SUPPLEMENTARY INFORMATION

Radical C–H ¹⁸F-Difluoromethylation of Heteroarenes with [¹⁸F]Difluoromethyl Heteroaryl-Sulfones by Visible Light Photoredox Catalysis

Agostinho Luís Pereira Lemos ^{1,‡,*}, Laura Trump ^{1,2,‡}, Bénédicte Lallemand ², Patrick Pasau ², Joël Mercier ², Christian Lemaire ¹, Jean-Christophe Monbaliu ³, Christophe Genicot ^{2,*}, André Luxen ^{1,*}

- ¹ GIGA-Cyclotron Research Centre *In Vivo* Imaging, University of Liège, 8 Allée du Six Août, Building B30, Sart Tilman, 4000 Liège, Belgium; agostinholemos43@gmail.com (A.L.P.L.); laura.trump@ucb.com (L.T.); christian.lemaire@uliege.be (C.L.); aluxen@uliege.be (A.L.)
- ² Global Chemistry, UCB NewMedicines, UCB Biopharma SPRL, 1420 Braine-l'Alleud, Belgium; patrick.pasau@ucb.com (P.P.); benedicte.lallemand@ucb.com (B.L.); joel.mercier@ucb.com (J.M.); christophe.genicot@ucb.com (C.G.)
- ³ Center for Integrated Technology and Organic Synthesis, Research Unit MolSys, University of Liège, (Sart Tilman), B-4000, Liège, Belgium; jc.monbaliu@uliege.be (J.C.M.)
- * Correspondence: agostinholemos43@gmail.com (A.L.P.L.); christophe.genicot@ucb.com (C.G.); aluxen@uliege.be (A.L.); Tel: (+32)499509436
- [#] The authors contributed equally to this work

Table of contents

1. NMR spectra of the compounds 4a-4f, 5a-5f, and 6a-6f	
Figure S1. ¹ H-NMR spectrum of 4a	S7
Figure S2. ¹³ C-NMR spectrum of 4a	S8
Figure S3. ¹⁹ F-NMR spectrum of 4a	
Figure S4. ¹ H-NMR spectrum of 4b	S10
Figure S5. ¹³ C-NMR spectrum of 4b	S11
Figure S6. ¹⁹ F-NMR spectrum of 4b	S12
Figure S7. ¹ H-NMR spectrum of 4c	S13
Figure S8. ¹³ C-NMR spectrum of 4c	S14
Figure S9. ¹⁹ F-NMR spectrum of 4c	S15
Figure S10. ¹ H-NMR spectrum of 4d	S16
Figure S11. ¹³ C-NMR spectrum of 4d	S17
Figure S12. ¹⁹ F-NMR spectrum of 4d	S18
Figure S13. ¹ H-NMR spectrum of 4e	S19
Figure S14. ¹³ C-NMR spectrum of 4e	S20
Figure S15. ¹⁹ F-NMR spectrum of 4e	S21
Figure S16. ¹ H-NMR spectrum of 4f	S22
Figure S17. ¹³ C-NMR spectrum of 4f	S23
Figure S18. ¹⁹ F-NMR spectrum of 4f	S24
Figure S19. ¹ H-NMR spectrum of 5a	S25
Figure S20. ¹³ C-NMR spectrum of 5a	S26
Figure S21. 19F-NMR spectrum of 5a	S27
Figure S22. 1H-NMR spectrum of 5b.	S28
Figure S23. ¹³ C-NMR spectrum of 5b	S29
Figure S24. 19F-NMR spectrum of 5b.	S30
Figure S25. 1H-NMR spectrum of 5c.	S31
Figure S26. 13C-NMR spectrum of 5c.	S32
Figure S27. 19F-NMR spectrum of 5c.	S33
Figure S28. 1H-NMR spectrum of 5d	S34
Figure S29. ¹³ C-NMR spectrum of 5d	S35
Figure S30. 19F-NMR spectrum of 5d	S36
Figure S31. ¹ H-NMR spectrum of 5e	
Figure S32. ¹³ C-NMR spectrum of 5e	
Figure S33. ¹⁹ F-NMR spectrum of 5e	
Figure S34. ¹ H-NMR spectrum of 5f	S40
Figure S35. ¹³ C-NMR spectrum of 5f	
Figure S36. ¹⁹ F-NMR spectrum of 5f	S42
Figure S37. ¹ H-NMR spectrum of 6a	
Figure S38. ¹³ C-NMR spectrum of 6a	
Figure S39. ¹⁹ F-NMR spectrum of 6 a	
Figure 540. 'H-NMK spectrum of 6b	
Figure S41. ¹³ C-NMR spectrum of 6b	
Figure 542. ¹⁹ F-NMK spectrum of 6b	
Figure 543. 'H-NMK spectrum of 6c	
Figure 544. ¹³ C-NMK spectrum of 6 C	
Figure S45. ¹⁹ F-NMK spectrum of 6 c	
Figure 546. ¹ H-NMK spectrum of 6d	
Figure 54 7. ¹⁰ C-NMK spectrum of bd	
Figure 548. ¹⁹ F-NMK spectrum of 6d	S54

Figure S49. ¹ H-NMR spectrum of 6e	S55
Figure S50. ¹³ C-NMR spectrum of 6e	S56
Figure S51. ¹⁹ F-NMR spectrum of 6e	S57
Figure S52. ¹ H-NMR spectrum of 6f	
Figure S53. ¹³ C-NMR spectrum of 6f	S59
Figure S54. ¹⁹ F-NMR spectrum of 6f	S60

2. Radiochemistry

Table S1. UPLC gradient for the analysis of the crude products [18F]4a-[18F]4f and [18F]5a	a-[18F]5f
(gradient A)	S61
Table S2. UPLC gradient for the analysis of the crude products [18F]8a-[18F]8g (gradient B)	S61

2.1. General procedure for the ¹⁸F-labeling of bromofluoromethyl heteroaryl-sulfides 6a-6f

2.1.1. Synthesis of [18F]2-((difluoromethyl)thio)-6-methoxybenzo[d]thiazole ([18F]4a)	
Figure S55. TLC radio-chromatogram of the crude product [18F]4a (eluent: methanol)	S62
Table S3. Determination of the radio-TLC purity of the crude product [18F]4a	
Figure S56. UPLC radio-chromatogram of the crude product [18F]4a (gradient A)	S62
Figure S57. UPLC UV-chromatogram of the authentic reference 4a (gradient A)	
Table S4. Determination of the radiochemical yield (%) of the synthesis of [18F]4a	S63
2.1.2. Synthesis of [18F]2-((difluoromethyl)thio)-5-methoxybenzo[d]thiazole ([18F]4b)	
Table S5. Determination of the radiochemical yield (%) of the synthesis of [18F]4b	S64
Figure S58. UPLC radio-chromatogram of the crude product [18F]4b (gradient A)	S64
Figure S59. UPLC UV-chromatogram of the authentic reference 4b (gradient A)	S64
2.1.3. Synthesis of [18F]2-((difluoromethyl)thio)-6-nitrobenzo[d]thiazole ([18F]4c)	
Table S6. Determination of the radiochemical yield (%) of the synthesis of [18F]4c	S65
Figure S60. UPLC radio-chromatogram of the crude product [18F]4c (gradient A)	S65
Figure S61. UPLC UV-chromatogram of the authentic reference 4c (gradient A)	S66
2.1.4. Synthesis of [18F]2-((difluoromethyl)thio)-5-nitrobenzo[d]thiazole ([18F]4d)	
Table S7. Determination of the radiochemical yield (%) of the synthesis of [18F]4d	S66
Figure S62. UPLC radio-chromatogram of the crude product [18F]4d (gradient A)	S67
Figure S63. UPLC UV-chromatogram of the authentic reference 4d (gradient A)	S67
2.1.5. Synthesis of [18F]2-((difluoromethyl)thio)-1-methyl-1H-benzo[d]imidazole ([18F]4e)	
Table S8. Determination of the radiochemical yield (%) of the synthesis of [18F]4e	S68
Figure S64. UPLC radio-chromatogram of the crude product [18F]4e (gradient A)	S68
Figure S65. UPLC UV-chromatogram of the authentic reference 4e (gradient A)	S68
2.1.6. Synthesis of [18F]5-((difluoromethyl)thio)-1-phenyl-1H-tetrazole ([18F]4f)	
Table S9. Determination of the radiochemical yield (%) of the synthesis of [18F]4f	S69
Figure S66. UPLC radio-chromatogram of the crude product [18F]4f (gradient A)	S69
Figure S67. UPLC UV-chromatogram of the authentic reference 4f (gradient A)	

2.2. Optimization of the conditions for the oxidation of the [18F]difluoromethyl heteroaryl-sulfide [18F]4a

2.2.1. Synthesis of [18F]2-((difluoromethyl)sulfonyl)-6-methoxybenzo[d]thiazole ([18F]5a)

Figure S68. TLC radio-chromatogram of the crude product [18F]5a (eluent: methanol)	S71
Table S10. Determination of the radio-TLC purity of the crude product [18F]5a	S71
Figure S69. UPLC radio-chromatogram of the crude product [18F]5a (gradient A)	S71
Figure S70. UPLC UV-chromatogram of the authentic reference 5a (gradient A)	S72
Table S11. Determination of the radiochemical yield (%) of the synthesis of [18F]5a	S73

