the new product ([M+H]+

m/z+~947.5585, [M+H-H2O]+ m/z+~929.5475, [M+H-Glc-H2O]+ m/z+~767.4908, [M+H-2Glc-H2O]+

m/z+~605.4396, and [M+H-3Glc-2H2O]+ m/z+~425.3783) demonstrated one glucosyl moiety was
attached to ginsenoside Rg3 (calculated molecular weight, [M+H]+ m/z+~785.5061) (Figure 3B).
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The newly synthesized product was purified by preparative HPLC and its structure was elucidated
by nuclear magnetic resonance (NMR) spectroscopy, including 1H NMR, 13C NMR, homonuclear
correlation spectroscopy (COSY), heteronuclear multiple-bond correlation spectroscopy (HMBC),
and heteronuclear singular quantum correlation (HSQC) (Figures S1–S5). The 1H and 13C NMR
spectra of the new product was similar to that of ginsenoside Rg3 [24], except for an additional
glucosyl moiety (Table 1). Three anomeric proton signals (δH 4.4–4.7 ppm) in 1H NMR spectra
and three anomeric carbon signals (δC 100.5–105.4 ppm) in the 13C NMR spectra suggested that
the PPD skeleton was decorated with three glucosyl moieties. The significant downfield shift
at δC 79.39 (∼9 ppm, C12, ′glycosylation shift’), as well as the correlations between the glucosyl
moiety anomeric signal H′′′ (δH 4.53 ppm, d, J = 8.0 Hz) and C12 (δC 79.39 ppm) in the HMBC
spectra, revealed that the C12 hydroxyl group of ginsenoside Rg3 was decorated with a glucosyl
moiety [22]. In addition, the anomeric proton-coupling constant (J = 8.0 Hz) indicated that the
C12 glucosyl moiety of ginsenoside Rg3 adopted the β-configuration, which was in agreement with
the inverting mechanism of UGTs [25]. Thus, this ginsenoside Rg3-derived unnatural product
was 3-O-β-D-glucopyranosyl-(1-2)-O-β-D-glucopyranosyl-12-O-β-D-glucopyranosyl-protopanaxadiol
(an unnatural PPD-type ginsenoside named ginsenoside Rd12 in this study).

Kinetic analysis of Bs-YjiC toward ginsenoside Rg3 revealed that the Km value was 99.0 µM,
which was comparable to many previously reported UGTs involved in the biosynthesis of different
triterpene saponins [13,25,26]. The turnover number (kcat) of Bs-YjiC was 5.2 s−1, which was much
higher than that of ginseng-derived UGTs (Figure S6) [11,27]. Thus, the catalytic efficiency (kcat/Km,
5.3 × 104 s−1 M−1) of Bs-YjiC toward ginsenoside Rg3 was considerably high. These results suggested
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that Bs-YjiC was an effective UGT for enzymatic glycosylation of ginsenoside Rg3. Glycosylation
mediated by UGTs is the final biosynthetic step and the key bottleneck of ginsenosides [24]. A chassis cell
that can accumulate considerable number of ginsenoside Rg3 has been constructed [24,28], it would be
of great interest to produce unnatural ginsenoside Rd12 by introduction of Bs-YjiC into the ginsenoside
Rg3-producing yeast cell factories.

Table 1. 1H- and 13C-NMR spectral of unnatural ginsenoside Rd12 (methanol-d4, 600 MHz).

C δC (ppm) δH (ppm)

1 36.69 1.44 (1H, m), 1.59 (1H, m)
2 27.61 1.37 (1H, m), 1.67 (1H, m)
3 91.26 3.23 (1H, br.s)
4 40.56 -
5 57.48 0.79 (1H, m)
6 19.19 1.41 (1H, m), 1.47 (1H, m)
7 36.69 1.36 (1H, m), 1.47 (1H, m)
8 38.12 -
9 53.15 1.69 (1H, overlapped)

10 41.94 -
11 31.86 1.80 (1H, m), 2.04 (1H, m)
12 79.39 3.92 (1H, m)
13 47.30 1.10 (1H, m)
14 54.96 -
15 28.65 1.26 (1H, m), 1.38 (1H, m)
16 28.36 1.43 (1H, m), 2.03 (1H, m)
17 51.14 -
18 17.44 0.98 (3H, s)
19 16.74 0.96 (3H, s)
20 74.72 -
21 26.21 1.15 (3H, s)
22 35.75 1.32 (2H, m)
23 23.28 1.18 (2H, m), 1.67 (1H, m)
24 126.30 5.17 (1H, tr)
25 131.80 -
26 25.92 1.71 (3H, s)
27 17.77 1.65 (3H, s)
28 27.61 1.10 (3H, s)
29 16.71 0.89 (3H, s)
30 16.21 1.07 (3H, s)

C3-O-inner-Glc-1′ 105.38 4.47 (1H, d, J = 8.0 Hz)
2′ 81.11 3.60 (m)
3′ 77.59 3.38 (1H, overlapped)
4′ 71.55 3.13 (1H, overlapped)
5′ 78.26 3.27 (1H, m)
6′ 62.82 3.69 (1H, dd, J = 7.8, 4.2 Hz); 3.86 (1H, overlapped)

C3-O-outer-Glc-1′′ 104.50 4.70 (1H, d, J = 8.0 Hz)
2′′ 76.27 3.14 (m)
3′′ 77.81 3.38 (1H, overlapped)
4′′ 70.92 3.36 (1H, overlapped)
5′′ 78.33 3.24 (1H, m)
6′′ 62.36 3.69 (1H, dd, J = 7.8, 4.2 Hz); 3.86 (1H, overlapped)

C12-O-inner-Glc-1′′′ 100.53 4.53 (1H, d, J = 8.0 Hz)
2′′′ 75.08 3.13 (m)
3′′′ 77.96 3.14 (1H, overlapped)
4′′′ 71.86 3.20 (1H, overlapped)
5′′′ 78.44 3.60 (1H, m)
6′′′ 63.08 3.67 (1H, dd, J = 8.4, 3.0 Hz); 3.81 (1H, overlapped)

Note: Glc: Glucosyl moiety; ppm: Parts per million.
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2.3. Aqueous Solubility of Ginsenoside Rd12

The poor aqueous solubility of natural products resulted in a low absorption and a short retention
time in the intestine [21]. Glycosylation mediated by UGTs transfers the hydrophilic sugar moieties to
natural products, which can significantly enhance their solubility and thus improve their bioavailability
and pharmacodynamics [29,30]. The aqueous solubility of ginsenoside Rg3 was limited to 90 µM.
However, the aqueous solubility of unnatural ginsenoside Rd12 increased to 3.6 mM, which was
40-fold more water-soluble than that of ginsenoside Rg3.

2.4. In Vitro Cytotoxicity of Ginsenoside Rd12

Glycosylation contributes to the tremendous structural and functional diversity of ginsenosides [10].
Thus, the antiproliferative activity of unnatural ginsenoside R12 toward colon cancer cells Lovo, gastric
cancer cell line SNU719, and lung cancer cell line DMS53 was evaluated using ginsenoside Rg3 as the
positive control. Ginsenoside Rg3 exhibited poor inhibition toward colon cancer cells Lovo and lung
cancer cells DMS53 with IC50 values exceeding 400 µM, whereas IC50 values of unnatural ginsenoside
Rd12 toward colon cancer cells Lovo and lung cancer cells DMS53 were 40.7 and 46.4 µM, respectively
(Table 2). The IC50 values of ginsenosides Rg3 and Rd12 toward gastric cancer cell SNU719 cells were
359.4 and 112.2 µM, respectively. These results suggested that the attachment of a glucosyl moiety
to the C12 hydroxyl group of ginsenoside Rd12 enhanced its antiproliferative activity toward colon
cancer cells Lovo, gastric cancer cell line SNU719, and lung cancer cell line DMS5.

Table 2. In vitro cytotoxicity of ginsenoside Rd12 (µM).

Compound Lovo 1 DMS53 2 SNU719 3

Rg3 >400 >400 359.4 ± 30.1
Rd12 40.7 ± 5.9 46.4 ± 4.1 112.2 ± 11.9

1 Lovo: Colon cancer cells; 2 DMS53: Lung cancer cells; 3 SNU719: Gastric carcinoma cells.

3. Materials and Methods

3.1. Chemicals, Reagents, and Cancer Cell Lines

Ginsenoside Rg3 was purchased from Biopurify Phytochemicals (Chengdu, Sichuan, China).
UDP-glucose (UDPG), dimethyl sulfoxide (DMSO), methanol, deuterated methanol (methanol-d4),
acetonitrile, and thiazolyl blue tetrazolium bromide (MTT) agent were obtained from Sigma-Aldrich
(St. Louis, MO, USA). The colon cancer cells Lovo, lung cancer cells DMS53, and gastric cancer cells
SNU719 were obtained from CoBioer Biosciences (Nanjing, China). Dulbecco’s modified Eagle’s
medium, streptomycin, and penicillin were obtained from Gibco (Haverhill, MA, USA).

3.2. Heterologous Expression and Enzymatic Activity of Bs-YjiC

Bs-YjiC (GenBank No. NP_389104) was subcloned into plasmid pET28a and recombinant Bs-YjiC
was prepared as described previously [10]. Enzymatic assay (0.5 mL) of Bs-YjiC was conducted with
50 mM Tris-HCl (pH 8.0), 10 mM UDPG, 2 mM ginsenoside Rg3, and 5 µg Bs-YjiC at 40 ◦C for 10 min.
Reactants adding total lysate protein from E. coli BL21 (DE3) expressing pET28a was used as the control.
The reaction mixtures were quenched by the addition of equal volume of chromatographic-grade
methanol. After centrifugation at 12,000 g for 5 min, the reactants were monitored by HPLC and
HPLC-ESI-MS as described previously [24].