2.3. General procedure for oxidation of the [18F]difluoromethyl heteroaryl-sulfides [18F]4a-[18F]4f

2.3.1. Synthesis of [18F]2-((difluoromethyl)sulfonyl)-5-methoxybenzo[d]thiazole ([18F]5b)	
Table S12. Determination of the radiochemical yield (%) of the synthesis of [18F]5b	S73
Figure S71. UPLC radio-chromatogram of the crude product [18F]5b (gradient A)	
Figure S72. UPLC UV-chromatogram of the authentic reference 5b (gradient A)	S74
2.3.2. Synthesis of [18F]2-((difluoromethyl)sulfonyl)-6-nitrobenzo[d]thiazole ([18F]5c)	
Table S13. Determination of the radiochemical yield (%) of the synthesis of [18F]5c	S75
Figure S73. UPLC radio-chromatogram of the crude product [18]5c (gradient A)	
Figure S74. UPLC UV-chromatogram of the authentic reference 5c (gradient A)	S75
2.5.5. Synthesis of $[^{10}F]^2$ -((diffuoromethy)/suffony)/-5-nitrobenzo[<i>u</i>]thiazole ($[^{10}F]^2$ d)	CT/
Table S14. Determination of the radiochemical yield (%) of the synthesis of $[1^{10}F]$ 5 a	5/6
Figure 575. UPLC radio-chromatogram of the crude product [18F]5d (gradient A)	
Figure S76. UPLC UV-chromatogram of the authentic reference 5d (gradient A)	S77
2.3.4. Synthesis of [18F]2-((difluoromethyl)sulfonyl)-1-methyl-1H-benzo[d]imidazole ([18F]5e)	
Table S15. Determination of the radiochemical yield (%) of the synthesis of [18F]5e	S77
Figure S77. UPLC radio-chromatogram of the crude product [18F]5e (gradient A)	S78
Figure S78. UPLC UV-chromatogram of the authentic reference 5e (gradient A)	S78
2.3.5. Synthesis of [18F]5-((difluoromethyl)sulfonyl)-1-phenyl-1H-tetrazole ([18F]5f)	
Table S16 Determination of the radiochemical yield (%) of the synthesis of [¹⁸ F]5f	579
Figure S79 LIPL C radio-chromatogram of the crude product $[^{18}E]5f$ (gradient Δ)	
Figure S80 LIPLC LIV chromatogram of the authentic reference 5f (gradient A)	
2.4. Two-step radiosyntheses of the [18F]difluoromethyl heteroaryl-sulfones [18F]5a-[18F]5f fi precursors 6a-6f	om the
Table S17. Determination of the radiochemical yield (%) of the synthesis of [18F]5a from the pr 6a	ecursor S80
Table S18. Determination of the radiochemical yield (%) of the synthesis of [18F]5b from the pr 6b	ecursor S80
Table S19. Determination of the radiochemical yield (%) of the synthesis of [18F]5c from the pr 6c	ecursor
Table S20. Determination of the radiochemical yield (%) of the synthesis of [18F]5d from the pr 6d	ecursor
Table S21. Determination of the radiochemical yield (%) of the synthesis of [18F]5e from the pr	ecursor
6e	
Table S22. Determination of the radiochemical yield (%) of the synthesis of [18F]5f from the pr 6f.	ecursor S81
2.5. Fully automated radiosyntheses of the labeled compounds [18F]5a, [18F]5c, and [18F]5f	
2.5.1. Layout of the FASTlab™ cassette for the radiosyntheses of the labeled compounds [18F]5c and [18F]5f	[18F]5a,
Figure S81 Layout of the FASTlab ^{IM} cassette for the radiosyntheses of the labeled compounds	[18F]5a
[18F]5c and [18F]5f	587
Table S23. Location of the reagents, solvents, and materials in the manifold of the FA	STlab™
Table S24. Determination of the radiochemical yield (%) of the synthesis of [18F]5a from the pr	ecursor
oa	583 Pectureor
6c	

2.5.2. Calibration curves of the difluoromethyl heteroaryl-sulfones 5a, 5c, and 5f for determination of the molar activity of [18F]5a, [18F]5c, and [18F]5f

Figure S82. Calibration curve of the difluoromethyl heteroaryl-sulfone 5a (wavelength: 258 nm)	S84
Table S27. Determination of the molar activity of [18F]5a	S85
Figure S83. Calibration curve of the difluoromethyl heteroaryl-sulfone 5c (wavelength: 290 nm)	S85
Table S28. Determination of the molar activity of [18F]5c	S85
Figure S84. Calibration curve of the difluoromethyl heteroaryl-sulfone 5f (wavelength: 244 nm)	S86
Table S29. Determination of the molar activity of [18F]5f	S86

2.6. Optimization of the conditions for the photocatalytic C-H ¹⁸F-difluoromethylation with the reagents [¹⁸F]5a, [¹⁸F]5c, and [¹⁸F]5f

2.6.1. Synthesis of [¹⁸F]2-amino-8-(difluoromethyl)-9-((2-hydroxyethoxy)methyl)-9*H*-purin-6-ol ([¹⁸F]8e)

Figure S85. Instrument used for the C-H ¹⁸ F-difluoromethylation reaction of the heteroarenes (FlowStar	t
Evo, FutureChemistry)	7
Figure S86. TLC radio-chromatogram of the crude product [18F]8e (eluent: methanol)	7
Table S30. Determination of the radio-TLC purity of the crude product [18F]8e	7
Figure S87. UPLC radio-chromatogram of the crude product [18F]8e (gradient B)S88	3
Figure S88. UPLC UV-chromatogram of the authentic reference 8e (gradient B)S88	3
Table S31. Determination of the radiochemical yield (%) of the synthesis of [18F]8e using the reagen [18F]5a	t ə
Table S32. Determination of the radiochemical yield (%) of the synthesis of [18F]8e using the reagen [18F]5c	t)
Table S33. Determination of the radiochemical yield (%) of the synthesis of [18F]8e using the reagen [18F]5f	t)

2.7. General procedure for the C-H ¹⁸F-difluoromethylation reaction with the [¹⁸F]difluoromethyl heteroaryl-sulfones [¹⁸F]5a, [¹⁸F]5c, and [¹⁸F]5f

2.7.1. Synthesis of [18F]2-(difluoromethyl)-4-methyl-1H-pyrrolo[2,3-b]pyridine ([18F]8aa) and [18F]6-(difluoromethyl)-4-methyl-1H-pyrrolo[2,3-b]pyridine ([18F]8ab) Table S34. Determination of the radiochemical yield (%) of the synthesis of [18F]8a using the reagent Table S35. Determination of the radiochemical yield (%) of the synthesis of [18F]8a using the reagent Table S36. Determination of the radiochemical yield (%) of the synthesis of [18F]8a using the reagent 2.7.2. Synthesis of [18F]3-(difluoromethyl)-6-methyl-1H-pyrazolo[3,4-b]pyridine ([18F]8ba) and [18F]4-(difluoromethyl)-6-methyl-1H-pyrazolo[3,4-b]pyridine ([18F]8bb) Table S37. Determination of the radiochemical yield (%) of the synthesis of [18F]8b using the reagent Table S38. Determination of the radiochemical yield (%) of the synthesis of [18F]8b using the reagent Table S39. Determination of the radiochemical yield (%) of the synthesis of [18F]8b using the reagent

Figure S93. UPLC UV-chromatogram of the aut	hentic reference 8ba (gradier	nt B)S94
Figure S94. UPLC UV-chromatogram of the aut	hentic reference 8bb (gradier	nt B)S94

2.7.3. Synthesis of [¹⁸F]4-(difluoromethyl)-2-methyl-5,8-dihydropyrido[2,3-d]pyrimidin-7(6H)-one ([¹⁸F]8c)

Table S40. Determination of the radiochemical yield (%) of the synthesis of [18F]8c using the rea	igent
[18F]5a	S95
Table S41. Determination of the radiochemical yield (%) of the synthesis of [18F]8c using the rea	igent
[¹⁸ F]5c	S95
Table S42. Determination of the radiochemical yield (%) of the synthesis of [18F]8c using the rea	igent
[¹⁸ F]5f	S95
Figure S95. UPLC radio-chromatogram of the crude product [18F]8c (gradient B)	S95
Figure S96. UPLC UV-chromatogram of the authentic reference 8c (gradient B)	S96

2.7.4. Synthesis of [¹⁸F]ethyl 2-(difluoromethyl)isonicotinate ([¹⁸F]8da) and [¹⁸F]ethyl 3- (difluoromethyl)isonicotinate ([¹⁸F]8db)

Table S43. Determination of the radiochemical yield (%) of the synthesis of $[1^8F]8d$	using the reagent
[¹⁸ F]5a	
Table S44. Determination of the radiochemical yield (%) of the synthesis of $[1^8F]8d$	using the reagent
[¹⁸ F]5c	
Table S45. Determination of the radiochemical yield (%) of the synthesis of [18F]8d	using the reagent
[¹⁸ F]5f	S97
Figure S97. UPLC radio-chromatogram of the crude product [18F]8d (gradient B)	S97
Figure S98. UPLC UV-chromatogram of the authentic reference 8da (gradient B)	
Figure S99. UPLC UV-chromatogram of the authentic reference 8db (gradient B)	

2.7.5. Synthesis of [¹⁸F]4-chloro-2-(difluoromethyl)-*N*-(4,5-dihydro-1*H*-imidazol-2-yl)-6-methoxypyrimidin-5-amine ([¹⁸F]8f)

Table S46. Determination of the radiochemical yield (%) of the synthesis of [18F]8f using the synthesynthesynthesis of [18F]	the reagent
[¹⁸ F]5a	S98
Table S47. Determination of the radiochemical yield (%) of the synthesis of [18F]8f using the synthesynthesynthesis of [18F]	the reagent
[¹⁸ F]5c	
Table S48. Determination of the radiochemical yield (%) of the synthesis of [18F]8f using the synthesynthesynthesis of [18F]	the reagent
[¹⁸ F]5f	S99
Figure S100. UPLC radio-chromatogram of the crude product [18F]8f (gradient B)	
Figure S101. UPLC UV-chromatogram of the authentic reference 8f (gradient B)	

2.7.6. Synthesis of 8-(difluoromethyl)-3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1*H*-purine-2,6-dione ([¹⁸F]8g)

Table S49. Determination of the radiochemical yield (%) of the synthesis of [18F]88	g using the reagent
[¹⁸ F]5a	S100
Table S50. Determination of the radiochemical yield (%) of the synthesis of [18F]8g	g using the reagent
[¹⁸ F]5c	S100
Table S51. Determination of the radiochemical yield (%) of the synthesis of [18F]8g	using the reagents
[¹⁸ F]5f	S100
Figure S102. UPLC radio-chromatogram of the crude product [18F]8g (gradient B)	S101
Figure S103. UPLC UV-chromatogram of the authentic reference 8g (gradient B)	S101

1. NMR spectra of the compounds 4a-4f, 5a-5f, and 6a-6f

Figure S1. ¹H-NMR spectrum of 2-((difluoromethyl)thio)-6-methoxybenzo[*d*]thiazole (**4a**).

Figure S2. ¹³C-NMR spectrum of 2-((difluoromethyl)thio)-6-methoxybenzo[*d*]thiazole (**4a**).

Figure S3. ¹⁹F-NMR spectrum of 2-((difluoromethyl)thio)-6-methoxybenzo[*d*]thiazole (**4a**).

Figure S4. ¹H-NMR spectrum of 2-((difluoromethyl)thio)-5-methoxybenzo[*d*]thiazole (**4b**).

Figure S5. ¹³C-NMR spectrum of 2-((difluoromethyl)thio)-5-methoxybenzo[*d*]thiazole (**4b**).

Figure S6. ¹⁹F-NMR spectrum of 2-((difluoromethyl)thio)-5-methoxybenzo[*d*]thiazole (**4b**).

Figure S7. ¹H-NMR spectrum of 2-((difluoromethyl)thio)-6-nitrobenzo[*d*]thiazole (**4c**).

Figure S8. ¹³C-NMR spectrum of 2-((difluoromethyl)thio)-6-nitrobenzo[*d*]thiazole (**4c**).

Figure S9. ¹⁹F-NMR spectrum of 2-((difluoromethyl)thio)-6-nitrobenzo[*d*]thiazole (**4c**).

Figure S10. ¹H-NMR spectrum of 2-((difluoromethyl)thio)-5-nitrobenzo[*d*]thiazole (4d).