3.3. Kinetic Parameters of Bs-YjiC toward Ginsenoside Rg3

Kinetic studies of Bs-YjiC toward ginsenoside Rg3 were carried out in 300 µL volumes (50 mM
Tris-HCl (pH 8.0), 10 mM UDPG, and a variable concentration of ginsenoside Rg3 [50–600 µM]).
The reactants were precultured at 40 ◦C for 20 min and initiated by the addition of 0.5 µg Bs-YjiC.
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Subsequently, the reaction mixtures were incubated at 40 ◦C for 10 min and stopped by the addition of
equal volume of chromatography-grade methanol. Finally, the samples were analyzed by HPLC as
described above.

3.4. Water Solubility Determination

Water solubility of ginsenosides Rd12 and Rg3 was determined as described previously [31].
An amount of 5 mg ginsenosides Rd12 and Rg3 were dissolved in 0.4 mL double-distilled water,
respectively. The samples were mixed by ultrasonication for 1 h. Subsequently, the samples were
maintained at 25 ◦C for 2 h. After centrifugation at 15,000 g for 10 min, the aliquots were analyzed
directly by HPLC mentioned above.

3.5. Cell Viability Assay

Antiproliferative activity of ginsenosides Rd12 and Rg3 against colon cancer cells Lovo, gastric
cancer cell line SNU719, and lung cancer cell line DMS5 was performed as described previously [23].
The cancer cells were seeded into the 96-well plates with a density of 1 × 105 cells/mL and incubated for
24 h. Subsequently, the cancer cell lines were incubated with variable concentrations of ginsenosides
Rd12 and Rg3 for another 48 h. MTT solution (15 µL, 5 mg/mL) was added to the wells and the cancer
cell lines were incubated for 4 h. Finally, the medium was removed and DMSO (150 µL) was added
into the plates. The samples were measured spectrophotometrically by an ELISA spectrophotometer at
570 nm.

3.6. HPLC and HPLC-ESI-MS Analysis of the Glycosylated Product

An Agilent 1260 HPLC system equipped with a C18 column was applied to analyze the samples
as described previously [23]. The column was eluted with phase A (double-distilled water/0.1% formic
acid, v/v) and phase B (chromatography-grade acetonitrile/0.1% formic acid, v/v). The flow rate was
1 mL/min with a gradient program of 25–85% B in 0–25 min. HPLC-ESI-MS analysis was operated in
positive ion mode and full scan (50–1500 Da) as described previously [25].

3.7. Structural Elucidation of Ginsenoside Rd12 by NMR Spectroscopy

A scale-up reaction (100 mL) was conducted for the preparation of unnatural ginsenoside
Rd12. Ginsenoside Rd12 was purified by an Agilent 1260 preparative HPLC system as described
previously [23]. The preparative column was eluted with double-distilled water (phase A) and
chromatography-grade methanol (phase B) using a flow rate of 10 mL/min and a gradient of 25–100%
phase B in 0–60 min. Subsequently, the fractions containing purified ginsenoside Rd12 were collected
and concentrated by reduced pressure distillation. After vacuum freeze drying, ginsenoside Rd12
powders were dissolved in deuterated methanol. 1D NMR and 2D NMR spectroscopies of ginsenoside
Rd12 were recorded on an Advance DMX-600 NMR spectrometer (Bruker, Karlsruhe, Germany).

4. Conclusions

In summary, Bs-YjiC from B. subtilis 168 was demonstrated to be a robust UGT, which can
effectively and selectively glucosylate the C12 hydroxyl group of ginsenoside Rg3 to synthesize
an unnatural ginsenoside Rd12 for the first time. Our studies revealed that unnatural ginsenoside
Rd12 exhibited better solubility and stronger cytotoxicity against diverse cancer cell lines than those of
ginsenoside Rg3. The in vivo and in vitro pharmacological activities of unnatural ginsenoside Rd12
should be further investigated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/3/289/s1.
Figure S1, 1H NMR of ginsenoside Rd12; Figure S2, 13C NMR of ginsenoside Rd12; Figure S3, HMBC spectra of
ginsenoside Rd12; Figure S4, HSQC spectra of ginsenoside Rd12; Figure S5, COSY spectra of ginsenoside Rd12;
Figure S6, Kinetic analysis of Bs-YjiC toward ginsenoside Rg3.

http://www.mdpi.com/2073-4344/10/3/289/s1
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