Figure S11. ¹³C-NMR spectrum of 2-((difluoromethyl)thio)-5-nitrobenzo[*d*]thiazole (**4d**).

Figure S12. ¹⁹F-NMR spectrum of 2-((difluoromethyl)thio)-5-nitrobenzo[*d*]thiazole (4d).

Figure S13. ¹H-NMR spectrum of 2-((difluoromethyl)thio)-1-methyl-1*H*-benzo[*d*]imidazole (**4e**).

Figure S14. ¹³C-NMR spectrum of 2-((difluoromethyl)thio)-1-methyl-1*H*-benzo[*d*]imidazole (**4e**).

Figure S15. ¹⁹F-NMR spectrum of 2-((difluoromethyl)thio)-1-methyl-1*H*-benzo[*d*]imidazole (**4e**).

Figure S16. ¹H-NMR spectrum of 5-((difluoromethyl)thio)-1-phenyl-1*H*-tetrazole (4f).

Figure S17. ¹³C-NMR spectrum of 5-((difluoromethyl)thio)-1-phenyl-1*H*-tetrazole (**4f**).

Figure S18. ¹⁹F-NMR spectrum of 5-((difluoromethyl)thio)-1-phenyl-1*H*-tetrazole (4f).

Figure S19. ¹H-NMR spectrum of 2-((difluoromethyl)sulfonyl)-6-methoxybenzo[d]thiazole (5a).

Figure S20. ¹³C-NMR spectrum of 2-((difluoromethyl)sulfonyl)-6-methoxybenzo[*d*]thiazole (**5a**).

Figure S21. ¹⁹F-NMR spectrum of 2-((difluoromethyl)sulfonyl)-6-methoxybenzo[d]thiazole (5a).

Figure S22. ¹H-NMR spectrum of 2-((difluoromethyl)sulfonyl)-5-methoxybenzo[*d*]thiazole (5b).

Figure S23. ¹³C-NMR spectrum of 2-((difluoromethyl)sulfonyl)-5-methoxybenzo[*d*]thiazole (5b).

Figure S24. ¹⁹F-NMR spectrum of 2-((difluoromethyl)sulfonyl)-5-methoxybenzo[*d*]thiazole (5b).

Figure S25. ¹H-NMR spectrum of 2-((difluoromethyl)sulfonyl)-6-nitrobenzo[*d*]thiazole (**5c**).

Figure S26. ¹³C-NMR spectrum of 2-((difluoromethyl)sulfonyl)-6-nitrobenzo[*d*]thiazole (**5c**).

Figure S27. ¹⁹F-NMR spectrum of 2-((difluoromethyl)sulfonyl)-6-nitrobenzo[*d*]thiazole (**5c**).

Figure S28. ¹H-NMR spectrum of 2-((difluoromethyl)sulfonyl)-5-nitrobenzo[*d*]thiazole (5d).

Figure S29. ¹³C-NMR spectrum of 2-((difluoromethyl)sulfonyl)-5-nitrobenzo[*d*]thiazole (**5d**).

Figure S30. ¹⁹F-NMR spectrum of 2-((difluoromethyl)sulfonyl)-5-nitrobenzo[*d*]thiazole (**5d**).

Figure S31. ¹H-NMR spectrum of 2-((difluoromethyl)sulfonyl)-1-methyl-1*H*-benzo[*d*]imidazole (**5e**).

Figure S32. ¹³C-NMR spectrum of 2-((difluoromethyl)sulfonyl)-1-methyl-1*H*-benzo[*d*]imidazole (**5e**).

Figure S33. ¹⁹F-NMR spectrum of 2-((difluoromethyl)sulfonyl)-1-methyl-1*H*-benzo[*d*]imidazole (5e).

Figure S34. ¹H-NMR spectrum of 5-((difluoromethyl)sulfonyl)-1-phenyl-1*H*-tetrazole (5f).

Figure S35. ¹³C-NMR spectrum of 5-((difluoromethyl)sulfonyl)-1-phenyl-1*H*-tetrazole (5f).

Figure S36. ¹⁹F-NMR spectrum of 5-((difluoromethyl)sulfonyl)-1-phenyl-1*H*-tetrazole (5f).

Figure S37. ¹H-NMR spectrum of 2-((bromofluoromethyl)thio)-6-methoxybenzo[*d*]thiazole (**6a**).

Figure S38. ¹³C-NMR spectrum of 2-((bromofluoromethyl)thio)-6-methoxybenzo[*d*]thiazole (6a).

Figure S39. ¹⁹F-NMR spectrum of 2-((bromofluoromethyl)thio)-6-methoxybenzo[*d*]thiazole (6a).

Figure S40. ¹H-NMR spectrum of 2-((bromofluoromethyl)thio)-5-methoxybenzo[*d*]thiazole (**6b**).

Figure S41. ¹³C-NMR spectrum of 2-((bromofluoromethyl)thio)-5-methoxybenzo[*d*]thiazole (6b).

Figure S42. ¹⁹F-NMR spectrum of 2-((bromofluoromethyl)thio)-5-methoxybenzo[*d*]thiazole (**6b**).

Figure S43. ¹H-NMR spectrum of 2-((bromofluoromethyl)thio)-6-nitrobenzo[*d*]thiazole (**6c**).

Figure S44. ¹³C-NMR spectrum of 2-((bromofluoromethyl)thio)-6-nitrobenzo[*d*]thiazole (6c).

Figure S45. ¹⁹F-NMR spectrum of 2-((bromofluoromethyl)thio)-6-nitrobenzo[*d*]thiazole (**6c**).

Figure S46. ¹H-NMR spectrum of 2-((bromofluoromethyl)thio)-5-nitrobenzo[*d*]thiazole (6d).

Figure S47. ¹³C-NMR spectrum of 2-((bromofluoromethyl)thio)-5-nitrobenzo[*d*]thiazole (6d).

Figure S48. ¹⁹F-NMR spectrum of 2-((bromofluoromethyl)thio)-5-nitrobenzo[*d*]thiazole (6d).

Figure S49. ¹H-NMR spectrum of 2-((bromofluoromethyl)thio)-1-methyl-1*H*-benzo[*d*]imidazole (**6e**).

Figure S50. ¹³C-NMR spectrum of 2-((bromofluoromethyl)thio)-1-methyl-1*H*-benzo[*d*]imidazole (6e).

Figure S51. ¹⁹F-NMR spectrum of 2-((bromofluoromethyl)thio)-1-methyl-1*H*-benzo[*d*]imidazole (6e).

Figure S52. ¹H-NMR spectrum of 5-((bromofluoromethyl)thio)-1-phenyl-1*H*-tetrazole (6f).

Figure S53. ¹³C-NMR spectrum of 5-((bromofluoromethyl)thio)-1-phenyl-1*H*-tetrazole (6f).

Figure S54. ¹⁹F-NMR spectrum of 5-((bromofluoromethyl)thio)-1-phenyl-1*H*-tetrazole (6f).

2. Radiochemistry

Time (min)	HCO ₂ H/H ₂ O (0.05%, v/v)	MeCN	Flow rate (mL·min ⁻¹)
0	100	0	0.5
6	25	75	0.5
8	100	0	0.5

Table S1. UPLC gradient for the analysis of the crude products [18F]4a-[18F]4f and [18F]5a-[18F]5f (gradient A)

Table S2. UPLC gradient for the analysis of the crude products [18F]8a-[18F]8g (gradient B)

Time (min)	HCO2H/H2O (0.05%, v/v)	MeCN	Flow rate (mL·min ⁻¹)
0	100	0	0.5
6	0	100	0.5
8	100	0	0.5

2.1. General procedure for the ¹⁸F-labeling of bromofluoromethyl heteroaryl-sulfides 6a-6f

Using the GE FASTlab[™] synthesizer, an aliquot of [¹⁸F]fluoride (150-200 MBq) was trapped on a Sep-Pak[®] Accell[™] Plus QMA Carbonate Plus Light cartridge and eluted with a solution of Kryptofix[®] 222 (K₂₂₂; 7.5 mg in 600 µL of MeCN) and K₂CO₃ (1.4 mg in 150 µL of H₂O). Upon azeotropic drying, a solution of the precursors **6a** (12.3 mg, 0.04 mmol), **6b** (12.3 mg, 0.04 mmol), **6c** (6.5 mg, 0.02 mmol), **6d** (12.9 mg, 0.04 mmol), **6e** (11.0 mg, 0.04 mmol), or **6f** (11.6 mg, 0.04 mmol) in MeCN (1 mL) was transferred to the dry [¹⁸F]potassium fluoride/Kryptofix[®] 222 ([¹⁸F]KF/K_{22.2}) complex and heated to 120 °C. After 5 min of ¹⁸F-labeling and dilution of the reaction mixture with H₂O, the labeled compounds [¹⁸F]**4a**–[¹⁸F]**4f** were trapped on Sep-Pak[®] C18 Plus Short cartridge. Subsequently, the 'C18 cartridge was removed and the trapped crude products [¹⁸F]**4a**–[¹⁸F]**4f** were recovered to a 4 mL-vial *via* manual elution with MeCN (1 mL).

2.1.1. Synthesis of [18F]2-((difluoromethyl)thio)-6-methoxybenzo[d]thiazole ([18F]4a)

The implementation of the general procedure for the ¹⁸F-labeling of 2-((bromofluoromethyl)thio)-6-methoxybenzo[*d*]thiazole (**6a**) (12.3 mg, 0.04 mmol) provided the labeled compound [¹⁸F]**4a** in 14.2 \pm 0.7% RCY (d.c. at the SOS).

The radiochemical yield (RCY) of the ¹⁸F-labeling step was determined based on the activity of the recovered crude products [¹⁸F]4a–[¹⁸F]4f, on their radio-TLC and radio-UPLC purities, and the starting radioactivity, according to the following formula:

 $RCY(\%, d. c.) = \frac{radioTLC \ purity(\%) \times radioUPLC \ purity(\%) \times activity \ of \ the \ solution \ of \ [^{18}F]4a-[^{18}F]4f(d. c.)}{starting \ radioactivity \ \times \ 100}$

Figure S55. TLC radio-chromatogram of the crude product [18F]4a (eluent: methanol).

able S3. Determination of the radio-1LC purity of the crude product [13F]4a				
Retention factor (R _f , mm)	Ratio (%)			
0.03	29 (impurity/by-product)			
0.67	71 (desired crude product)			

Table S4 furnishes more details of the RCY determination. The UPLC radio-chromatogram of the crude product [18F]4a is depicted in Figure S56. Figure S57 represents the UPLC UV-chromatogram of the non-radioactive reference 4a.

Figure S56. UPLC radio-chromatogram of the crude product [18F]4a (gradient A).

Figure S57. UPLC UV-chromatogram of the authentic reference 4a (gradient A).

 $RCY(\%, d. c.) = \frac{radioTLC \ purity(\%) \times radioUPLC \ purity(\%) \times activity \ of \ the \ solution \ of \ [^{18}F]4a(d. c.)}{starting \ radioactivity \ \times \ 100}$

$$RCY (\%, d. c.) = \frac{71 \times 92 \times 37.0}{169.4 \times 100}$$
$$RCY (\%, d. c.) = 14.3 \%$$

Table S4. Determination of the radiochemical yield (%) of the synthesis of [18F]4a

Reaction	Starting activity	Activity of the crude	Radio-TLC	Radio-UPLC	Radiochemical
	(MBq)	product [18F]4a (MBq, d.c.)	purity (%)	purity (%)	Yield (%)
1	169.4	37.0	71	92	14.3
2	144.4	28.8	74	90	13.3
3	187.9	50.9	55	100	14.9
Radiochemical Yield (%) ± Deviation					14.2 ± 0.7

2.1.2. Synthesis of [18F]2-((difluoromethyl)thio)-5-methoxybenzo[d]thiazole ([18F]4b)

The implementation of the general procedure for the ¹⁸F-labeling of 2-((bromofluoromethyl)thio)-5-methoxybenzo[*d*]thiazole (**6b**) (12.3 mg, 0.04 mmol) provided the labeled compound [¹⁸F]**4b** in 11.8 \pm 1.9% RCY (d.c. at the SOS). Table S5 furnishes more details of the RCY determination. The UPLC radiochromatogram of the crude product [¹⁸F]**4b** is depicted in Figure S58. Figure S59 represents the UPLC UV-chromatogram of the non-radioactive reference **4b**.

Reaction	Starting activity	Activity of the crude	Radio-TLC	Radio-UPLC	Radiochemical
	(MBq)	product [18F]4b (MBq, d.c.)	purity (%)	purity (%)	Yield (%)
1	187.5	41.5	42	100	9.3
2	142.2	24.2	68	100	11.6
3	173.4	30.5	67	100	11.8
4	167.4	34.2	73	97	14.5
Radiochemical Yield (%) ± Deviation					11.8 ± 1.9

Table S5. Determination of the radiochemical yield (%) of the synthesis of $[{\rm ^{18}F}]4b$

Figure S58. UPLC radio-chromatogram of the crude product [18F]4b (gradient A).

Figure S59. UPLC UV-chromatogram of the authentic reference 4b (gradient A).

2.1.3. Synthesis of [18F]2-((difluoromethyl)thio)-6-nitrobenzo[d]thiazole ([18F]4c)

The implementation of the general procedure for the ¹⁸F-labeling of 2-((bromofluoromethyl)thio)-6-nitrobenzo[*d*]thiazole (**6c**) (6.5 mg, 0.02 mmol) provided the labeled compound [¹⁸F]**4c** in 13.6 \pm 0.6% RCY (d.c. at the SOS). Table S6 furnishes more details of the RCY determination. The UPLC radiochromatogram of the crude product [¹⁸F]**4c** is depicted in Figure S60. Figure S61 represents the UPLC UV-chromatogram of the non-radioactive reference **4c**.

Table S6. Determination of the radiochemical yield (%) of the synthesis of [18F]4c

Reaction	Starting activity	Activity of the crude	Radio-TLC	Radio-UPLC	Radiochemical
	(MBq)	product [18F]4c (MBq, d.c.)	purity (%)	purity (%)	Yield (%)
1	150.9	32.6	75	82	13.3
2	173.1	36.1	81	86	14.5
3	196.1	37.8	70	97	13.1
Radiochemical Yield (%) ± Deviation					13.6 ± 0.6

Figure S60. UPLC radio-chromatogram of the crude product [18F]4c (gradient A).

Figure S61. UPLC UV-chromatogram of the authentic reference 4c (gradient A).

2.1.4. Synthesis of [18F]2-((difluoromethyl)thio)-5-nitrobenzo[d]thiazole ([18F]4d)

The implementation of the general procedure for the ¹⁸F-labeling of 2-((bromofluoromethyl)thio)-5-nitrobenzo[*d*]thiazole (6d) (12.9 mg, 0.04 mmol) provided the labeled compound [¹⁸F]4d in 12.7 \pm 0.2% RCY (d.c. at the SOS). Table S7 furnishes more details of the RCY determination. The UPLC radiochromatogram of the crude product [¹⁸F]4d is depicted in Figure S62. Figure S63 represents the UPLC UV-chromatogram of the non-radioactive reference 4d.

Table S7. Determination of the radiochemical yield (%) of the synthesis of [18F]4d

Reaction	Starting activity	Activity of the crude	Radio-TLC	Radio-UPLC	Radiochemical
	(MBq)	product [18F]4d (MBq, d.c.)	purity (%)	purity (%)	Yield (%)
1	196.8	62.1	46	86	12.5
2	161.4	38.7	67	79	12.7
3	180.6	34.9	75	89	12.9
Radiochemical Yield (%) ± Deviation					12.7 ± 0.2

Figure S62. UPLC radio-chromatogram of the crude product [18F]4d (gradient A).

Figure S63. UPLC UV-chromatogram of the authentic reference 4d (gradient A).

2.1.5. Synthesis of [18F]2-((difluoromethyl)thio)-1-methyl-1H-benzo[d]imidazole ([18F]4e)

The implementation of the general procedure for the ¹⁸F-labeling of 2-((bromofluoromethyl)thio)-1-methyl-1*H*-benzo[*d*]imidazole (**6e**) (11.0 mg, 0.04 mmol) provided the labeled compound [¹⁸F]**4e** in 8.3 \pm 1.9% RCY (d.c. at the SOS). Table S8 furnishes more details of the RCY determination. The UPLC radiochromatogram of the crude product [¹⁸F]**4e** is depicted in Figure S64. Figure S65 represents the UPLC UV-chromatogram of the non-radioactive reference **4e**.

Reaction	Starting activity (MBq)	Activity of the crude product [18F]4e (MBq, d.c.)	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	182.4	33	32	100	5.8
2	154.6	16.8	69	100	7.5
3	169.8	25.7	58	100	8.8
4	187.4	30.5	71	95	11.0
	83+19				

Table S8. Determination of the radiochemical yield (%) of the synthesis of $[{}^{18}F]4e$

Figure S64. UPLC radio-chromatogram of the crude product [18F]4e (gradient A).

Figure S65. UPLC UV-chromatogram of the authentic reference 4e (gradient A).

2.1.6. Synthesis of [18F]5-((difluoromethyl)thio)-1-phenyl-1H-tetrazole ([18F]4f)

The implementation of the general procedure for the ¹⁸F-labeling of 5-((bromofluoromethyl)thio)-1-phenyl-1*H*-tetrazole (**6f**) (11.6 mg, 0.04 mmol) provided the labeled compound [¹⁸F]**4f** in 14.8 \pm 0.8% RCY (d.c. at the SOS). Table S9 furnishes more details of the RCY determination. The UPLC radiochromatogram of the crude product [¹⁸F]**4f** is depicted in Figure S66. Figure S67 represents the UPLC UV-chromatogram of the non-radioactive reference **4f**.

Table S9. Determination of the radiochemical yield (%) of the synthesis of [18F]4f

Reaction	Starting activity (MBq)	Activity of the crude product [18F]4f (MBq, d.c.)	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	130.2	26.8	81	96	16.0
2	190.4	38.4	74	95	14.2
3	195.8	39.3	75	95	14.3
Radiochemical Yield (%) ± Deviation				14.8 ± 0.8	

Figure S66. UPLC radio-chromatogram of the crude product [18F]4f (gradient A).

Figure S67. UPLC UV-chromatogram of the authentic reference 4f (gradient A).

2.2. Optimization of the conditions for the oxidation of the [18F]difluoromethyl heteroaryl-sulfide [18F]4a

2.2.1. Synthesis of [18F]2-((difluoromethyl)sulfonyl)-6-methoxybenzo[d]thiazole ([18F]5a)

A solution containing NaIO₄ and RuCl₃·*x*H₂O in H₂O (1 mL) was transferred to the ^{*i*}C18 cartridge and the oxidation of the trapped crude products [¹⁸F]**4a** (10-20 MBq) was carried out in solid-phase for 5 min at room temperature. Afterwards, the corresponding [¹⁸F]difluoromethyl heteroaryl-sulfone [¹⁸F]**5a** was manually eluted from the ^{*i*}C18 cartridge with MeCN (1 mL) to a 4 mL-vial.

The RCY of the oxidation step was determined based on the activity of the crude products [18F]4a and [18F]5a, and on their radio-TLC and radio-UPLC purities, according to the following equation:

 $RCY (\%, d. c.) = \frac{radioTLC \ purity (\%) \times radioUPLC \ purity (\%) \times activity \ of \ the \ solution \ of \ [^{18}F]5a \ (d. c.)}{activity \ of \ the \ solution \ of \ [^{18}F]4a \ \times \ 100}$

Figure S68. TLC radio-chromatogram of the crude product [18F]5a (eluent: methanol).

Table S10. Determination	of the radio-TLC	purity of the crude	product [18F]5a
--------------------------	------------------	---------------------	-----------------

Retention factor (R _f , mm)	Ratio (%)
0	0 (impurity/by-product)
0.78	100 (desired crude product)

Auto-Scaled Chromatogram

Figure S69. UPLC radio-chromatogram of the crude product [18F]5a (gradient A).

Figure S70. UPLC UV-chromatogram of the authentic reference 5a (gradient A).

$$RCY(\%, d.c.) = \frac{radioTLC \ purity(\%) \times radioUPLC \ purity(\%) \times activity \ of \ the \ solution \ of \ [^{18}F]5a(d.c.)}{activity \ of \ the \ solution \ of \ [^{18}F]4a(d.c.) \times 100}$$

 $RCY (\%, d. c.) = \frac{100 \times 92 \times 12.0}{15.6 \times 100}$ RCY (%, d. c.) = 70.6 %

According to the reported conditions for the oxidation of the [¹⁸F]difluoromethyl heteroaryl-sulfide [¹⁸F]**1**′, the following table summarizes the results of the different optimization tests conducted in the [¹⁸F]**4**a.

Standard reaction conditions for the oxidation of [18F]4a: [18F]difluoromethyl heteroaryl-sulfide **[18F]4a** (10-20 MBq), NaIO₄ (mmol), RuCl₃·*x*H₂O (mmol), H₂O (1 mL), rt, 5 min.

	$R^{1} \qquad S \qquad $	NalO ₄ , RuCl ₃ ·xH ₂ O H ₂ O, rt, 5 min	$[^{18}F]5a (R^{1} = OCH_{3})$	
Entry	Substrate	NaIO4 (mmol)	RuCl ₃ ·xH ₂ O (mmol)	RCY (%) ^(a)
1	[¹⁸ F]1′	0.24	0.008	82.9 ± 7.9 (n=3) ^(b)
2	[¹⁸ F]4a	0.24	0.008	32.1
3	[¹⁸ F]4a	0.24	0.016	59.6
4	[¹⁸ F]4a	0.72	0.016	70.9 ± 6.1 (n=3) ^(b)

^(a) All RCYs were decay-corrected at the SOS. ^(b) Full consumption of the substrates.

The best conditions for the oxidation of the substrate $[^{18}F]4a$ were: $[^{18}F]difluoromethyl heteroaryl-sulfide [^{18}F]4a$ (10-20 MBq), NaIO₄ (0.72 mmol), RuCl₃·*x*H₂O (0.016 mmol), H₂O (1 mL), rt, 5 min.

The implementation of the optimized procedure for the oxidation of $[^{18}F]^2$ -((difluoromethyl)thio)-5-methoxybenzo[*d*]thiazole ($[^{18}F]^4a$) (10-20 MBq) provided the labeled compound $[^{18}F]^5a$ in 70.9 ± 6.1% RCY (d.c. at the SOS). Table S11 furnishes more details of the RCY determination. The UPLC radio-
chromatogram of the crude product [¹⁸**F**]**5***a* is depicted in Figure S69. Figure S70 represents the UPLC UV-chromatogram of the non-radioactive reference **5***a*.

Reaction	Activity of the crude product [18F]4a (MBq)	Activity of the crude product [18F]5a (MBq, d.c.)	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	15.6	12.0	100	92	70.6
2	12.7	10.3	99	98	78.5
3	13.6	11.5	100	75	63.6
Radiochemical Yield (%) ± Deviation				70.9 ± 6.1	

Table S11. Determination of the radiochemical yield (%) of the synthesis of [18F]5a

2.3. General procedure for oxidation of the [18F]difluoromethyl heteroaryl-sulfides [18F]4a-[18F]4f

A solution containing NaIO₄ (153.9 mg, 0.072 mmol) and RuCl₃·*x*H₂O (3.4 mg, 0.016 mmol) in H₂O (1 mL) was transferred to the ^{*i*}C18 cartridge and the oxidation of the trapped crude products [¹⁸F]4a–[¹⁸F]4f (10-20 MBq) was carried out in solid-phase for 5 min at room temperature. Afterwards, the corresponding [¹⁸F]difluoromethyl heteroaryl-sulfones [¹⁸F]5a–[¹⁸F]5f were manually eluted from the ^{*i*}C18 cartridge with MeCN (1 mL) to a 4 mL-vial.

2.3.1. Synthesis of [18F]2-((difluoromethyl)sulfonyl)-5-methoxybenzo[d]thiazole ([18F]5b)

The implementation of the general procedure for the oxidation of $[^{18}F]^2$ -((difluoromethyl)thio)-5methoxybenzo[*d*]thiazole ($[^{18}F]^4b$) (10-20 MBq) provided the labeled compound $[^{18}F]^5b$ in 70.6 ± 5.1% RCY (d.c. at the SOS). Table S12 furnishes more details of the RCY determination. The UPLC radiochromatogram of the crude product $[^{18}F]^5b$ is depicted in Figure S71. Figure S72 represents the UPLC UV-chromatogram of the non-radioactive reference **5b**.

Table S12. Determination of the radiochemical yield (%) of the synthesis of $[{\rm ^{18}F}]5b$

Reaction	Activity of the crude	Activity of the crude	Radio-TLC	Radio-UPLC	Radiochemical
	product [18F]4b (MBq)	product [18F]5b (MBq, d.c.)	purity (%)	purity (%)	Yield (%)
1	17.4	13.1	99	85	63.5
2	16.2	13.7	99	87	72.9
3	14.9	11.2	100	100	75.4
Radiochemical Yield (%) ± Deviation					70.6 ± 5.1

Figure S71. UPLC radio-chromatogram of the crude product [18F]5b (gradient A).

Auto-Scaled Chromatogram

Figure S72. UPLC UV-chromatogram of the authentic reference 5b (gradient A).

2.3.2. Synthesis of [18F]2-((difluoromethyl)sulfonyl)-6-nitrobenzo[d]thiazole ([18F]5c)

The implementation of the general procedure for the oxidation of $[^{18}F]^2$ -((difluoromethyl)thio)-6nitrobenzo[*d*]thiazole ($[^{18}F]^4c$) (10-20 MBq) provided the labeled compound $[^{18}F]^5c$ in 88.2 ± 0.2% RCY (d.c. at the SOS). Table S13 furnishes more details of the RCY determination. The UPLC radiochromatogram of the crude product $[^{18}F]^5c$ is depicted in Figure S73. Figure S74 represents the UPLC UV-chromatogram of the non-radioactive reference **5**c.

Table S13. Determination of the radiochemical yield (%) of the synthesis of [18F]5c

Figure S73. UPLC radio-chromatogram of the crude product [18F]5c (gradient A).

Auto-Scaled Chromatogram

Figure S74. UPLC UV-chromatogram of the authentic reference 5c (gradient A).

2.3.3. Synthesis of [18F]2-((difluoromethyl)sulfonyl)-5-nitrobenzo[d]thiazole ([18F]5d)

The implementation of the general procedure for the oxidation of $[^{18}F]^2$ -((difluoromethyl)thio)-5nitrobenzo[*d*]thiazole ([^{18}F]4d) (10-20 MBq) provided the labeled compound [^{18}F]5d in 88.4 ± 2.8% RCY (d.c. at the SOS). Table S14 furnishes more details of the RCY determination. The UPLC radiochromatogram of the crude product [^{18}F]5d is depicted in Figure S75. Figure S76 represents the UPLC UV-chromatogram of the non-radioactive reference 5d.

Table S14. Determination of the radiochemical yield (%) of the synthesis of [18F]5d

Reaction	Activity of the crude	Activity of the crude	Radio-TLC	Radio-UPLC	Radiochemical
	product [18F]4d (MBq)	product [18F]5d (MBq, d.c.)	purity (%)	purity (%)	Yield (%)
1	13.9	13.3	99	97	92.1
2	15.0	14.6	99	89	85.6
3	15.9	15.1	99	93	87.6
Radiochemical Yield (%) ± Deviation				88.4 ± 2.8	

Figure S75. UPLC radio-chromatogram of the crude product [18F]5d (gradient A).

Figure S76. UPLC UV-chromatogram of the authentic reference 5d (gradient A).

2.3.4. Synthesis of [18F]2-((difluoromethyl)sulfonyl)-1-methyl-1H-benzo[d]imidazole ([18F]5e)

The implementation of the general procedure for the oxidation of $[^{18}F]^2$ -((difluoromethyl)thio)-1methyl-1*H*-benzo[*d*]imidazole ($[^{18}F]^4e$) (10-20 MBq) provided the labeled compound $[^{18}F]^5e$ in 86.1 ± 3.0% RCY (d.c. at the SOS). Table S15 furnishes more details of the RCY determination. The UPLC radiochromatogram of the crude product $[^{18}F]^5e$ is depicted in Figure S77. Figure S78 represents the UPLC UV-chromatogram of the non-radioactive reference **5e**.

Table S15. Determination of the radiochemical yield (%) of the synthesis of [18F]5e

Reaction	Activity of the crude	Activity of the crude	Radio-TLC	Radio-UPLC	Radiochemical
	product [1]4e (wibq)	product [1]5e (wibq, d.c.)	punty (70)	pullty (70)	11efu (70)
1	13.7	12.4	100	100	90.2
2	17.4	16.0	93	97	83.1
3	14.7	13.2	100	95	85
Radiochemical Yield (%) ± Deviation					86.1 ± 3.0

Figure S77. UPLC radio-chromatogram of the crude product [18F]5e (gradient A).

Figure S78. UPLC UV-chromatogram of the authentic reference 5e (gradient A).

2.3.5. Synthesis of [18F]5-((difluoromethyl)sulfonyl)-1-phenyl-1H-tetrazole ([18F]5f)

The implementation of the general procedure for the oxidation of $[^{18}F]5-((difluoromethyl)thio)-1-$ phenyl-1*H*-tetrazole ($[^{18}F]4f$) (10-20 MBq) provided the labeled compound $[^{18}F]5f$ in 91.9 ± 2.8% RCY (d.c. at the SOS). Table S16 furnishes more details of the RCY determination. The UPLC radiochromatogram of the crude product $[^{18}F]5f$ is depicted in Figure S79. Figure S80 represents the UPLC UV-chromatogram of the non-radioactive reference 5f.

Table S16. Determination of the radiochemical yield (%) of the synthesis of [18F]5f

Figure S79. UPLC radio-chromatogram of the crude product [18F]5f (gradient A).

Auto-Scaled Chromatogram

Figure S80. UPLC UV-chromatogram of the authentic reference 5f (gradient A).

2.4. Two-step radiosyntheses of the [¹⁸F]difluoromethyl heteroaryl-sulfones [¹⁸F]5a-[¹⁸F]5f from the precursors 6a-6f

The overall RCY of the ¹⁸F-labeling step of **6a-6f** and the oxidation of [¹⁸F]**4a-**[¹⁸F]**4f** was determined based on the activity of the recovered crude products [¹⁸F]**5a-**[¹⁸F]**5f**, on their radio-TLC and radio-UPLC purities, and the starting radioactivity, according to the following formula:

 $RCY(\%, d.c.) = \frac{radioTLC \ purity(\%) \times radioUPLC \ purity(\%) \times activity \ of \ the \ solution \ of \ [^{18}F]5a-[^{18}F]5f(d.c.)}{starting \ radioactivity \times 100}$

Table S17. Determination of the radiochemical yield (%) of the synthesis of [18F]5a from the precursor 6a

Reaction	Starting activity	Activity of the crude	Radio-TLC	Radio-UPLC	Radiochemical
	(MBq)	product [18F]5a (MBq, d.c.)	purity (%)	purity (%)	Yield (%)
1	100	11.0	98	93	10.0
2	98.6	11.8	98	95	11.1
3	131.8	13.6	99	89	9.1
Radiochemical Yield (%) ± Deviation				10.1 ± 0.8	

Reaction	Starting activity	Activity of the crude	Radio-TLC	Radio-UPLC	Radiochemical
	(MBq)	product [18F]5b (MBq, d.c.)	purity (%)	purity (%)	Yield (%)
1	92.2	9.3	98	87	8.6
2	112.0	10.1	98	85	7.5
3	110.0	11.5	99	86	8.9
Radiochemical Yield (%) ± Deviation				8.3 ± 0.6	

Table S19. Determination of the radiochemical yield (%) of the synthesis of [18F]5c from the precursor 6c

Reaction	Starting activity	Activity of the crude	Radio-TLC	Radio-UPLC	Radiochemical
	(MBq)	product [18F]5c (MBq, d.c.)	purity (%)	purity (%)	Yield (%)
1	112.8	14.6	100	99	12.8
2	101.3	12.1	100	98	11.7
3	122.9	14.5	100	98	11.6
Radiochemical Yield (%) ± Deviation				12 ± 0.5	

Table S20. Determination of the radiochemical yield (%) of the synthesis of [18F]5d from the precursor 6d

Reaction	Starting activity	Activity of the crude	Radio-TLC	Radio-UPLC	Radiochemical
	(MBq)	product [18F]5d (MBq, d.c.)	purity (%)	purity (%)	Yield (%)
1	115.1	12.9	100	97	10.9
2	108.9	12.5	100	97	11.1
3	98.2	11.7	100	98	11.7
Radiochemical Yield (%) ± Deviation				11.2 ± 0.3	

Table S21. Determination of the radiochemical yield (%) of the synthesis of [18F]5e from the precursor 6e

Reaction	Starting activity (MBq)	Activity of the crude product [18F]5e (MBq, d.c.)	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	106.8	8.2	100	98	7.5
2	99.1	7.4	99	96	7.1
3	105.3	7.6	99	96	6.9
Radiochemical Yield (%) ± Deviation				7.2 ± 0.2	

Table S22. Determination of the radiochemical yield (%) of the synthesis of [18F]5f from the precursor 6f

Reaction	Starting activity (MBq)	Activity of the crude product [18F]5f (MBq, d.c.)	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	116.8	15.8	100	100	13.5
2	111.3	14.6	100	100	13.1
3	110.6	15.6	100	100	14.1
Radiochemical Yield (%) ± Deviation				13.6 ± 0.4	

- 2.5. Fully automated radiosyntheses of the labeled compounds [18F]5a, [18F]5c, and [18F]5f
- 2.5.1. Layout of the FASTlab[™] cassette for the radiosyntheses of the labeled compounds [¹⁸F]5a, [¹⁸F]5c, and [¹⁸F]5f

Figure S81. Layout of the FASTlab[™] cassette for the radiosyntheses of the labeled compounds [¹⁸F]**5***a*, [¹⁸F]**5***c*, and [¹⁸F]**5***f*.

Table S23. Location of the reagents.	solvents, and materials in the	e manifold of the FASTlab™ ca	ssette
Tuble 0101 Docution of the reagenes,	borvento, and materialo in the	indimote of the frietite ca	obcite

Manifold	d Reagents, solvents, and materials	
position		
V1	Silicone tubing connected to [18O]H2O recovery vial	14 cm
V2	K22.2 [®] (7.5 mg) in MeCN (600 μL) and K2CO3 (1.4 mg) in H2O (150 μL)	11 mm vial (volume = 750 μL)
V3	Syringe S1 (part of the manifold)	Maximum volume = 1 mL
V4	Sep-Pak [®] Accell [™] Plus QMA Carbonate Plus Light Cartridge with silicone	46 mg (40 μm)
	tubing at position V5	(Waters)
V5	Silicone tubing connected to the Sep-Pak [®] Accell™ Plus QMA Carbonate	14 cm
	Plus Light Cartridge at position V4	
V6	[¹⁸ O]H ₂ O/[¹⁸ F]F ⁻ inlet conical reservoir (part of the manifold)	Maximum volume =
		5 mL
V7	Silicone tubing connected to the cyclic olefin copolymer (COC) reactor (left-hand side)	14 cm
V8	Silicone tubing connected to the COC reactor (central port)	14 cm
V9	Outlet "to HPLC loop" <i>via</i> silicone tubing connected to a Sterifix® Paed filter (B. Braun)	30 cm
V10	Inlet "from HPLC loop" enabling the recovery of the purified labeled compounds [18F]5a, [18F]5c, and [18F]5f after semi-preparative HPLC purification	30 cm
V11	Svringe S2 (part of the manifold)	Maximum volume =
		6 mL
V12	Precursors 6a (12.3 mg, 40 μ mol), 6c (6.5 mg, 20 μ mol), or 6f (11.6 mg, 40 μ mol) solubilized in MeCN	11 mm vial (volume = 1 mL)

V13	MeCN	13 mm vial (volume
		= 4 mL)
V14	NaIO4 (153.9 mg) and RuCl3·xH2O (3.4 mg) solubilized in H2O	13 mm vial (volume
		= 4 mL)
V15	Water bag spike	Volume = 100 mL
V16	MeCN	13 mm vial (volume
		= 4 mL)
V17	Silicone tubing connected to the Sep-Pak® C18 Plus Short Cartridge at	14 cm
	position V18	
V18	Sep-Pak [®] C18 Plus Short Cartridge with silicone tubing at position V17	400 mg (37-55 μm)
V19	Outlet waste bottle	21 cm
V20	Final outlet vial for collection of the labeled compounds [18F]5a, [18F]5c, and	50 cm
	[18F]5f after semi-preparative HPLC purification and reformulation	
V21	Silicone tubing connected to the Sep-Pak® C18 Plus Short Cartridge at	14 cm
	position V22	
V22	Sep-Pak [®] C18 Plus Short Cartridge with silicone tubing at position V21	400 mg (37-55 μm)
V23	Anhydrous DMSO	13 mm vial (volume
		= 4 mL)
V24	Syringe S3 (part of the manifold)	Maximum volume =
		6 mL
V25	Silicone tubing connected to the COC reactor (right-hand side) and vent	42 cm
	value for the reactor	
	varve for all reactor	

The RCY of the fully automated radiosyntheses of the [¹⁸F]difluoromethyl heteroaryl-sulfones [¹⁸F]**5***a*, [¹⁸F]**5***c*, and [¹⁸F]**5***f* was determined based on the radioactivity of the [¹⁸F]**5***a*, [¹⁸F]**5***c*, or [¹⁸F]**5***f* present in DMSO solution and the radioactivity trapped on the QMA carbonate cartridge, according to the following formula:

$$RCY(\%, d.c.) = \frac{activity of the solution of [^{18}F]5a, [^{18}F]5c, or [^{18}F]5f in DMSO(d.c.)}{activity trapped on the QMA carbonate cartridge \times 100}$$

Table S24. Determination of the radiochemical yield (%) of the synthesis of [18F]5a from the precursor 6a

Reaction	Starting activity (GBq)	Activity of the isolated product [18F]5a	Radiochemical Yield (%)	
		(GBq, d.c.)		
1	135.0	4.0	3.0	
2	137.3	3.7	2.7	
3	148.9	148.9 4.3		
	Radiochemical	2.9 ± 0.1		

Reaction	Starting activity (GBq)	Activity of the isolated product [¹⁸ F]5c	Radiochemical Yield (%)
		(GBq, d.c.)	
1	134.3	6.3	4.7
2	146.9	8.5	5.8
3	135.3	8.2	6.1
4	127.6	7.5	5.9
5	147.6	9.0	6.1
	Radiochemical	5.7 ± 0.5	

Table S25. Determination of the radiochemical yield (%) of the synthesis of [18F]5c from the precursor 6c

Reaction	Starting activity (GBq)	Activity of the isolated product [18F]5a	Radiochemical Yield (%)
		(GBq, d.c.)	
1	140.1	10.2	7.3
2	130.9	9.7	7.4
3	124.9	11.6	9.3
	Radiochemical `	8.0 ± 0.9	

Table S26. Determination of the radiochemical yield (%) of the synthesis of [18F]5f from the precursor 6f

2.5.2. Calibration curves of the difluoromethyl heteroaryl-sulfones 5a, 5c, and 5f for determination of the molar activity of [18F]5a, [18F]5c, and [18F]5f

The fully automated radiosyntheses of the sulfones [¹⁸F]**5***a*, [¹⁸F]**5***c*, or [¹⁸F]**5***f* were performed on a commercially available FASTlabTM synthesizer (GE Healthcare), using the optimized conditions for the labeling of precursors **6***a* (12.3 mg, 0.04 mmol), **6***c* (6.5 mg, 0.02 mmol), or **6***f* (11.6 mg, 0.04 mmol), and the oxidation of the labeled compounds [¹⁸F]**4***a*, [¹⁸F]**4***c*, and [¹⁸F]**4***f*. The molar activity of the [¹⁸F]difluoromethyl heteroaryl-sulfones was determined using an aliquot of each reformulated solution (3 μ L). After injection of an aliquot in UPLC, the radioactive peak of [¹⁸F]**5***a*, [¹⁸F]**5***c*, and [¹⁸F]**5***f* associated to the non-radioactive sulfones **5***a*, **5***c*, and **5***f*, respectively, were collected and counted in an ionization chamber. The PDA UV area under the peak of the non-radioactive sulfones **5***a*, **5***c*, and **5***f* at 258 nm, 290 nm, and 244 nm, respectively, enabled the determination of the corresponding amount (in μ mol) of the difluoromethyl heteroaryl-sulfones using the calibration curves described in Figures S82-S84. The molar activity was calculated by the ratio between the radioactivity of the [¹⁸F]**5***a*, [¹⁸F]**5***c*, and [¹⁸F]**5***f* and the corresponding amount of non-radioactive compound, according to the following formula:

 $Molar \ activity \ (GBq \cdot \mu mol^{-1}) = \frac{activity \ of \ the \ collected \ UPLC \ peak \ of \ [^{18}F]5a, \ [^{18}F]5f, \ or \ [^{18}F]5f}{amount \ of \ 5a, \ 5c, \ or \ 5f \ associated \ to \ the \ radioactive \ peak}$

Figure S82. Calibration curve of the difluoromethyl heteroaryl-sulfone 5a (wavelength: 258 nm).

Table S27.	Determination	of the mol	lar activity	of [18F]5a

Reaction	Activity of the radioactive peak of [18F]5a (GBq)	Area under the peak of 5a (UA) at 258 nm	Amount of 5a (µmol)	Molar activity (GBq· μmol ⁻¹)
1	4.552×10^{-3}	40425	3.146×10^{-5}	145
2	4.454×10^{-3}	38473	2.876 × 10 ⁻⁵	155
3	5.175×10^{-3}	50000	4.471×10^{-5}	116
	139 ± 17			

Figure S83. Calibration curve of the difluoromethyl heteroaryl-sulfone 5c (wavelength: 290 nm).

Reaction	Activity of the radioactive	Area under the peak Amount of 5c		Molar activity
	peak of [18F]5c (GBq)	of 5c (UA) at 290 nm	(µmol)	(GBq∙µmol¹)
1	4.863×10^{-3}	247987	1.150×10^{-4}	42
2	2.662×10^{-3}	90325	4.489×10^{-5}	59
3	8.242×10^{-3}	244309	1.134×10^{-4}	73
4	2.038×10^{-3}	65547	3.387×10^{-5}	60
5	2.524×10^{-3}	66094	3.412 × 10 ⁻⁵	74
	62 ± 12			

Table S28. Determination of the molar activity of $[{\rm ^{18}F}]5c$

Figure S84. Calibration curve of the difluoromethyl heteroaryl-sulfone 5f (wavelength: 244 nm).

Reaction	Activity of the radioactive	Area under the peak	Amount of 5f	Molar activity
	peak of [18F]5f (GBq)	of 5f (UA) at 244 nm	(µmol)	(GBq∙µmol¹)
1	1.702×10^{-2}	57459	1.378×10^{-4}	124
2	1.193×10^{-2}	57048	1.361×10^{-4}	88
3	1.435×10^{-2}	51785	1.143×10^{-4}	126
	113 ± 17			

Table S29. Determination of the molar activity of [18F]5f

2.6. Optimization of the conditions for the photocatalytic C-H ¹⁸F-difluoromethylation with the reagents [¹⁸F]5a, [¹⁸F]5c, and [¹⁸F]5f

The propensity of the reagents [18F]5a, [18F]5c, and [18F]5f to undergo the desired photocatalytic C-H ¹⁸F-difluoromethylation reaction was carried out using 2-amino-9-((2-hydroxyethoxy)methyl)-9*H*-purin-6-ol (acyclovir, **7e**) as a model substrate.

2.6.1. Synthesis of [¹⁸F]2-amino-8-(difluoromethyl)-9-((2-hydroxyethoxy)methyl)-9H-purin-6-ol ([¹⁸F]8e)

A solution of 2-amino-9-((2-hydroxyethoxy)methyl)-9*H*-purin-6-ol (acyclovir, **7e**) and *fac*-Ir^{III}(ppy)₃ in DMSO (200 μ L) was prepared. Next, a solution of **[18F]5a**, **[18F]5c**, or **[18F]5f** in DMSO (30-40 MBq, 50 μ L) was added. The solution was injected in a 100 μ L-microchip pumped with DMSO at a flow rate and irradiated under blue LED (470 nm, 2 W), at a temperature of 35 °C. An aliquot of the crude product **[18F]8e** was then analyzed by radio-TLC and radio-UPLC for radiochemical yield (RCY) determination.

Figure S85. Instrument used for the C-H ¹⁸F-difluoromethylation reaction of the heteroarenes (FlowStart Evo, FutureChemistry).

The RCY of the C-H ¹⁸F-difluoromethylation reactions was determined according to the following formula:

Figure S86. TLC radio-chromatogram of the crude product [18F]8e (eluent: methanol).

Retention factor (R _f , mm)	Ratio (%)
0.02	46 (impurity/by-product)
0.77	54 (desired crude product)

Figure S87. UPLC radio-chromatogram of the crude product [18F]8e (gradient B).

Auto-Scaled Chromatogram

Figure S88. UPLC UV-chromatogram of the authentic reference 8e (gradient B).

$$RCY (\%) = \frac{radioTLC \ purity \ (\%) \times radioUPLC \ purity \ (\%)}{100}$$
$$RCY \ (\%) = \frac{54 \times 100}{100}$$
$$RCY \ (\%) = 54 \ \%$$

Note: In some cases, some peaks at 0.6 and 0.9 min were observed on the radio-UPLC chromatograms. Those two peaks were collected and their radio-TLC purity was analyzed. Since the retention factor corresponding to these peaks is approximately 0, their contribution for the radio-UPLC purity was not taken into consideration. The contribution of these peaks was accounted for the determination of the radio-TLC purity.

On the basis of the reported conditions for the C-H ¹⁸F-difluoromethylation of the substrate **7e** with the reagent [¹⁸F]**1**, the following table summarizes the results of the different optimization tests performed in the presence of the reagents [¹⁸F]**5a**, [¹⁸F]**5c**, and [¹⁸F]**5f**.

Standard reaction conditions for the photoredox C-H ¹⁸F-difluoromethylation: substrate 7e (0.02 mmol), [¹⁸F]difluoromethyl heteroaryl-sulfones [¹⁸F]5a, [¹⁸F]5c, or [¹⁸F]5f (30-40 MBq), *fac*-Ir^{III}(ppy)₃ (mol%), residence time (min), flow rate (μ L·min⁻¹), DMSO (250 μ L), 35 °C, blue LED (470 nm, 2 W).

ő

[¹⁸F]5f

Entry	Reagents	<i>fac</i> -Ir ^{III} (ppy)₃ (mol%)	Residence time (min)	Flow rate (µL∙min ⁻¹)	Conversion (%) ^(a)	RCY (%) ^(b)
1	[18F]1	0.05	2	50	100	70 ± 7 (n=4)
2	[¹⁸ F]5a	0.05	2	50	100	57 ± 7 (n=3)
3	[¹⁸ F]5c	0.05	2	50	17	14 ± 1 (n=3)
4	[¹⁸ F]5c	0.5	2	50	36	26 ± 3 (n=3)
5	[¹⁸ F]5c	0.5	4	25	100	51 ± 7 (n=4)
6	[¹⁸ F]5f	0.05	2	50	73	48 ± 8 (n=3)
7	[¹⁸ F]5f	0.1	2	50	98	55 ± 1 (n=3)
8	[18F]5f	0.1	2.5	40	100	$56 \pm 1 (n=3)$

[¹⁸F]5c

^(a) UPLC conversion of the reagents. ^(b) All RCYs were determined based on the radio-TLC and radio-UPLC purities of the crude product [¹⁸F]8e.

The best conditions for the C-H ¹⁸F-difluoromethylation of the substrate **7e** were:

[¹⁸F]5a

[¹⁸F]1

- <u>Conditions A</u>: [¹⁸F]difluoromethyl heteroaryl-sulfone [¹⁸F]5a (30-40 MBq), *fac*-Ir^{III}(ppy)₃ (0.05 mol%), residence time (2 min), flow rate (50 μL·min⁻¹), DMSO (250 μL), 35 °C, blue LED (470 nm, 2 W).
- <u>Conditions B</u>: [¹⁸F]difluoromethyl heteroaryl-sulfone [¹⁸F]5c (30-40 MBq), *fac*-Ir^{III}(ppy)₃ (0.5 mol%), residence time (4 min), flow rate (25 μL·min⁻¹), DMSO (250 μL), 35 °C, blue LED (470 nm, 2 W).
- <u>Conditions C</u>: [¹⁸F]difluoromethyl heteroaryl-sulfone [¹⁸F]5f (30-40 MBq), *fac*-Ir^{III}(ppy)₃ (0.1 mol%), residence time (2.5 min), flow rate (40 μL·min⁻¹), DMSO (250 μL), 35 °C, blue LED (470 nm, 2 W).

Table S31. Determination of the radiochemical yield (%) of the synthesis of [18F]8e using the reagent [18F]5a

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	54	100	54
2	67	100	67
3	51	100	51
	Radiochemical Yield (%)	57 ± 7	

Table S32. Determination of the radiochemical yield (%) of the synthesis of [18F]8e using the reagent [18F]5c

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	74	79	58
2	68	57	39
3	63	84	53
4	67	80	54
	Radiochemical Yield (%) =	51 ± 7	

Table S33. Determination of the radiochemical yield (%) of the synthesis of [18F]8e using the reagent [18F]5f

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	63	85	54
2	69	83	57
3	71	80	57
	Radiochemical Yield (%)	56 ± 1	

2.7. General procedure for the C-H ¹⁸F-difluoromethylation reaction with the [¹⁸F]difluoromethyl heteroaryl-sulfones [¹⁸F]5a, [¹⁸F]5c, and [¹⁸F]5f

A solution of the heteroarenes (0.02 mmol) and *fac*-Ir^{III}(ppy)₃ (0.05 mol% for [¹⁸F]**5a**; 0.5 mol% for [¹⁸F]**5c**; 0.1 mol% for [¹⁸F]**5f**) in DMSO (200 μ L) was prepared. Next, a solution of [¹⁸F]**5a**, [¹⁸F]**5c**, or [¹⁸F]**5f** in DMSO (30-40 MBq, 50 μ L) was added. The solution was injected in a 100 μ L-microchip pumped with DMSO at a flow rate of 50 μ L·min⁻¹ (residence time: 2 min for [¹⁸F]**5a**), 25 μ L·min⁻¹ (residence time: 4 min for [¹⁸F]**5c**) or 40 μ L·min⁻¹ (residence time: 2.5 min for [¹⁸F]**5f**) and irradiated under blue LED (470 nm, 2 W), at a temperature of 35 °C. An aliquot of the reaction mixture was then analyzed by radio-TLC and radio-UPLC for the RCY determination.

2.7.1. Synthesis of [¹⁸F]2-(difluoromethyl)-4-methyl-1*H*-pyrrolo[2,3-b]pyridine ([¹⁸F]8aa) and [¹⁸F]6-(difluoromethyl)-4-methyl-1*H*-pyrrolo[2,3-b]pyridine ([¹⁸F]8ab)

The implementation of the general procedure for the C-H ¹⁸F-difluoromethylation of 4-methyl-1*H*-pyrrolo[2,3-*b*]pyridine (2.6 mg, 0.02 mmol) provided the labeled compound [¹⁸F]8aa in 32 ± 1%, 58 ± 3%, and 46 ± 3% RCY, using the reagents [¹⁸F]5a, [¹⁸F]5c, and [¹⁸F]5f, respectively. The labeled compound [¹⁸F]8ab was afforded in 5 ± 1%, 8%, and 7% RCY, using the reagents [¹⁸F]5a, [¹⁸F]5c, and [¹⁸F]5f, respectively (see the Tables S34-S36 for more details of the RCY determination). The UPLC radio-chromatogram of the crude product [¹⁸F]8a is depicted in Figure S89. Figures S90 and S91 represent the UPLC UV-chromatograms of the non-radioactive references 8aa and 8ab, respectively.

Table S34. Determination of the radiochemical yield (%) of the synthesis of [18F]8a using the reagent [18F]5a

Reaction	Radio-TLC purity (%)	Radio-UPL	C purity (%)	Radiochemi	ical Yield (%)
	a + b	а	b	а	b
1	37	90	10	33	4
2	34	89	11	30	4
3	38	85	15	32	6
Radiochemical Yield (%) ± Deviation				32 ± 1	5 ± 1

Table S35. Determination of the radiochemical yield (%) of the synthesis of [18F]8a using the reagent [18F]5c

Reaction	Radio-TLC purity (%)	Radio-UPL	C purity (%)	Radiochemi	cal Yield (%)
	a + b	а	b	а	b
1	67	80	12	54	8
2	76	82	12	62	9
3	76	75	11	57	8
	Radiochemical Yield (%	58 ± 3	8		

Table S36. Determination of the radiochemical yield (%) of the synthesis of [18F]8a using the reagent [18F]5f

Reaction	Radio-TLC purity (%)	Radio-UPL	C purity (%)	Radiochemi	cal Yield (%)
	a + b	а	b	а	b
1	64	74	11	47	7
2	58	73	10	42	6
3	67	72	10	48	7
Radiochemical Yield (%) ± Deviation				46 ± 3	7

Figure S89. UPLC radio-chromatogram of the crude product [18F]8a (gradient B).

Figure S90. UPLC UV-chromatogram of the authentic reference 8aa (gradient B).

Figure S91. UPLC UV-chromatogram of the authentic reference 8ab (gradient B).

2.7.2. Synthesis of [¹⁸F]3-(difluoromethyl)-6-methyl-1*H*-pyrazolo[3,4-*b*]pyridine ([¹⁸F]8ba) and [¹⁸F]4-(difluoromethyl)-6-methyl-1*H*-pyrazolo[3,4-*b*]pyridine ([¹⁸F]8bb)

The implementation of the general procedure for the C-H ¹⁸F-difluoromethylation of 6-methyl-1*H*-pyrazolo[3,4-*b*]pyridine (2.7 mg, 0.02 mmol) provided the labeled compound [¹⁸F]8aa in 41 ± 6%, 43 ± 3%, and 41 ± 5% RCY, using the reagents [¹⁸F]5a, [¹⁸F]5c, and [¹⁸F]5f, respectively. The labeled compound

[18F]8ab was afforded in 16 \pm 1%, 17 \pm 3%, and 17 \pm 1% RCY, using the reagents [18F]5a, [18F]5c, and [18F]5f, respectively (see the Tables S37-S39 for more details of the RCY determination). The UPLC radiochromatogram of the crude product [18F]8b is depicted in Figure S92. Figures S93 and S94 represent the UPLC UV-chromatograms of the non-radioactive references 8ba and 8bb, respectively.

Reaction	Radio-TLC purity (%)	Radio-UPL	C purity (%) Radiochemical Yield (%)		ical Yield (%)
	a + b	а	b	а	b
1	53	67	33	36	17
2	67	75	25	50	17
3	55	68	27	37	15
	Radiochemical Yield (%	41 ± 6	16 ± 1		

Table S37. Determination of the radiochemical yield (%) of the synthesis of [18F]8b using the reagent [18F]5a

Table S38. Determination of the radiochemical y	vield ((%)) of the s	ynthesis (of [18F]8b	using th	e reagent	[¹⁸ F]5c
		```						

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)		Radiochemical Yield (%)	
	a + b	а	b	а	b
1	71	67	22	48	16
2	74	57	28	42	21
3	62	65	22	40	14
	Radiochemical Yield (%	$43 \pm 3$	$17 \pm 3$		

<b>Fable S39.</b> Determination of the radiochemical	yield (	%) of the s	ynthesis of [	[ ¹⁸ <b>F]8b</b> usin	g the reagent	[18F]5f
------------------------------------------------------	---------	-------------	---------------	----------------------------------	---------------	---------

Reaction	Radio-TLC purity (%)	Radio-UPLO	C purity (%)	Radiochemi	cal Yield (%)
	a + b	а	b	а	b
1	70	50	25	35	18
2	65	61	24	40	16
3	74	63	21	47	16
Radiochemical Yield (%) ± Deviation				$41 \pm 5$	$17 \pm 1$



#### Auto-Scaled Chromatogram

Figure S92. UPLC radio-chromatogram of the crude product [18F]8b (gradient B).



Figure S93. UPLC UV-chromatogram of the authentic reference 8ba (gradient B).



Figure S94. UPLC UV-chromatogram of the authentic reference 8bb (gradient B).

## 2.7.3. Synthesis of [¹⁸F]4-(difluoromethyl)-2-methyl-5,8-dihydropyrido[2,3-d]pyrimidin-7(6*H*)-one ([¹⁸F]8c)



The implementation of the general procedure for the C-H ¹⁸F-difluoromethylation of 2-methyl-5,8dihydropyrido[2,3-*d*]pyrimidin-7(6*H*)-one (3.3 mg, 0.02 mmol) provided the labeled compound [¹⁸F]8c in 17 ± 4%, 13 ± 3%, and 14% RCY, using the reagents [¹⁸F]5a, [¹⁸F]5c, and [¹⁸F]5f, respectively (see the Tables S40-S42 for more details of the RCY determination). The UPLC radio-chromatogram of the crude product [18F]8c is depicted in Figure S95. Figure S96 represents the UPLC UV-chromatogram of the nonradioactive reference 8c.

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	38	30	11
2	45	44	20
3	51	41	21
	Radiochemical Yield (%) :	$17 \pm 4$	

Table S40. Determination of the radiochemical yield (%) of the synthesis of [18F]8c using the reagent [18F]5a

Table S41. Determination of the radiochemical yield (%) of the synthesis of [18F]8c using the reagent [18F]5c

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	57	30	17
2	55	20	11
3	19	52	10
	Radiochemical Yield (%) :	13 ± 3	

Table S42. Determination of the radiochemical yield (%) of the synthesis of [18F]8c using the reagent [18F]5f

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	54	25	14
2	43	30	13
3	54	25	14
	Radiochemical Yield (%	14	



### Auto-Scaled Chromatogram

Figure S95. UPLC radio-chromatogram of the crude product [18F]8c (gradient B).



Figure S96. UPLC UV-chromatogram of the authentic reference 8c (gradient B).

### 2.7.4. Synthesis of [¹⁸F]ethyl 2-(difluoromethyl)isonicotinate ([¹⁸F]8da) and [¹⁸F]ethyl 3-(difluoromethyl)isonicotinate ([¹⁸F]8db)



The implementation of the general procedure for the C-H ¹⁸F-difluoromethylation of ethyl isonicotinate (3.0 mg, 0.02 mmol) provided the labeled compound [¹⁸F]8da in  $19 \pm 7\%$ ,  $24 \pm 2\%$ , and  $36 \pm 4\%$  RCY, using the reagents [¹⁸F]5a, [¹⁸F]5c, and [¹⁸F]5f, respectively. The labeled compound [¹⁸F]8db was afforded in  $10 \pm 3\%$ ,  $13 \pm 1\%$ , and  $13 \pm 2\%$  RCY, using the reagents [¹⁸F]5a, [¹⁸F]5c, and [¹⁸F]5f, respectively (see the Tables S43-S45 for more details of the RCY determination). The UPLC radio-chromatogram of the crude product [¹⁸F]8d is depicted in Figure S97. Figures S98 and S99 represent the UPLC UV-chromatograms of the non-radioactive references 8da and 8db, respectively.

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)		Radiochemi	cal Yield (%)
	a + b	а	b	а	b
1	29	42	21	12	6
2	32	51	34	16	11
3	47	61	30	29	14
	Radiochemical Yield (%	$19 \pm 7$	$10 \pm 3$		

Table S43. Determination of the radiochemical yield (%) of the synthesis of [18F]8d using the reagent [18F]5a

Table S44. Determination of the radiochemical yi	ield (%)	of the synthesis	of [18F]8d using	the reagent [18F]5c
--------------------------------------------------	----------	------------------	------------------	---------------------

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)		Radiochemi	cal Yield (%)
	a + b	а	b	а	b
1	50	51	25	26	12
2	50	49	24	24	12
3	49	45	30	22	15
<b>Radiochemical Yield (%) ± Deviation</b>				$24 \pm 2$	$13 \pm 1$

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)		Radiochemi	cal Yield (%)
	a + b	а	b	а	b
1	62	64	26	40	16
2	53	69	23	37	12
3	45	68	22	31	10
	Radiochemical Yield (%	$36 \pm 4$	$13 \pm 2$		

Table S45. Determination of the radiochemical yield (%) of the synthesis of [18F]8d using the reagent [18F]5f



Figure S97. UPLC radio-chromatogram of the crude product [18F]8d (gradient B).



Auto-Scaled Chromatogram

Figure S98. UPLC UV-chromatogram of the authentic reference 8da (gradient B).



Figure S99. UPLC UV-chromatogram of the authentic reference 8db (gradient B).

## 2.7.5. Synthesis of [¹⁸F]4-chloro-2-(difluoromethyl)-*N*-(4,5-dihydro-1*H*-imidazol-2-yl)-6-methoxypyrimidin-5-amine ([¹⁸F]8f)



The implementation of the general procedure for the C-H ¹⁸F-difluoromethylation of 4-chloro-*N*-(4,5-dihydro-1*H*-imidazol-2-yl)-6-methoxypyrimidin-5-amine (4.6 mg, 0.02 mmol) provided the labeled compound [¹⁸F]**8**f in 52  $\pm$  6%, 17  $\pm$  3%, and 60  $\pm$  3% RCY, using the reagents [¹⁸F]**5**a, [¹⁸F]**5**c, and [¹⁸F]**5**f, respectively (see the Tables S46-S48 for more details of the RCY determination). The UPLC radio-chromatogram of the crude product [¹⁸F]**8**f is depicted in Figure S100. Figure S101 represents the UPLC UV-chromatogram of the non-radioactive reference **8**f.

Table S46. Determination of the radiochemical yield (%) of the synthesis of [18F]8f using the reagents [18F]5a

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	50	100	50
2	47	100	47
3	60	100	60
	Radiochemical Yield (	$52 \pm 6$	

<b>Fable S47.</b> Determination of the radiochemical	yield (	(%)	of the s	ynthesis of	f <b>[18F]8</b> 1	f using	g the reag	gents	[ ¹⁸ F]50	c
------------------------------------------------------	---------	-----	----------	-------------	-------------------	---------	------------	-------	----------------------	---

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	67	35	23
2	60	27	16
3	53	26	14
4	64	26	17
5	63	24	15
	Radiochemical Yield (	17 ± 3	



Table S48. Determination of the radiochemical yield (%) of the synthesis of [18F]8f using the reagents [18F]5c

Figure S100. UPLC radio-chromatogram of the crude product [18F]8f (gradient B).



Figure S101. UPLC UV-chromatogram of the authentic reference 8f (gradient B).

## 2.7.6. Synthesis of 8-(difluoromethyl)-3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1*H*-purine-2,6-dione ([¹⁸F]8g)



The implementation of the general procedure for the C-H ¹⁸F-difluoromethylation of 3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1*H*-purine-2,6-dione (5.6 mg, 0.02 mmol) provided the labeled compound [¹⁸F]8g in 52  $\pm$  6%, 17  $\pm$  3%, and 60  $\pm$  3% RCY, using the reagents [¹⁸F]5a, [¹⁸F]5c, and [¹⁸F]5f, respectively (see the Tables S49-S51 for more details of the RCY determination). The UPLC radio-chromatogram of the crude product [¹⁸F]8g is depicted in Figure S102. Figure S103 represents the UPLC UVchromatogram of the non-radioactive reference 8g.

Table S49. Determination of the radiochemical yield (%) of the synthesis of [18F]8g using the reagents [18F]5a

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	18	100	18
2	23	100	23
3	22	22	
	Radiochemical Yield (	21 ± 2	

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	42	58	24
2	56	62	35
3	61	61	37
4	48	53	25
	Radiochemical Yield	$30 \pm 6$	

Table S50. Determination of the radiochemical yield (%) of the synthesis of [18F]8g using the reagents [18F]5c

Table S51. Determination of the radiochemical yield (%) of the synthesis of [18F]8g using the reagents [18F]5f

Reaction	Radio-TLC purity (%)	Radio-UPLC purity (%)	Radiochemical Yield (%)
1	52	60	31
2	47	82	39
3	42	81	34
	Radiochemical Yield (	35 ± 3	



Figure S102. UPLC radio-chromatogram of the crude product [18F]8g (gradient B).



Figure S103. UPLC UV-chromatogram of the authentic reference 8g (gradient B).